
 1

DYNAMIC STRUCTURAL NEURAL NETWORK

Cu Nguyen Giap
1
, Le Hoang Son

2,3 *
, Francisco Chiclana

4

1
Faculty of Management Information System and E-Commerce, ThuongMai University, Hanoi, Viet Nam

cunguyengiap@tmu.edu.vn

2
Institute of Research and Development, Duy Tan University, Danang, Viet Nam

3
VNU University of Science, Vietnam National University, Viet Nam

sonlh@vnu.edu.vn

4
Centre for Computational Intelligence, School of Computer Science and Informatics, Faculty of

Technology, De Montfort University, Leicester, UK

chiclana@dmu.ac.uk

*: Corresponding author. Tel.: (84) 904.171.284. Address: 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

Abstract: Artificial neural network (ANN) has been well applied in pattern recognition, classification and

machine learning thanks to its high performance. Most ANNs are designed by a static structure whose

weights are trained during a learning process by supervised or unsupervised methods. These training

methods require a set of initial weights values, which are normally randomly generated, with different

initial sets of weight values leading to different convergent ANNs for the same training set. Dealing with

these drawbacks, a trend of dynamic ANN was invoked in the past year. However, they are either too

complex or far from practical applications such as in the pathology predictor in binary multi-input multi-

output (MIMO) problems, when the role of a symptom is considered as an agent, a pathology predictor’s

outcome is formed by action of active agents while other agents’ activities seem to be ignored or have

mirror effects. In this paper, we propose a new dynamic structural ANN for MIMO problems based on the

dependency graph, which gives clear cause and result relationships between inputs and outputs. The new

ANN has the dynamic structure of hidden layer as a directed graph showing the relation between input,

hidden and output nodes. The properties of the new dynamic structural ANN are experienced with a

pathology problem and its learning methods’ performances are compared on a real well known dataset. The

result shows that both approaches for structural learning process improve the quality of ANNs during

learning iteration.

Keywords: Artificial neural network; Binary multi-input multi-output problems; Dynamic structure;

Genetic algorithm; Greedy algorithm; Medical diagnosis.

mailto:cunguyengiap@tmu.edu.vn
mailto:sonlh@vnu.edu.vn
mailto:chiclana@dmu.ac.uk

 2

1. INTRODUCTION

Artificial neural network (ANN) has been

applied in numerous areas for a period of time. It

has been widely studied and many ANN models

have been introduced, which are normally

categorized in terms of ANN architectures,

activate functions and learning methods [32].

Most ANNs are designed with a static structure

whose weights are trained during a learning

process by supervised or unsupervised methods

[8]. These training methods require a set of

initial weights values, which are normally

randomly generated, with different initial sets of

weight values leading to different convergence

for the same training set [7]. Even though ANN

is considered a black box that represents a

complex functional relationship between outputs

and inputs, inside information of relation or cross

affection between them is not well

comprehended [33].

Let us consider pathology prediction (aka

medical diagnosis), which is a binary multi-input

multi-output (MIMO) problem, as an example to

illustrate why static structure ANN should be

enhanced. A remarkable area of application of

ANN is pathological expert systems, particularly

in predicting health problems of people from

their precedent symptoms [6]. In this problem,

the appearance or absence of a symptom is

represented by a binary variable and the

prediction result is a binary variable as well. A

feed-forward ANN using back-propagation

learning method is often used therein. Besides,

Deep Neutral Network [6], probability ANN

[27], neuro-fuzzy system [28], etc. have been

utilized alternatively. However, these models

require a large number of iterations in the

training stage and there is no guarantee for its

convergence, especially when using short

training data and a small error is required [4].

Moreover, traditional learning methods treat

each instance of the training dataset the same and

therefore the presence of exceptional inputs

severely influences the ANN error and training

rate [2].

Dealing with these drawbacks, a trend of

dynamic ANN was invoked in the past year.

