
I. Introduction

An Electronic Health Record (EHR) is a digital repository of 
a patient’s medical information. Research indicates that ap-
proximately 80% of the data within EHRs are in an unstruc-
tured format, meaning they are contained in free-text docu-
ments encoded in expressive and natural human language 
typically used for documenting clinical proceedings [1,2]. 
These data can be extracted through named entity recogni-
tion (NER) or relation extraction (RE) methods, which are 
crucial components of natural language processing (NLP). 
These tasks involve identifying, extracting, associating, and 
classifying clinical terms such as diseases, symptoms, treat-
ments, tests, medications, procedures, and body parts, there-

Named Entity Recognition in Electronic Health 
Records: A Methodological Review
María C. Durango1, Ever A. Torres-Silva1, Andrés Orozco-Duque1,2

1Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Antioquia, Colombia
2Facultad de Ingenierías, Universidad de Medellín, Antioquia, Colombia

Objectives: A substantial portion of the data contained in Electronic Health Records (EHR) is unstructured, often appearing 
as free text. This format restricts its potential utility in clinical decision-making. Named entity recognition (NER) methods 
address the challenge of extracting pertinent information from unstructured text. The aim of this study was to outline the 
current NER methods and trace their evolution from 2011 to 2022. Methods: We conducted a methodological literature re-
view of NER methods, with a focus on distinguishing the classification models, the types of tagging systems, and the languag-
es employed in various corpora. Results: Several methods have been documented for automatically extracting relevant infor-
mation from EHRs using natural language processing techniques such as NER and relation extraction (RE). These methods 
can automatically extract concepts, events, attributes, and other data, as well as the relationships between them. Most NER 
studies conducted thus far have utilized corpora in English or Chinese. Additionally, the bidirectional encoder representa-
tion from transformers using the BIO tagging system architecture is the most frequently reported classification scheme. We 
discovered a limited number of papers on the implementation of NER or RE tasks in EHRs within a specific clinical domain. 
Conclusions: EHRs play a pivotal role in gathering clinical information and could serve as the primary source for automated 
clinical decision support systems. However, the creation of new corpora from EHRs in specific clinical domains is essential to 
facilitate the swift development of NER and RE models applied to EHRs for use in clinical practice.

Keywords: Clinical Decision Support System, Electronic Health Records, Deep Learning, Natural Language Processing, Su-
pervised Machine Learning

Healthc Inform Res. 2023 October;29(4):286-300. 
https://doi.org/10.4258/hir.2023.29.4.286
pISSN 2093-3681  •  eISSN 2093-369X  

Review Article

Submitted: April 21, 2023
Revised: July 29, 2023
Accepted: September 3, 2023

Corresponding Author 
Andrés Orozco-Duque
Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico 
Metropolitano, 050034, Calle 73 #76A-354, Medellín, Antioquia, 
Colombia. Tel: +573006828421, E-mail: andresorozco4302@correo.
itm.edu.co (https://orcid.org/0000-0001-8582-8015)

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

ⓒ 2023 The Korean Society of Medical Informatics

mailto:andresorozco4302@correo.itm.edu.co
mailto:andresorozco4302@correo.itm.edu.co
http://crossmark.crossref.org/dialog/?doi=10.4258/hir.2023.29.4.286&domain=pdf&date_stamp=2023-10-31


