3,176 research outputs found

    Method for Optimal Sensor Deployment on 3D Terrains Utilizing a Steady State Genetic Algorithm with a Guided Walk Mutation Operator Based on the Wavelet Transform

    Get PDF
    One of the most critical issues of Wireless Sensor Networks (WSNs) is the deployment of a limited number of sensors in order to achieve maximum coverage on a terrain. The optimal sensor deployment which enables one to minimize the consumed energy, communication time and manpower for the maintenance of the network has attracted interest with the increased number of studies conducted on the subject in the last decade. Most of the studies in the literature today are proposed for two dimensional (2D) surfaces; however, real world sensor deployments often arise on three dimensional (3D) environments. In this paper, a guided wavelet transform (WT) based deployment strategy (WTDS) for 3D terrains, in which the sensor movements are carried out within the mutation phase of the genetic algorithms (GAs) is proposed. The proposed algorithm aims to maximize the Quality of Coverage (QoC) of a WSN via deploying a limited number of sensors on a 3D surface by utilizing a probabilistic sensing model and the Bresenham's line of sight (LOS) algorithm. In addition, the method followed in this paper is novel to the literature and the performance of the proposed algorithm is compared with the Delaunay Triangulation (DT) method as well as a standard genetic algorithm based method and the results reveal that the proposed method is a more powerful and more successful method for sensor deployment on 3D terrains

    Impacts of surface model generation approaches on raytracing-based solar potential estimation in urban areas

    Get PDF
    Raytracing-based methods are widely used for quantifying irradiation on building surfaces. Urban 3D surface models are necessary input for raytracing simulations, which can be generated from open-source point cloud data with the help of surface reconstruction algorithms. In research and engineering practice, various algorithms are being used for this purpose; each leading to different mesh topologies and corresponding performance. This paper compares the impacts of four different reconstruction algorithms by investigating their performance using DAYSIM raytracing simulations. The analysis is carried out for five configurations with various urban morphologies. Results show that the reconstructed models consistently underestimate the shading influence due to geometrical shrinkages that emerge from the various model generation procedures. The explicit algorithms, with Generic Delaunay a notable example, have better performance with less embedded error than the implicit algorithms in both daily and annual simulations. Results also show that diffuse irradiance is responsible for larger contributions to the overall error than direct components. This effect becomes more prominent when modeling reflected irradiation in urban environments. Additionally, the work shows that solar elevation and shading geometry types also affect the error magnitude. The paper concludes by providing reconstruction algorithm selection criteria for photovoltaic practitioners and urban energy planners

    A review of three-dimensional imaging technologies for pavement distress detection and measurements

    Get PDF
    With the ever-increasing emphasis on maintaining road assets to a high standard, the need for fast accurate inspection for road distresses is becoming extremely important. Surface distresses on roads are essentially three dimensional (3-D) in nature. Automated visual surveys are the best option available. However, the imaging conditions, in terms of lighting, etc., are very random. For example, the challenge of measuring the volume of the pothole requires a large field of view with a reasonable spatial resolution, whereas microtexture evaluation requires very accurate imaging. Within the two extremes, there is a range of situations that require 3-D imaging. Three-dimensional imaging consists of a number of techniques such as interferometry and depth from focus. Out of these, laser imagers are mainly used for road surface distress inspection. Many other techniques are relatively unknown among the transportation community, and industrial products are rare. The main impetus for this paper is derived from the rarity of 3-D industrial imagers that employ alternative techniques for use in transportation. In addition, the need for this work is also highlighted by a lack of literature that evaluates the relative merits/demerits of various imaging methods for different distress measurement situations in relation to pavements. This overview will create awareness of available 3-D imaging methods in order to help make a fast initial technology selection and deployment. The review is expected to be helpful for researchers, practicing engineers, and decision makers in transportation engineering

    RRS Discovery Cruise 381, 28 Aug - 03 Oct 2012. Ocean Surface Mixing, Ocean Submesoscale Interaction Study (OSMOSIS)

    Get PDF
    Cruise D381 was made in support of NERC's Ocean Surface Boundary Layer theme action programme, OSMOSIS (Ocean Surface Mixing, Ocean Sub-mesoscale Interaction Study). The ocean surface boundary layer (OSBL) deepens in response to convective, wind and surface wave forcing, which produce three-dimensional turbulence that entrains denser water, deepening the layer. The OSBL shoals in response to solar heating and to mesoscale and sub-mesoscale motions that adjust lateral buoyancy gradients into vertical stratification. Recent and ongoing work is revolutionising our view of both the deepening and shoaling processes: new processes are coming into focus that are not currently recognised in model parameterisation schemes. In OSMOSIS we have a project which integrates observations, modelling studies and parameterisation development to deliver a step change in modelling of the OSBL. The OSMOSIS overall aim is to develop new, physically based and observationally supported, parameterisations of processes that deepen and shoal the OSBL, and to implement and evaluate these parameterisations in a state-of-the-art global coupled climate model, facilitating improved weather and climate predictions. Cruise D381 was split into two legs D381A and a process study cruise D381B. D381A partly deployed the OSMOSIS mooring array and two gliders for long term observations near the Porcupine Abyssal Plain Observatory. D381B firstly completed mooring and glider deployment work begun during the preceding D381A cruise. D381B then carried out several days of targetted turbulence profiling looking at changes in turbulent energy dissipation resulting from the interation of upper ocean fluid structures such as eddies, sub-mesoscale filaments and Langmuir cells with surface wind and current shear. Finally D381B conducted two spatial surveys with the towed SeaSoar vehicle to map and diagnose the mesoscale and sub-mesoscale flows, which, unusually, are the `large scale' background in which this study sits

    RRS Discovery Cruise 381, 28 Aug - 03 Oct 2012. Ocean Surface Mixing, Ocean Submesoscale Interaction Study (OSMOSIS)

    No full text
    Cruise D381 was made in support of NERC's Ocean Surface Boundary Layer theme action programme, OSMOSIS (Ocean Surface Mixing, Ocean Sub-mesoscale Interaction Study). The ocean surface boundary layer (OSBL) deepens in response to convective, wind and surface wave forcing, which produce three-dimensional turbulence that entrains denser water, deepening the layer. The OSBL shoals in response to solar heating and to mesoscale and sub-mesoscale motions that adjust lateral buoyancy gradients into vertical stratification. Recent and ongoing work is revolutionising our view of both the deepening and shoaling processes: new processes are coming into focus that are not currently recognised in model parameterisation schemes. In OSMOSIS we have a project which integrates observations, modelling studies and parameterisation development to deliver a step change in modelling of the OSBL. The OSMOSIS overall aim is to develop new, physically based and observationally supported, parameterisations of processes that deepen and shoal the OSBL, and to implement and evaluate these parameterisations in a state-of-the-art global coupled climate model, facilitating improved weather and climate predictions. Cruise D381 was split into two legs D381A and a process study cruise D381B. D381A partly deployed the OSMOSIS mooring array and two gliders for long term observations near the Porcupine Abyssal Plain Observatory. D381B firstly completed mooring and glider deployment work begun during the preceding D381A cruise. D381B then carried out several days of targetted turbulence profiling looking at changes in turbulent energy dissipation resulting from the interation of upper ocean fluid structures such as eddies, sub-mesoscale filaments and Langmuir cells with surface wind and current shear. Finally D381B conducted two spatial surveys with the towed SeaSoar vehicle to map and diagnose the mesoscale and sub-mesoscale flows, which, unusually, are the `large scale' background in which this study sits

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe
    corecore