The term ‘dynamic’ here involves the changes on

the network’s structure or changes on the edges’

weights. Vanini et al. [31] proposed using

dynamic neural networks for fault detection and

isolation in aircraft jet engine. Wu et al. [34]

described a novel method called Deep Dynamic

Neural Networks for multimodal gesture

recognition including a Gaussian-Bernoulli Deep

Belief Network to handle skeletal dynamics, and

3D Convolutional Neural Network to manage

and fuse batches of depth and RGB images. Jin

et al. [14] designed a dynamic neural network for

recurrent calculation of manipulability-maximal

control actions for redundant manipulators under

physical constraints in an inverse-free manner.

Aczon et al. [1] proposed a recurrent neural

network to learn the course of patient encounters.

Amozegar and Khorasani [3] developed an

ensemble of dynamic neural network identifiers

including a dynamic multi-layer perceptron, a

dynamic radial-basis function neural network,

and a dynamic support vector machine.

Gaunt et al. [9] accelerated the Dynamic

Neural Network through Asynchronous Model-

Parallel Training. Mustafa, Allen and Appiah

[18] used Dynamic Multi-Layer Perceptron to

minimize the required computational resource

for an effective mobile-based speech recognition

system. Torabi et al. [29] proposed a dynamic

fuzzy neural network based on sequential fuzzy

clustering for fault diagnosis. It uses Adaptive

 3

Neural Fuzzy Inference Systems (ANFIS) to

generate a set of IF-THEN fuzzy rules. After

training, a prune process is applied to eliminate

neurons that are less important or present

redundant fuzzy rules to construct more precise

neural network structure. Online dynamic neutral

networks, on the other way, focus on online

training algorithms.

Pan et al. [22] used both online structure

learning and online parameters learning to form

an efficient online training progress of ANFIS.

They also used an adaptive fuzzy control for

online learning progresses [21, 23]. Pratama et

al. [24-25] proposed condition monitoring

approaches on learning progress, particularly

improving two meta-cognitive what-to-learn and

when-to-learn. They modified the original pClass

by adding a process that initializes new fuzzy

rules from an empty set so that a new model

called pClass+ has the ability to end up with

open and dynamic structure network [26].

Ghiassi et al. [10] proposed a successful

dynamic architecture for Artificial Neural

Networks called DNN2, in which the hidden

layer includes many layers. A layer in the hidden

layer has four nodes fixed but the number of

layers is dynamically determined. This

architecture has been well applied in forecasting

time series events [10] and Pre-Production

Forecasting of Movie Revenues [11]. Inspired by

dynamic structure ANN, Han et al. [12] have

introduced a new dynamic structure neural

network for adaptive dissolved oxygen control

issue. Their approach initializes the hidden layer

with zero or few units and updates the hidden

layer by adding more units during training

process. The other success of using dynamic

structure ANN is presented in [16], where the

authors developed a modification of Weiner-

Type dynamic ANN for Modeling of Nonlinear

Microwave Devices that can be implement in

both software and hardware devices. Other

works regarding the dynamic neural network can

be seen in [17, 19, 20].

Even though there have been recent

advances on the dynamic neural networks, they

are either too complex or far from practical

applications. For example, a pathology predictor

in MIMO problems works like a multi-agent

system in which the combination of each

separate insiders’ activities influences the final

prediction result. In fact, the appearance of a

symptom itself would not be a clear indication

for a specific illness but a set of co-appearance of

symptoms. Moreover, within a set of symptoms

some of them might not strongly belong to a

specific illness; they are just precedents for other

symptoms that directly belong to the true

diagnosed illness. Capturing this aspect, when

the role of a symptom is considered as an agent,

a pathology predictor’s outcome is formed by

action of active agents while other agents’

activities seem to be ignored or have mirror

effects. The current dynamic neural networks are

incapable to model such the cases.

In order to mimic the relationship between

agents in a system, we have to think about a new

dynamic structural ANN model (e.g. for MIMO)

including three layers with the most important

different layer being the hidden layer. The

hidden layer, which is modeled by the

dependency graph, includes the set of nodes

within dynamic adaptive topology. It means that

the structure of the proposed ANN can represent

the relationship between outputs and inputs; and

the structure can be learnt or be updated during

the learning process. By doing so, the dynamic

 4

structural ANN is able to handle the variation of

input data as well as the limitations above.