287Vol. 29  •  No. 4  •  October 2023 www.e-hir.org

Named Entity Recognition in Healthcare

by enabling the recognition of a range of clinical concepts [3]. 
The identification of concepts in medical texts is a critical 
aspect of clinical decision support systems, which are de-
signed to assist healthcare personnel in making data-driven 
decisions that enhance the quality of healthcare services.
 Several methods exist for extracting clinical information 
from EHRs, which can be categorized into two main types: 
rule/dictionary-based and machine learning-based. The for-
mer relies heavily on syntactic and semantic analyses, utiliz-
ing regular expressions or medical terms to match patterns 
within the EHR text. The latter can be further divided into 
traditional machine learning methods, deep learning meth-
ods, and graphical models [4]. Traditional machine learning 
methods encompass fully connected neural networks, sup-
port vector machines, decision trees, random forests, and 
other classifiers. These methods necessitate feature extrac-
tion steps, which are typically based on word embeddings 
[5]. Deep learning methods, for their part, consist of models 
based on convolutional and recurrent neural networks. 
Unlike traditional methods, these do not require a feature 
extraction step, but they do necessitate a substantial volume 
of data for training [6]. Finally, graphical models employ 
graphs to represent problems and utilize information from 
immediate neighbors. These models, which include hidden 
Markov models and conditional random fields, generally re-
quire prior feature extraction steps [7].
 In the present study, we reviewed the existing NER and RE 
methods employed in the processing of EHRs. Additionally, 
we examined the trends in this field over the past decade. 
We made comparisons among the studies based on the clas-
sification method, which could be rule-based, traditional 
machine learning, graphical models, or deep learning. We 
also considered the type of corpus, whether private or pub-
lic, the language used, and the tagging system.
 This study encompasses manuscripts published from 2011 
to 2022. Consequently, this review does not incorporate 
recent advancements published in 2023 that utilize large 
language models (LLMs) such as GPT-4 (Generative Pre-
trained Transformer 4). However, some of these publica-
tions will be referenced in the discussion section. It remains 
imperative to review existing methodologies for NER in 
medical records for several reasons. First, medical records 
frequently contain domain-specific language, abbreviations, 
and acronyms. The majority of LLMs are trained on general-
purpose corpora and may not effectively manage these spe-
cific challenges. Second, a review of existing methods allows 
for a comparison of performance, strengths, and limitations 
in future studies or applications that employ LLMs. Lastly, 

such a review aids in identifying gaps in data availability and 
underscores potential avenues for future research and data-
set creation.

II. Methods

In this review, we adhered as closely as possible to the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses guidelines (https://prisma-statement.org/). Our 
research was conducted across four databases: Science 
Direct, PubMed, IEEE, and the Biblioteca Virtual en Salud 
(VHL; https://bvsalud.org/en/). We began by identifying 
the keywords to construct the search string. These included 
terms such as “text mining,” “data mining,” “natural language 
processing,” “electronic health record,” and “named entity 
recognition.” During this initial phase (search patterns), we 
also incorporated synonyms or acronyms for each keyword. 
For example, for text mining, we included “text data min-
ing,” “text analytics,” “text analysis,” and “text clustering.” For 
natural language processing, we included NLP. For electronic 
health records, we included “electronic medical records,” 
“EHR,” “EMR,” and “medical records.” For named entity 
recognition, we included “NER,” “named entity recognition,” 
and “classification,” and “NERC.” We then combined these 
keywords to formulate the queries, which are displayed in 
Appendix A.
 The inclusion criteria were limited to papers published 
within the timeframe of January 2011 to December 2022. 
Furthermore, we focused solely on original articles. We uti-
lized Rayyan (https://rayyan.ai), a free platform, to oversee 
the literature review process and to identify and eliminate 
any duplicate articles. 
 Subsequently, we screened titles and abstracts to exclude 
articles based on the subsequent criteria (utilizing the labels 
provided in parentheses):
 • The study does not use EHRs (No EHRs).
 •  The study reports the application of NLP but does not 

mention any NER method (No NER).
 • The study is unrelated to NLP (No NLP).
 •  The study is not reported as an original research paper, 

for example review articles or conference proceedings 
(Not Original).

 •  The paper is written in a language other than English 
(Language).

 In cases where there was a discrepancy concerning any ar-
ticle, we ascertained whether the publication adhered to the 
exclusion criteria, using the information provided in the title 
and abstract.

https://prisma-statement.org/
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 Next, we screened the full texts. During full-text screening, 
we manually extracted the following information to describe 
the articles:
 •  Clinical domain: We identified the types of healthcare 

services utilized for the extraction of EHRs.
 •  Corpus language: We identified the language used in the 

development of the NER model.
 •  Corpus availability: We ascertained whether the study 

utilized private or public corpora. Additionally, we deter-
mined if the corpora were sourced from any NLP chal-
lenges.

