2,935 research outputs found

    Text Mining to Facilitate Domain Knowledge Discovery

    Get PDF

    Scientific Information Extraction with Semi-supervised Neural Tagging

    Full text link
    This paper addresses the problem of extracting keyphrases from scientific articles and categorizing them as corresponding to a task, process, or material. We cast the problem as sequence tagging and introduce semi-supervised methods to a neural tagging model, which builds on recent advances in named entity recognition. Since annotated training data is scarce in this domain, we introduce a graph-based semi-supervised algorithm together with a data selection scheme to leverage unannotated articles. Both inductive and transductive semi-supervised learning strategies outperform state-of-the-art information extraction performance on the 2017 SemEval Task 10 ScienceIE task.Comment: accepted by EMNLP 201

    Named Entity Recognition in Electronic Health Records: A Methodological Review

    Get PDF
    Objectives A substantial portion of the data contained in Electronic Health Records (EHR) is unstructured, often appearing as free text. This format restricts its potential utility in clinical decision-making. Named entity recognition (NER) methods address the challenge of extracting pertinent information from unstructured text. The aim of this study was to outline the current NER methods and trace their evolution from 2011 to 2022. Methods We conducted a methodological literature review of NER methods, with a focus on distinguishing the classification models, the types of tagging systems, and the languages employed in various corpora. Results Several methods have been documented for automatically extracting relevant information from EHRs using natural language processing techniques such as NER and relation extraction (RE). These methods can automatically extract concepts, events, attributes, and other data, as well as the relationships between them. Most NER studies conducted thus far have utilized corpora in English or Chinese. Additionally, the bidirectional encoder representation from transformers using the BIO tagging system architecture is the most frequently reported classification scheme. We discovered a limited number of papers on the implementation of NER or RE tasks in EHRs within a specific clinical domain. Conclusions EHRs play a pivotal role in gathering clinical information and could serve as the primary source for automated clinical decision support systems. However, the creation of new corpora from EHRs in specific clinical domains is essential to facilitate the swift development of NER and RE models applied to EHRs for use in clinical practice

    Acknowledgement Entity Recognition in CORD-19 Papers

    Get PDF
    Acknowledgements are ubiquitous in scholarly papers. Existing acknowledgement entity recognition methods assume all named entities are acknowledged. Here, we examine the nuances between acknowledged and named entities by analyzing sentence structure. We develop an acknowledgement extraction system, AckExtract based on open-source text mining software and evaluate our method using manually labeled data. AckExtract uses the PDF of a scholarly paper as input and outputs acknowledgement entities. Results show an overall performance of F1=0.92. We built a supplementary database by linking CORD-19 papers with acknowledgement entities extracted by AckExtract including persons and organizations and find that only up to 50–60% of named entities are actually acknowledged. We further analyze chronological trends of acknowledgement entities in CORD-19 papers. All codes and labeled data are publicly available at https://github.com/lamps-lab/ackextract
    • …
    corecore