In this paper, we propose a new Dynamic

ANN for binary MIMO problems based on the

dependency graph, which provides clear cause

and result relationships between inputs and

outputs. The dependency graph has been used in

intelligent systems and applications such as

instruction scheduling and job shop scheduling

because it gives a clear relationship between

elements involved in the system [13]. In this

study, the dependency graph is applied in order

to build a dynamic structural ANN that hierarchy

both features of ANN and the dependency graph.

In the new model, the dependency graph is used

as a hidden layer and its topology is trained

during the learning process of ANN.

The rest of paper is organized as follows.

Section 2 describes the proposal dynamic

structural ANN and several proposed learning

methods. Section 3 shows the experimental

results on pathology prediction problem. Finally,

the main results and further works are discussed

in Section 4.

2. DYNAMIC STRUCTURAL ANN

In this section, the new dynamic structural

ANN will be presented and it will be applied to

the pathology prediction problem for illustration

purposes. Specifically, Section 2.1 addresses the

main ideas of the proposed ANN, including its

theoretical validation. Section 2.2 proposes the

design of the new dynamic structural ANN,

while Section 2.3 focuses on two learning

algorithms for the proposed ANN: greedy

algorithm and Genetic Algorithm (GA). Lastly,

Section 2.4 summarizes the advantages of the

proposal against other works.

2.1. Main ideas

Considering pathology prediction as a multi-

agent system, each of its symptoms has a

different impact on a body and their insiders’

activities influence a prediction result. An agent

mimics the action of a symptom or a set of

similar effect symptoms. In fact, the appearance

of a symptom itself might not give an insight

direction for any specific illness because that

symptom may belong to many illnesses. This is

the case with fever, which is a symptom of wide

spread diseases. However, a set of co-appearance

symptoms provides a more confident clue of a

specific illness. Even though the symptoms of an

illness change during the time of such illness, in

its middle stage symptoms are stable. In any

case, within the set of symptoms, some might not

directly belong to an illness; they just are

precedents for other symptoms that directly

belong to a diagnosed illness. This means that

the outcome of pathology prediction is formed

by action of active agents while other agents’

activities seem to be ignored. This relation would

be clearly represented by a dependency graph

[13].

The outcome of a dependency graph is not

evaluated if there is a circular dependency [13].

Indeed, if no specific order is rationally applied

for a circular of dependencies then no object is

calculated first. To overcome this for a

dependency graph, a directed acyclic graph

needs to be formed. Combining features of

dependency graph and properties of a real

pathology diagnosis, a new dynamic structural

ANN is proposed whose structure mimics real

role of symptoms in a disease prediction system.

The proposed new ANN mimics different effects

of an agent to others and different agents’ roles

to the result.

 5

In principle, the proposed ANN has three

layers: an input layer, a middle layer, and an

output layer (Fig. 1). Each agent has different

view for input signals and is represented by

different input vectors. The output vector shows

different roles of an agent in a specific economic

factor. The different roles of agents are also

represented by connections between agents.

Therefore, an active agent effect on others can be

represented by high number of nodes

connections, while the output vector can be used

to represent its effect on the output.

Fig. 1. Architecture of static ANN

In the new dynamic structural ANN, the role

of nodes is strongly represented by its topology

of connection rather than connections’ weights.

Therefore, a fixed weight is applied to all edges

to avoid the affection of weight in this type of

ANN. Certainly, it needs to be proved that the

proposed ANN using dynamic topology and a

fixed weight works as the original ANN. Fig. 1

depicts the architecture of a traditional static

ANN.

The existence of an ANN with a single fixed

weight w that works as the above architecture is

proven by replacing a single input iji wx in static

ANN by a sub ANN with single fixed weight w .

As all inputs of a node will be replaced by sub

ANNs that have fixed weight, a static ANN is

transposed into an expected ANN. In this study,

such existence is proved only in case of positive

activation functions. Notice that the most well-

known and applied activation function for ANN

is the sigmoid function, which is a positive

function. Thus, we have the following lemma.

