7 research outputs found

    THE USE OF POWERPOINT AS MEDIA OF LANGUAGE TEACHING ON STUDENTS’ SPEAKING SKILL

    Get PDF
    Purpose of the study: Powerpoint is one of the communication tools which used to presenting learning material, and this article aims to know the use of PowerPoint as media that can improve students’ speaking skill. Methodology: The researcher uses the Pre-experimental method one group Pretest-Posttest design by regulating pretest to measure the subordinate variable, test treatment, and regulating posttest. Main Findings: The result shows that posttest frequency is higher than pretest frequency by compering median 12.6> 12.2. it means that PowerPoint provides video, audio, animation, slideshow, etc. can improve students’ speaking skills. Applications of this study:  The population in this research are all of the students of MA Al-Asyhar Bungah Gresik with 20 social learners and 23 science learners class. Novelty/Originality of this study: Media makes the students more understand, the instructor must prepare the exciting material, by using interesting media it helps students more understand. Because the use of media will stimulate students' understanding, the teacher can use interested and straightforward media which can make them focus on the material

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    Dynamic Structural Neural Network

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Artificial neural network (ANN) has been well applied in pattern recognition, classification and machine learning thanks to its high performance. Most ANNs are designed by a static structure whose weights are trained during a learning process by supervised or unsupervised methods. These training methods require a set of initial weights values, which are normally randomly generated, with different initial sets of weight values leading to different convergent ANNs for the same training set. Dealing with these drawbacks, a trend of dynamic ANN was invoked in the past year. However, they are either too complex or far from practical applications such as in the pathology predictor in binary multi-input multi-output (MIMO) problems, when the role of a symptom is considered as an agent, a pathology predictor’s outcome is formed by action of active agents while other agents’ activities seem to be ignored or have mirror effects. In this paper, we propose a new dynamic structural ANN for MIMO problems based on the dependency graph, which gives clear cause and result relationships between inputs and outputs. The new ANN has the dynamic structure of hidden layer as a directed graph showing the relation between input, hidden and output nodes. The properties of the new dynamic structural ANN are experienced with a pathology problem and its learning methods’ performances are compared on a real well known dataset. The result shows that both approaches for structural learning process improve the quality of ANNs during learning iteration

    Metacognitive learning approach for online tool condition monitoring

    No full text
    As manufacturing processes become increasingly automated, so should tool condition monitoring (TCM) as it is impractical to have human workers monitor the state of the tools continuously. Tool condition is crucial to ensure the good quality of products-worn tools affect not only the surface quality but also the dimensional accuracy, which means higher reject rate of the products. Therefore, there is an urgent need to identify tool failures before it occurs on the fly. While various versions of intelligent tool condition monitoring have been proposed, most of them suffer from a cognitive nature of traditional machine learning algorithms. They focus on the how-to-learn process without paying attention to other two crucial issues-what-to-learn, and when-to-learn. The what-to-learn and the when-to-learn provide self-regulating mechanisms to select the training samples and to determine time instants to train a model. A novel TCM approach based on a psychologically plausible concept, namely the metacognitive scaffolding theory, is proposed and built upon a recently published algorithm-recurrent classifier (rClass). The learning process consists of three phases: what-to-learn, how-to-learn, when-to-learn and makes use of a generalized recurrent network structure as a cognitive component. Experimental studies with real-world manufacturing data streams were conducted where rClass demonstrated the highest accuracy while retaining the lowest complexity over its counterparts
    corecore