 •  Tagging system: We explored the various tagging systems 
employed for the identification of tokens within entities 
that consist of multiple words.

 •  NLP approach: We classified the NER models into various 
types or approaches. These include rule-based, traditional 
machine learning, deep learning, and graphical models. 

III. Results

Figure 1 illustrates the procedure of our methodological 
review. Initially, we pinpointed 588 articles, from which 152 
were selected for inclusion in this study. It is important to 
note that a single article may be attributed to multiple rea-
sons for exclusion. We discovered numerous articles that uti-
lized NLP approaches, but in certain instances, they did not 
implement NER methods. Furthermore, we identified sev-
eral articles that included medical text, but this was obtained 
either from social media or through web scraping.

1. Classification Models
Figure 2 shows a timeline of the evolution of the NER ap-
proaches applied to EHRs, with this evolution being ground-
ed in classification models. For instance, until 2016, rule-
based methods, traditional machine learning methods, and 
graphical models were predominantly utilized. The support 
vector machine was the most frequently used traditional 
machine learning algorithm in the review [8-18]. In terms of 
graphical models, the conditional random field (CRF) was 
the most prevalent, primarily employed to address a label 
sequencing issue through NER tagging. Furthermore, the 
CRF model was commonly used in hybrid models or as an 
additional layer in the output of other models. Specifically, 
CRF was integrated with rule-based approaches [9,16,19-23], 
deep learning methods [4,24,25], and the conditional Mar-
kov model [26].
 The first papers to report on NER models, based on deep 
learning and applied to EHRs, were published in 2015 [27]. 
By 2019, bidirectional long short-term memory (BiLSTM) 
had become the dominant architecture [7,28-45]. That same 
year, three studies were published that utilized the bidirec-
tional encoder representations from transformers (BERT) 
architecture [28,43,46]. By 2021 [47-54], the BERT archi-
tecture and its variants had emerged as the primary NER 
model applied to EHRs, a trend that continues to this day 
[4,24,25,55-71]. However, this self-attention mechanism was 
initially introduced in 2017 [72].
 Over the years, researchers have adapted various versions 
of the BERT model for use with EHRs. One such adaptation 
is BioBERT, a language representation model specifically 
pre-trained for the biomedical domain. This model utilizes 
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Figure 1.   Flow diagram of the meth
odological review process. 
EHR: Electronic Health Re
cord, NLP: natural language 
processing, NER: named en
tity recognition.
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the original BERT code and has been pre-trained using 
PubMed abstracts and PubMed Central full-text articles [73]. 
BioBERT has demonstrated good performance in biomedical 
NER [3,64,65]. Another example is BioClinicalBERT, which 
was initialized using BioBERT weights and was additionally 
pre-trained on the Medical Information Mart for Intensive 
Care (MIMIC-III) datasets [74]. MIMIC-III represents the 
largest freely available resource of hospital data. In addition 
to BioBERT and BioClinicalBERT, BlueBERT [75] is another 
BERT variant used for EHRs. This model was pre-trained 
using PubMed abstracts and clinical notes, with the aim of 
improving the capture of language features in the biomedi-
cal and clinical domains. This could potentially lead to en-
hanced performance [62]. Beyond BiLSTM and BERT, sev-
eral other notable deep learning models have been explored, 
including convolutional neural networks (CNNs) [31,44,76-
83], and the hybrid CNN-BiLSTM-CRF model [84-86]. 
These alternative approaches have been applied in various 
contexts and have been demonstrated to be particularly ef-
fective for Chinese corpora [87]. As of 2022, BERT-based 
models are leading the field in NER applications within elec-
tronic health records. Notably, BlueBERT has emerged as a 
prominent solution, while BioClinicalBERT and BioBERT 
have also gained popularity.

