36,007 research outputs found
Firefly Algorithms for Multimodal Optimization
Nature-inspired algorithms are among the most powerful algorithms for
optimization. This paper intends to provide a detailed description of a new
Firefly Algorithm (FA) for multimodal optimization applications. We will
compare the proposed firefly algorithm with other metaheuristic algorithms such
as particle swarm optimization (PSO). Simulations and results indicate that the
proposed firefly algorithm is superior to existing metaheuristic algorithms.
Finally we will discuss its applications and implications for further research
Firefly Algorithm: Recent Advances and Applications
Nature-inspired metaheuristic algorithms, especially those based on swarm
intelligence, have attracted much attention in the last ten years. Firefly
algorithm appeared in about five years ago, its literature has expanded
dramatically with diverse applications. In this paper, we will briefly review
the fundamentals of firefly algorithm together with a selection of recent
publications. Then, we discuss the optimality associated with balancing
exploration and exploitation, which is essential for all metaheuristic
algorithms. By comparing with intermittent search strategy, we conclude that
metaheuristics such as firefly algorithm are better than the optimal
intermittent search strategy. We also analyse algorithms and their implications
for higher-dimensional optimization problems.Comment: 15 page
Metaheuristic Algorithms for Convolution Neural Network
A typical modern optimization technique is usually either heuristic or
metaheuristic. This technique has managed to solve some optimization problems
in the research area of science, engineering, and industry. However,
implementation strategy of metaheuristic for accuracy improvement on
convolution neural networks (CNN), a famous deep learning method, is still
rarely investigated. Deep learning relates to a type of machine learning
technique, where its aim is to move closer to the goal of artificial
intelligence of creating a machine that could successfully perform any
intellectual tasks that can be carried out by a human. In this paper, we
propose the implementation strategy of three popular metaheuristic approaches,
that is, simulated annealing, differential evolution, and harmony search, to
optimize CNN. The performances of these metaheuristic methods in optimizing CNN
on classifying MNIST and CIFAR dataset were evaluated and compared.
Furthermore, the proposed methods are also compared with the original CNN.
Although the proposed methods show an increase in the computation time, their
accuracy has also been improved (up to 7.14 percent).Comment: Article ID 1537325, 13 pages. Received 29 January 2016; Revised 15
April 2016; Accepted 10 May 2016. Academic Editor: Martin Hagan. in Hindawi
Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016
Review of Metaheuristics and Generalized Evolutionary Walk Algorithm
Metaheuristic algorithms are often nature-inspired, and they are becoming
very powerful in solving global optimization problems. More than a dozen of
major metaheuristic algorithms have been developed over the last three decades,
and there exist even more variants and hybrid of metaheuristics. This paper
intends to provide an overview of nature-inspired metaheuristic algorithms,
from a brief history to their applications. We try to analyze the main
components of these algorithms and how and why they works. Then, we intend to
provide a unified view of metaheuristics by proposing a generalized
evolutionary walk algorithm (GEWA). Finally, we discuss some of the important
open questions.Comment: 14 page
Free Lunch or No Free Lunch: That is not Just a Question?
The increasing popularity of metaheuristic algorithms has attracted a great
deal of attention in algorithm analysis and performance evaluations.
No-free-lunch theorems are of both theoretical and practical importance, while
many important studies on convergence analysis of various metaheuristic
algorithms have proven to be fruitful. This paper discusses the recent results
on no-free-lunch theorems and algorithm convergence, as well as their important
implications for algorithm development in practice. Free lunches may exist for
certain types of problem. In addition, we will highlight some open problems for
further research.Comment: 14 page
Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications
Business optimization is becoming increasingly important because all business
activities aim to maximize the profit and performance of products and services,
under limited resources and appropriate constraints. Recent developments in
support vector machine and metaheuristics show many advantages of these
techniques. In particular, particle swarm optimization is now widely used in
solving tough optimization problems. In this paper, we use a combination of a
recently developed Accelerated PSO and a nonlinear support vector machine to
form a framework for solving business optimization problems. We first apply the
proposed APSO-SVM to production optimization, and then use it for income
prediction and project scheduling. We also carry out some parametric studies
and discuss the advantages of the proposed metaheuristic SVM.Comment: 12 page
Two-Stage Eagle Strategy with Differential Evolution
Efficiency of an optimization process is largely determined by the search
algorithm and its fundamental characteristics. In a given optimization, a
single type of algorithm is used in most applications. In this paper, we will
investigate the Eagle Strategy recently developed for global optimization,
which uses a two-stage strategy by combing two different algorithms to improve
the overall search efficiency. We will discuss this strategy with differential
evolution and then evaluate their performance by solving real-world
optimization problems such as pressure vessel and speed reducer design. Results
suggest that we can reduce the computing effort by a factor of up to 10 in many
applications
Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimize total tardiness
The permutation flow shop scheduling problem is one of the most studied operations research related problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise several objective functions. In this paper we address the total tardiness criterion, which is aimed towards the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have been proposed for this problem in the literature, recent contributions for related problems suggest that there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences without a complete evaluation of their objective function. Second, using this constructive heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive computational evaluation is performed to establish the efficiency of our proposals against the existing heuristics and metaheuristics for the problem.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-
- …
