8,276 research outputs found

    Metamaterials for Ballistic Electrons

    Get PDF
    The paper presents a metamaterial for ballistic electrons, which consists of a quantum barrier formed in a semiconductor with negative effective electron mass. This barrier is the analogue of a metamaterial for electromagnetic waves in media with negative electrical permittivity and magnetic permeability. Besides applications similar to those of optical metamaterials, a nanosized slab of a metamaterial for ballistic electrons, sandwiched between quantum wells of positive effective mass materials, reveals unexpected conduction properties, e.g. single or multiple room temperature negative differential conductance regions at very low voltages and with considerable peak-to-valley ratios, while the traversal time of ballistic electrons can be tuned to larger or smaller values than in the absence of the metamaterial slab. Thus, slow and fast electrons, analogous to slow and fast light, occur in metamaterials for ballistic electrons

    On-Site Wireless Power Generation

    Full text link
    Conventional wireless power transfer systems consist of a microwave power generator and a microwave power receiver separated by some distance. To realize efficient power transfer, the system is typically brought to resonance, and the coupled-antenna mode is optimized to reduce radiation into the surrounding space. In this scheme, any modification of the receiver position or of its electromagnetic properties results in the necessity of dynamically tuning the whole system to restore the resonant matching condition. It implies poor robustness to the receiver location and load impedance, as well as additional energy consumption in the control network. In this study, we introduce a new paradigm for wireless power delivery based on which the whole system, including transmitter and receiver and the space in between, forms a unified microwave power generator. In our proposed scenario the load itself becomes part of the generator. Microwave oscillations are created directly at the receiver location, eliminating the need for dynamical tuning of the system within the range of the self-oscillation regime. The proposed concept has relevant connections with the recent interest in parity-time symmetric systems, in which balanced loss and gain distributions enable unusual electromagnetic responses.Comment: 10 pages, 13 figure

    Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials

    Full text link
    Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities for characterizing and designing nonlinear nanodevices.Comment: 11 pages, 14 figure

    Smart Table Based on Metasurface for Wireless Power Transfer

    Full text link
    Metasurfaces have been investigated and its numerous exotic functionalities and the potentials to arbitrarily control of the electromagnetic fields have been extensively explored. However, only limited types of metasurface have finally entered into real products. Here, we introduce a concept of a metasurface-based smart table for wirelessly charging portable devices and report its first prototype. The proposed metasurface can efficiently transform evanescent fields into propagating waves which significantly improves the near field coupling to charge a receiving device arbitrarily placed on its surface wirelessly through magnetic resonance coupling. In this way, power transfer efficiency of 80%\% is experimentally obtained when the receiver is placed at any distances from the transmitter. The proposed concept enables a variety of important applications in the fields of consumer electronics, electric automobiles, implanted medical devices, etc. The further developed metasurface-based smart table may serve as an ultimate 2-dimensional platform and support charging multiple receivers.Comment: 8 pages, 7 figure

    Negative index and mode coupling in all-dielectric metamaterials at terahertz frequencies

    Get PDF
    We report on the role of the coupling of the modes of Mie resonances in all-dielectric metamaterials to ensure negative effective index at terahertz frequencies. We study this role according to the lattice period and according to the frequency overlapping of the modes of resonance. We show that negative effective refractive index requires sufficiently strong mode coupling and that for even more strong mode coupling, the first two modes of Mie resonances are degenerated; the effective refractive index is then undeterminded. We also show that adjusting the mode coupling leads to near-zero effective index, or even null effective index. Further, we compare the mode coupling effect with hybridization in metamaterials.Comment: 17pages, 10 figure
    • …
    corecore