2. Tagging Systems
Figure 3 details the types of tags used in the NER studies 

included in this review. Such tagging systems help to repre-
sent the position of tokens within entities. The BIO system, 
an acronym for Beginning, Inside, and Outside, is the most 
commonly employed tagging system [55]. To illustrate, in 
the BIO format, “B” signifies that the word marks the begin-
ning of the entity, “I” denotes that the word is within the 
entity but not at the start, and “O” indicates that the word 
does not belong to an entity. In this context, the NER task 
is centered on token classification, using data that have 
been labeled through sequence models functioning within 
a multiple-input, multiple-output system. Tagging systems 
also prove beneficial in identifying informative labels and 
understanding their meaning in related contexts. 
 Only a handful of studies have employed the BIESO or 
BIOES format. In this context, “B” stands for “begin,” “I” for 
“inside,” “E” for “end,” “S” for “single,” and “O” for “outside” 
or not an entity. An instance of the BIOES format is docu-
mented in a study where the researchers combined the atten-
tion mechanism with a deep learning methodology to sug-
gest an enhanced clinical NER method for Chinese EHRs [3]. 
For this purpose, they identified five categories of entities: 
anatomical part, symptom, description, independent symp-
tom, drug, and operation. In a similar vein, another tagging 
system, known as BILOU, has been employed in recent stud-
ies, including [64]. In this system, “B” signifies “begin,” “I” 
stands for “inside,” “L” for “last,” “O” for “outside,” and “U” 
for “unit.”

Figure 2.   Timeline of named entity recognition models. ML: machine learning, LSTM: long shortterm memory, BiLSTM: bidirectional 
long shortterm memory, CNN: convolutional neural network, CRF: conditional random field, RNN: recurrent neural network, 
BiGRU: bidirectional gated recurrent unit, BERT: bidirectional encoder representations from transformers.
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 We observed that most of the articles did not specify the 
tagging system, a detail that is crucial for reproducing re-
sults, particularly with deep learning classifiers. This omis-
sion is more frequently seen in rule-based and traditional 
machine learning classifiers, as their goal is to classify each 
token on an individual basis. Conversely, graphical models 
and deep learning methods utilize context for token classifi-
cation. Therefore, when an entity is defined by two or more 
tokens, it becomes necessary to specify the type of tagging 
system used.
 Figure 4 presents a graph that categorizes the articles based 
on language, classification methods, and tagging systems. 
Deep learning models were predominantly used for the 
NER task, accounting for 58.86% of the methods, followed 
by traditional machine learning methods at 20.75%, graphi-
cal models at 13.20%, and rule-based approaches at 6.79%. 
In terms of languages, English was the most common, 

representing 51.69% of the articles, followed by Chinese at 
32.45%, Spanish and Swedish each at 4.15%, and Italian at 
2.26%. We observed that 49.05% of the articles did not spec-
ify the tagging system, while 37.73% used BIO, and 7.54% 
used BIOES. It is noteworthy that deep learning approaches 
were adopted in 40 papers with Chinese corpora and 40 with 
English corpora.

3.  Comparison between Shared-task Corpora and Private 
Corpora 

In this section, we analyzed the corpora reported in the lit-
erature, which were either extracted from shared tasks or are 
publicly accessible (refer to Table 1). The most frequently 
encountered shared-task dataset in our review was the 2012 
i2b2 challenge, which emphasized the extraction of concepts 
and relations from clinical texts [8,10,23,50,88,89]. This chal-
lenge targeted the following elements: (1) Clinically relevant 

Figure 3.   Named entity recognition 
approaches and types of 
tagging. GRU: gated recur
rent unit, BiGUR: bidirec
tional gated recurrent unit, 
CNN: convolutional neural 
network, RNN: recurrent 
neural network, LSTM: long 
shortterm memory, BiLSTM: 
bidirectional long short 
term memory, ML: machine 
learning.