Lemma1. If ANN uses a positive activation

function, a node can be replaced by a sub ANN

having fixed weight.

Proof: Without loss of generality, assume

that input ix has corresponding weight ijw ,

which differs from others. We need to build a

sub ANN having a single weight w for all edges

and prove that there exists a structure of sub

ANN that has single input ix and the ability to

generate same input value iji wx

for node j .

Denote by)(wxy i the output of a node

having single input ix and weight w . In the

simplest case, the input iji wx is mimicked by a

sub ANN with ywx iji / nodes as illustrated in

Fig. 2.

Fig. 2. A neuron with fixed weight

 6

Node j would be completely replaced by a

sub ANN having fixed weight if all its inputs are

replaced by the same way above. Therefore,

Lemma 1 is proved.

Lemma 2: For each ANN with different

weights, there exists an ANN that has fixed

weight working the same.

Proof: Replacing the nodes in the ANN

with the same structure constructed by Lemma 1

trivially proves this lemma.

However, the question of finding optimal

structure of fixed weighted ANN is still open

herein. Notice that the sigmoid activation

function is both a positive and monotonic

function. The positive monotonic property of

activation functions gives the key point for

searching a suitable topology of dynamic

structural ANN. In the ANN using positive

monotonic activation functions, the relation

between density of structures and output values

is clear since the number of connections does not

decrease. This is summarized in the following

property 1.

Definition 1. Assume two ANNs, A and B,

have the same number of nodes and are

represented by directed graphs without cycle.

Then, B is called a sub ANN of A if all directed

edges in B also appear in A.

Property 1. If an ANN uses a positive

monotonic activation function, its output value is

greater than or equal to those of its sub ANNs.

Proof: We prove that adding an edge to a

given ANN does not decrease the output values.

Given an ANN A that uses a positive monotonic

activation function, without loss of generality,

assume that its node j has a new direct edge

from node i . In this case, the value of jnet is

added, and because the activation function is

positive and monotonic the output of node j

does not decrease. If the output value of node j

is a direct or indirect input of the output node,

the output value of A does not decrease.

Otherwise, node j does not affect the output

node and then the output remains the same.

Remark 1. Property 1 is a consequence of

the following: If B is a sub ANN of A, then A

would be formed by adding one or more edges to

B and therefore the output value of A will be

equal to or greater than that of B. There exists a

limitation of connection between an acyclic

directed graph with a fixed number of nodes.

Therefore, a dynamic structural ANN has a

limited output value.

Definition 2. A network is called a full

connected network if it is represented by a

directed graph that has at least one cycle

providing that any edge is added into this graph.

Remark 2. In an ANN with specific number

of nodes, there is more than one full connected

network. This is because once a full connected

network is obtained by adding edges to the

ANN, the order of adding edges can be changed

to produce a new full connected network. For

example, in a directed graph, if an edge),(ji is

added, the edge),(ij cannot be added to avoid

cycle, or in an extension, if two edges),(ji and

),(kj

are added then edge),(ik

cannot be

added. Therefore, the order of adding edges leads

to different full connected network.

Property 2. If an ANN has fixed weight and

number of nodes, then output values are upper

bounded.

Proof: Starting from a partial network, i.e. a

not fully connected network, a full connected

network is reached by repeatedly adding an edge

 7

into the network. As per Property 1, when an

edge is added, output values do not decrease.

However, with a specific number of nodes, the

number of full connected network is limited.

Therefore, there exits an upper bound for outputs

values and this is generated by the full connected

network having highest output values.

Remark 3. In order to break its upper

bound, a full connected network must increase

the number of nodes. However, in a full

connected network, no more edges can be added.

Therefore, the only way to break through the

upper bound of output values is increasing the

number of node. As soon as new nodes are added

into a dynamic structural ANN, there is a set of

new edges that can be added to increase the

output values.

