research

Metamaterials for Ballistic Electrons

Abstract

The paper presents a metamaterial for ballistic electrons, which consists of a quantum barrier formed in a semiconductor with negative effective electron mass. This barrier is the analogue of a metamaterial for electromagnetic waves in media with negative electrical permittivity and magnetic permeability. Besides applications similar to those of optical metamaterials, a nanosized slab of a metamaterial for ballistic electrons, sandwiched between quantum wells of positive effective mass materials, reveals unexpected conduction properties, e.g. single or multiple room temperature negative differential conductance regions at very low voltages and with considerable peak-to-valley ratios, while the traversal time of ballistic electrons can be tuned to larger or smaller values than in the absence of the metamaterial slab. Thus, slow and fast electrons, analogous to slow and fast light, occur in metamaterials for ballistic electrons

    Similar works

    Available Versions

    Last time updated on 01/04/2019