GRU-CNN - 1GRU-CNN - 1

RNN - 3RNN - 3

BiGRU - 3BiGRU - 3

CNN-BiLSTM - 6CNN-BiLSTM - 6

LSTM - 9LSTM - 9

CNN - 16CNN - 16

Graphical models - 35Graphical models - 35

Rule based - 18Rule based - 18

BiLSTM - 60BiLSTM - 60

BERT - 58BERT - 58

Traditional ML - 55Traditional ML - 55

BIOH12D - 3BIOH12D - 3

BILOU - 2BILOU - 2

BMES - 5BMES - 5

BIOES - 20BIOES - 20

BIO - 100BIO - 100

Not-specified - 130Not-specified - 130

BIEO - 4BIEO - 4
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concepts, which include problems, tests, treatments, and 
clinical departments, as well as events such as admissions or 
transfers between departments that are pertinent to the pa-
tient’s clinical timeline. (2) Temporal expressions that denote 
dates, times, durations, or frequencies within the clinical 
text. (3) Temporal relations between clinical events and tem-
poral expressions. The best F1-score in this challenge was 
attained by a hybrid NLP system that merged a rule-based 
method with a machine learning approach, achieving an F1-
score of 0.876 in the extraction of temporal expressions [90]. 
This underscores that the application of sophisticated NLP 
techniques can significantly enhance the identification and 
extraction of information from clinical data. 
 Another popular competition in the context of NLP tasks 
was the CCKS2017 challenge [6,35,91-94]. This challenge 
incorporated a dataset of 1,596 manually labeled medical 
records. The primary task involved the extraction of various 
entity types, including disease, anatomy, symptom, check, 
and treatment. The most successful results were obtained 
through the use of a straightforward CNN attention mecha-

nism, which achieved an F1-score of 90.34% [6].
 The n2c2 challenge was designed to extract adverse drug 
events (ADEs) from a vast quantity of unstructured clini-
cal records [50,54,78,84,85,94]. The annotations typically 
encompassed a variety of entity types, such as the drug, its 
strength, dosage, duration, frequency, form, route of ad-
ministration, the reason for its prescription, and any ADEs. 
The data for the 2018 n2c2 challenge were derived from 
discharge summaries in the MIMIC-III database. One of the 
most notable results that year was reported in a study where 
a deep learning-based approach using BiLSTM-CRF was de-
veloped, resulting in an F1-score of 92% [84].
 The eHealth-KD was an NLP challenge designed to model 
human language within Spanish EHRs. This challenge in-
cluded NER and RE tasks within a general health domain 
[31,42]. The datasets utilized in this challenge identified 
the following entity types: concept, action, reference, and 
negation. Furthermore, the relation types included: part-of, 
property-of, same-as, subject, and target. A hybrid model 
that combined BiLSTM-CRF and CNN was applied to this 

EnglishEnglish

ChineseChinese

DanishDanish
IndonesianIndonesian

SwedishSwedish

FrenchFrench

SpanishSpanish

DutchDutch
GermanGerman

ItalianItalian
SerbianSerbian
FinnishFinnish
KoreanKorean

Deep learningDeep learning

Rule basedRule based

TTrraadd ttiioonnaall MLML

Graphical modelsGraphical models

ii

Not-specifiedNot-specified

BIOBIO

BIOESBIOES

BILOUBILOU

BIEOBIEO

BIOH12DBIOH12D
BMESBMES

Figure 4.   Corpus languages, types of 
models, and named entity 
recognition targets. ML: ma
chine learning.

Table 1. Challenges in natural language processing

Challenge Articles Description

i2b2 31 A collaborative effort focused on automating the extraction of information from clinical narratives. 
Annually, I2b2 provides access to a collection of de-identified patient records that have been 
manually annotated by medical professionals.

CCKS 22 It comes from the China Conference on Knowledge Graph and Semantic Computing, which was 
founded in 2016 by the Chinese Information Processing Society. It provides task competition on 
NER and event extraction within Chinese EHRs.

n2c2 21 An outgrowth of the i2b2 challenge, and its datasets are under the stewardship of the Harvard 
Medical School Department of Biomedical Informatics. The challenge has multiple shared tasks, 
such as NER and RE within clinical notes. The datasets are hand-annotated by healthcare experts.

eHealth-KD 3 The eHealth Knowledge Discovery Challenge proposes tasks that involve the identification of 
semantic entities and relations between them in Spanish health documents.