2.2. Design of the new ANN

From the above idea, we propose a new

ANN that shares several important properties

with the original ANN: the topology of a neuron;

and three layers architecture. However, a

dynamic structural ANN has the following key

differences: every connection between nodes in

the ANN has the same weight; and the hidden

layer is represented by an acyclic directed graph.

Each neuron of a dynamic structural ANN has

multiple inputs, a fixed weight w and one

output with a bias, as depicted in Fig. 3.

Fig. 3. A neuron of dynamic structural ANN

The activation function is sigmoid as

defined below:

(1)

The network architecture has three layers: an

input layer, a hidden layer and an output layer

(Fig. 4):

Input layer: Each input node has

connections to hidden nodes; at least one

connection represented by an input vector iV has

the same weight w .

Dynamic hidden layer:

- One hidden node can connect to any

node in the same layer. The number of

connections of a node shows its effect

on others and, therefore, its indirectly

effect on the output.

- A hidden node having direct connection

to an output j is an active node of j .

A hidden node that does not have direct

connection to an output j is regarded

as a normal/inactive node of j .

- All connections have same weights.

- The hidden layer’s structure shows the

roles of nodes and can be represented

by a directed graph. If a node A has a

directed connection to node B, this

means that output of node A is an input

of node B.

- There is no cycle in a directed graph

that represents the hidden layer.

Output layer:

- The output value depends on the active

hidden nodes’ output.

- An output vector jU represents the

effect of active nodes on the output j ,

and has the same weight.

Output calculation:

- Outputs of NN are calculated through

the activation function and the directed

graph of the hidden layer. As described

b

y

 8

in the design, the structure of the hidden

layer aims to avoid any directed cycle

because a cycle will prevent the

calculation process of outputs. In

general, the structure of the hidden layer

must be represented by an acyclic

directed graph.

Fig. 4. Architecture of the proposal ANN

2.3. Learning algorithms

When applying the new dynamic structural

ANN to a real problem, the input and output

layers assign its numbers of nodes according to

the requirement of the problem at hand. The

target of the structural learning process of the

new dynamic structural ANN reduces thus to

learning the structure of the hidden layer. A

directed graph form the structure of all layers

represents the number of nodes and their

connections. Therefore, the leaning algorithm

has to learn a suitable number of nodes and the

topological connections for a training data set.

Learning the structure of ANN is a new learning

process without clear previous instructions [4].

In this section, we propose two approaches

for structural learning. The first one learns

directly by calculating output errors and uses

these errors to update the number of active

hidden nodes based on the Greedy algorithm [5].

Then, back propagation process is applied to

calculate the active hidden nodes, output errors

and update its income connections. This process

repeats until an expected error or maximal

iteration is reached. The second approach uses

Genetic Algorithm (GA) as a key of structural

learning. A set of ANN structures is initialized as

a population, and then using the output errors as

fitness function. The GA will lead to the best

possible structure of the ANN even if it is not a

global optimal structure.

2.3.1. Greedy algorithm

The structure of the hidden layer is learnt

using Property 1 and Property 2: increasing the

number of connections or active nodes in the

hidden layer when using a positive monotonic

activation function leads to increasing the output

values. However, as the network structure forms

a full connection network and a new connection

cannot be added, the only option, according to

Property 2, is to add a new node. The priority

between the two above factors determines the

final resultant structure with high number of

nodes. Therefore, in this section we use the

approach with priority of topological

connections. The designed learning method has

two stages. The first stage initializes the

parameters of the ANN, and the second stage

learns the hidden layer structure by input data

stream.

Stage one

- Randomly initialize a number of hidden

nodes N in the interval [2n- MAX_INT]

where n is the number of inputs,

MAX_INT is the maximum value for a

 9

Algorithm 1: Dynamic structure ANN learning

algorithm

Input: a set of training data set 𝑇 = (𝐼, 𝑂), where I is the

set of input instances and O is corresponding output. The

expected error 𝜀.

