43,613 research outputs found

    Metadata management for scientific databases

    Get PDF
    Most scientific databases consist of datasets (or sources) which in turn include samples (or files) with an identical structure (or schema). In many cases, samples are associated with rich metadata, describing the process that leads to building them (e.g.: the experimental conditions used during sample generation). Metadata are typically used in scientific computations just for the initial data selection; at most, metadata about query results is recovered after executing the query, and associated with its results by post-processing. In this way, a large body of information that could be relevant for interpreting query results goes unused during query processing. In this paper, we present ScQL, a new algebraic relational language, whose operations apply to objects consisting of data–metadatapairs, by preserving such one-to-one correspondence throughout the computation. We formally define each operation and we describe an optimization, called meta-first, that may significantly reduce the query processing overhead by anticipating the use of metadata for selectively loading into the execution environment only those input samples that contribute to the result samples. In ScQL, metadata have the same relevance as data, and contribute to building query results; in this way, the resulting samples are systematically associated with metadata about either the specific input samples involved or about query processing, thereby yielding a new form of metadata provenance. We present many examples of use of ScQL, relative to several application domains, and we demonstrate the effectiveness of the meta-first optimization

    Sparse cross-products of metadata in scientific simulation management

    Get PDF
    Managing scientific data is by no means a trivial task even in a single site environment with a small number of researchers involved. We discuss some issues concerned with posing well-specified experiments in terms of parameters or instrument settings and the metadata framework that arises from doing so. We are particularly interested in parallel computer simulation experiments, where very large quantities of warehouse-able data are involved. We consider SQL databases and other framework technologies for manipulating experimental data. Our framework manages the the outputs from parallel runs that arise from large cross-products of parameter combinations. Considerable useful experiment planning and analysis can be done with the sparse metadata without fully expanding the parameter cross-products. Extra value can be obtained from simulation output that can subsequently be data-mined. We have particular interests in running large scale Monte-Carlo physics model simulations. Finding ourselves overwhelmed by the problems of managing data and compute Âżresources, we have built a prototype tool using Java and MySQL that addresses these issues. We use this example to discuss type-space management and other fundamental ideas for implementing a laboratory information management system

    Grid Database - Management, OGSA and Integration

    Get PDF
    The problem description of data models and types of databases has generated and gives rise to extensive controversy generated by their complexity, the many factors involved in the actual process of implementation. Grids encourage and promote the publication, sharing and integration of scientific data, distributed across Virtual Organizations. Scientists and researchers work on huge, complex and growing datasets. The complexity of data management within a grid environment comes from the distribution, heterogeneity and number of data sources.Early Grid applications focused principally on the storage, replication and movement of file-based data.. Many Grid applications already use databases for managing metadata, but increasingly many are associated with large databases of domain-specific information. In this paper we will talk about the fundamental concepts related to grid-database access, management, OGSA and integration

    1st INCF Workshop on Sustainability of Neuroscience Databases

    Get PDF
    The goal of the workshop was to discuss issues related to the sustainability of neuroscience databases, identify problems and propose solutions, and formulate recommendations to the INCF. The report summarizes the discussions of invited participants from the neuroinformatics community as well as from other disciplines where sustainability issues have already been approached. The recommendations for the INCF involve rating, ranking, and supporting database sustainability

    AstroGrid-D: Enhancing Astronomic Science with Grid Technology

    Get PDF
    We present AstroGrid-D, a project bringing together astronomers and experts in Grid technology to enhance astronomic science in many aspects. First, by sharing currently dispersed resources, scientists can calculate their models in more detail. Second, by developing new mechanisms to efficiently access and process existing datasets, scientific problems can be investigated that were until now impossible to solve. Third, by adopting Grid technology large instruments such as robotic telescopes and complex scientific workflows from data aquisition to analysis can be managed in an integrated manner. In this paper, we present prominent astronomic use cases, discuss requirements on a Grid middleware and present our approach to extend/augment existing middleware to facilitate the improvements mentioned above
    • …
    corecore