NER: named entity recognition, EHR: Electronic Health Record, RE: relation extraction.
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corpus, achieving an F1-score of 80.30% [31]. 
 In regard to private corpora, this study found that only ap-
proximately 7% of the evaluated papers utilized their own 
unique private datasets. These datasets necessitate exclusive 
licenses or permissions from external sources for data access. 
The use of private corpora is subject to stringent confiden-
tiality requirements; thus, they are not freely accessible [95]. 
Nevertheless, the employment of private corpora facilitates 
more thorough and contextually pertinent examinations 

of medical texts. This contributes to the advancement of 
sophisticated healthcare applications and enhances patient 
outcomes. Table 2 presents a selection of studies that uti-
lized private corpora and reported F1-scores exceeding 0.75. 
Most private corpora were customized to cater to specific 
domains, such as oncology or pathology. The types of notes 
included in these corpora encompassed pathology reports, 
admission notes, and medical notes from the intensive care 
unit.

Table 2. Summary of the papers utilizing a private corpus and attaining an F1score greater than 0.75

NLP scheme Description Entities Performance

BiLSTM-CRF [32] Swedish general medical cor-
pora and Spanish discharge 
reports from clinical units

In Spanish: diseases and drugs. 
In Swedish: body parts,  

disorders, and findings.

Micro-average F1-score of 0.75 
for Spanish and 0.76 for Swed-
ish

cTAKES with rule-and- 
dictionary-based  
approaches [95]

English progress notes from 
oncology centers

 “Lung cancer,” “non-small  
cell lung cancer,” and  
“recurrence”

“Lung cancer” and “non-small 
cell lung cancer” achieved F1-
scores of 0.828–0.947 and 
0.86–0.93, respectively.

Bag of words and bag of bi-
characters with a diction-
ary-based approach [43]

English progress notes from 
Michigan Pain Consultants

Relief, injections, drugs,  
surgery, and polarity

The best precision mean was 
found for polarity (97%).

Ruled-based and diction-
ary-matching approach 
[2]

English collection of  
clinical notes

Patients, encounters, findings, 
diagnoses, procedures, medi-
cations, and diagnostic tests

Recall of 94%, precision of 99%, 
and F-measure of 96%

ML approach (SVM with 
a linear kernel) and rigid 
rule-based approach [79] 

English internal and  
external pathology notes

Specimen accession number 
within the report, received  
location, dates, and tissue 
block identifier

 F1-score of 0.9014 for external 
reports, 0.9154 for internal 
reports, and 0.9708 for dates

Fine-tuned feature com-
bined with CNN and 
BERT [78]

English collection of  
discharge letters from  
the intensive care unit

Drug names, routes of admin-
istration, frequencies, dosage, 
strength, form, and duration

Micro-average F1-score of 0.944

Convolutional neural 
networks + word embed-
ding strategy using sub-
word feature and “Bloom” 
embeddings [81]

English progress notes  
and medication list  
data from EHR

Drug names, routes, frequen-
cies, dosage, strength, dura-
tion, adverse drug events, 
adherence, and current 
medications

The overall performance of the 
NER system was shown by an 
F1-score of 0.955. Higher per-
formance was found for medi-
cation entities (drugs, names, 
routes, and frequencies). 

BERT model with fine tun-
ing in cancer domain [69] 

Data obtained from 21,291 
breast cancer patients  
(between 2001 to 2018) 

Breast cancer phenotypes:  
hormone receptor type, hor-
mone receptor status, tumor 
size, tumor site, cancer grade, 
histological type, tumor  
laterality, and cancer stage 

The best model had macro-
average F1-scores of 0.876 for 
an exact entity match. 

NLP: natural language processing, BiLSTM: bidirectional long short-term memory, CRF: conditional random field, ML: machine 
learning, SVM: support vector machine, CNN: convolutional neural network, BERT: bidirectional encoder representations from 
transformers, EHR: Electronic Health Record, NER: named entity recognition.
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 Creating new corpora is a labor-intensive and resource-
heavy task; however, it becomes essential when there is a 
need to develop more specialized applications [96]. The 
findings of this review indicate that the use of so-called pub-
lic corpora is the dominant trend in publications related to 
NER.

4. Relation Extraction
RE is an active area of research in numerous specialized 
clinical fields. In this review, only three of the selected ar-
ticles addressed the issue of RE, as shown in Table 3. Within 
the realm of medical records, we identified only two public 
corpora that included relation labeling: the 2010 i2b2 and 
the 2018 n2c2. Additionally, we discovered one article that 
utilized a private corpus for RE in the Chinese language [52]. 
It is evident that RE has not been as extensively explored as 
NER. Furthermore, the types of relations typically need to be 
defined based on the clinical domain or the entity type, add-
ing a layer of complexity to this task that surpasses that of 
NER [96] . 

IV. Discussion

In this review, we found that the state-of-the-art has pro-
gressed from rule-based and traditional machine learning 
methods to deep-learning models over the past decade. This 
shift is due to the fact that the latter can comprehend the 

context and enhance performance beyond what the former 
can achieve. 
 The review is limited by the current lack of a universally 
accepted standard method for assessing the quality of NER 
models. For example, while the F1-score is the most com-
mon metric, some papers do not clearly specify whether they 
are reporting the macro-average or the micro-average F1-
score. Some papers even report different metrics altogether. 
Similarly, some papers do not clearly state the type of tag-
ging system they employ. We recommend that researchers, 
when reporting NER results, provide explicit details about 
the corpus, the tagging system, and the performance metrics 
used in their study. 
 In terms of tagging systems, the BIO scheme is most fre-
quently reported, particularly in studies employing deep-
learning models. The introduction of more complex tagging 
schemes augments the number of classes that the model is 
required to predict, which could potentially impact its per-
formance.
 We have noted that recent progress in this field is largely 
dependent on publicly accessible corpora and datasets asso-
ciated with challenges. Consequently, there is a conspicuous 
absence of research involving actual EHRs, and a substantial 
gap in thorough external validation, both with respect to 
fresh data and real-world applications. Therefore, the cre-
ation of new corpora is essential to facilitate the swift devel-
opment of NER and RE models applicable to EHRs for use 

Table 3. Summary of the papers reporting on RE

NLP scheme Corpus Relations Performance

Ensemble deep learning 
methods (BiLSTM-CRF 
and transformers) [100]

n2c2/adverse drug 
events (ADEs) 
challenge

Strength-Drug, Dosage-Drug, Duration-Drug, 
Frequency-Drug, Form-Drug, Route-Drug, 
Reason-Drug, and ADE-Drug

The F1-score was 0.9458. 
The Reason-Drug rela-
tion had the highest im-
provement in the dataset.

BiLSTM encoder layer 
with segment attention 
layer and tensor-based 
approach in clinical  
texts [46]

2010 i2b2/VA 
challenge on 
problems, treat-
ments, and test 
entities

Treatment was administered for a medical prob-
lem. Treatment worsened a medical problem. 
Treatment was not administered because of 
a medical problem. A test was conducted to 
investigate a medical problem. A medical prob-
lem indicates a medical problem.

The best performance was 
found for “test several 
problems,” with an F1-
score of 0.833.

Dictionary-based  
approach, SVM, random 
forest, logistic regression, 
and CNN [85]. 

Chinese clinical 
records

Treatment improved or cured a medical problem.
Treatment had no effect on a medical problem.
Treatment worsened a medical problem.
No relation was observed between a treatment 

and a medical problem.

Logistic regression showed 
the best performance, 
with an F1-score of 
87.12%. 

RE: relation extraction, BiLSTM: bidirectional long-short term memory, CRF: conditional random field, SVM: support vector ma-
chine, CNN: convolutional neural network.
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in clinical practice, and to validate the outcomes in various 
datasets. Furthermore, initiatives should be undertaken to 
convert private corpora into public ones.
 Most of the existing corpora utilize EHRs written in Eng-
lish. Additionally, we have observed a swift expansion of 
corpora in the Chinese language, primarily employing deep-
learning models. The creation of new models in various 
languages presents a challenge for the global implementation 
of NER in clinical practice. Likewise, when dealing with 
languages other than English, only a few corpora are freely 
accessible, which underscores the importance of developing 
custom datasets. This is crucial to guarantee the relevance 
and effectiveness of NLP models in a variety of linguistic 
contexts.
 In the realm of clinical domains, there is a scarcity of stud-
ies linked to specific medical specialties. A mere 8.13% of 
the studies concentrated on neoplasms, while 6.5% focused 
on cardiovascular diseases, 1.62% on factors influencing 
health status, and a scant 0.813% on mental and behavioral 
disorders. Most studies targeting specific domains utilized 
private corpora, underscoring the role of these resources in 
supplementing the use of public datasets. This heavy reliance 
on private corpora emphasizes the necessity for researchers 
to forge partnerships or collaborations with healthcare insti-
tutions or data providers. This allows secure access to these 
invaluable resources, while maintaining adherence to ethical 
and legal considerations to protect sensitive patient informa-
tion.
 As of December 2022, the most advanced models in clini-
cal NER are those based on BERT, which undergo a fine-
tuning or training stage using a domain-specific corpus. For 
example, models such as BioBERT, BioClinicalBERT, and 
BlueBERT have demonstrated superior performance in this 
field. In 2023, ChatGPT gained recognition for leading a rev-
olution in the field of NLP, with notable performance on ge-
neric text corpora. However, a study conducted by Hu et al. 
revealed that the performance of ChatGPT, for the NER task 
defined in the 2010 i2b2 challenge, was inferior to that of the 
BioClinicalBERT model [97]. The latter model underwent a 
fine-tuning stage using a specific corpus. This finding aligns 
with the study conducted by Li et al. [98], which discovered 
that ChatGPT and GPT-4 encountered difficulties in areas 
requiring domain-specific knowledge. Specifically, they 
utilized financial textual datasets. Furthermore, Lai et al. 
[99] proposed that, for the time being, it is more practical to 
employ task-specific models for domain-specific tasks rather 
than using ChatGPT. Nevertheless, future research should be 
conducted to investigate the potential use of new develop-

ments in LLM for classifying named entities in EHRs.
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Appendix A. Search equations

Database Search term

PubMed (“Data Mining”[Mesh] OR “Natural Language Processing”[Mesh]) AND (“Electronic Health Records”[Mesh]) 
AND (“text mining”[tiab] OR “Text data mining”[tiab] OR “Text analytics”[tiab] OR “Text analysis” OR 
“Text clustering”) AND (“Named Entity Recognition”[tiab] OR “NER”[tiab] OR “Named Entity Recognition 
and Classification”[tiab] OR “NERC”[tiab] OR “Named Entity Clustering”[tiab] OR “Clinical named entity 
recognition”[tiab])

VHL (mh:(“Minería de Datos”) OR mh:(“Procesamiento de Lenguaje Natural”)) AND (mh: (“Registros Electr´onicos 
de Salud”)) AND ((text mining) OR (miner´ıa de texto) OR (text data mining) OR (minería de datos de texto) 
OR (text analytics) OR (analítica de texto) OR (text clustering) OR (agrupación de texto)) AND ((named 
entity recognition) OR (Clinical named entity recognition) OR (reconocimiento de entidades nombradas) 
OR (NER) OR (named entity recognition and classification) OR (reconocimiento y clasificaci´on de enti-
dades nombradas) OR (NERC) OR (named entity clustering) OR (agrupaci´on de entidades con nombre) OR 
(reconocimiento de entidades nombradas clínicas))

IEEE (“Mesh Terms”:Data mining OR “Mesh Terms”:Natural Language Processing) AND (“Mesh Terms”:Electronic 
Health Records) AND (“Full Text & Metadata”:Text mining OR “Full Text & Metadata”:Text data min-
ing OR “Full Text & Metadata”:Text analy* OR “Full Text & Metadata”:Text clustering) AND (“Full Text & 
Metadata”:named entity recognition OR “Full Text & Metadata”:NER OR “Full Text & Metadata”:Named entity 
recognition and classification OR “Full Text & Metadata”:NERC OR “Full Text & Metadata”:Named entity 
Clustering OR “Full Text & Metadata”:Clinical named entity recognition)

Science  
Direct

(“Text mining” OR “Natural Language Processing”) AND (“Electronic Health Records” OR “Electronic Medical 
Records”) AND (“Named entity recognition” OR “Named Entity recognition and classification” OR “Named 
Entity Clustering” OR “Clinical named entity recognition”)