Output: a Dynamic structure ANN represented by a

direct graph 𝐺 = {𝑉, 𝐸}{

𝐺 = Init(N, r, w, b)

Do

Foreach 𝑡𝑖 ∈ 𝑇 {

 foreach output nodes 𝑗𝑡ℎ {

 Calculate the outputs by current structure 𝑦̂𝑗

 ;

 Calculate the outputs error (MMSE): 𝐸𝑗 =

√(𝑦̂𝑗 − 𝑦𝑗)2;

 If (𝐸𝑗 < 𝜀) UpdatingNodeStructure(j,

(𝑦̂𝑗 − 𝑦𝑗));

 Recalculate output error 𝑦̂𝑗;

 }

 D= TopologicalOdering(hidden layer) ;

 Foreach hidden node 𝑖𝑡ℎin reverse order of D

 {

𝛿𝑗𝑖 =
𝐸𝑗

|𝑁𝑗|
 ; 𝐸𝑖 = ∑ 𝛿𝑗𝑖

𝑛
1

 If (Ei > 𝜎)

UpdatingHidenNodeStructure(ith, Ei)

} while (a target error or expected iteration are

reached)

}

Algorithm 2: UpdatingOutputNodeStructure(j,(𝑦̂𝑗 −
𝑦𝑗))
{

If (𝑦̂𝑗 − 𝑦𝑗)< 0 {

 𝜀𝑚𝑖𝑛 = √(𝑦̂𝑗 − 𝑦𝑗)2; // min error

 a = null; //Hidden node

 Foreach ignored node A of 𝑗𝑡ℎ {

 If A is active (connects to output node), the

output value changes to 𝑦′̂𝑗 and new error is 𝐸′𝑗 =

√(𝑦′̂𝑗 − 𝑦𝑗)2;

 If 𝜀𝑚𝑖𝑛 > 𝐸′𝑗 then {

 𝜀𝑚𝑖𝑛 = 𝐸′𝑗; a = A; }

}

 Ignore node 𝑎 to be active node;

} else {

 𝜀𝑚𝑖𝑛 = √(𝑦̂𝑗 − 𝑦𝑗)2; // min error

 b = null; //Hidden node

 Foreach active node B of 𝑗𝑡ℎ {

 If turn B into ignored node (not connects to

output node), the output value changes to 𝑦′̂𝑗 and new

error is 𝐸′𝑗 = √(𝑦′̂𝑗 − 𝑦𝑗)2;

 If 𝜀𝑚𝑖𝑛 > 𝐸′𝑗 then {

 𝜀𝑚𝑖𝑛 = 𝐸′𝑗; b = B; }

}

 Turn active node 𝑏 into ignored node;

}

}

Algorithm 3 [4]: TopologicalOdering(hidden layer) {

Return a valid topological ordering of the graph

representing the hidden layer using breadth first search

algorithm.

}

Algorithm4: UpdatingHidenNodeStructure(𝑖𝑡ℎ, 𝐸𝑖) {

𝜀𝑚𝑖𝑛 = 𝐸𝑖; // min error

a = null; //Hidden node

Foreach ignored node A of 𝑖𝑡ℎ {

 If A is active (connects to output node), the output value changes to 𝑦′̂𝑖 and new error is 𝐸′𝑗 = √(𝑦′̂𝑖 − 𝑦𝑖)2;

 If 𝜀𝑚𝑖𝑛 > 𝐸′𝑖 then {

 𝜀𝑚𝑖𝑛 = 𝐸′𝑖; a = A; }

 }

b = null; //Hidden node

Foreach active node B of 𝑖𝑡ℎ

{

 If turn B into ignored node (not connects to output node), the output value changes to 𝑦′̂𝑖 and new error is

𝐸′𝑖 = √(𝑦′̂𝑖 − 𝑦𝑖)2;

 If 𝜀𝑚𝑖𝑛 > 𝐸′𝑖 then { 𝜀𝑚𝑖𝑛 = 𝐸′𝑖; b = ; }

}

If (b!= null)

 Turn active node 𝑏 into ignored node;

Else if (a!= null)

Turn ignored node 𝑎 to be active node;

}

 10

32 bit integer and a structure of hidden

layer (with small number of

connections). The number of

connections in the initial structure

should be small in order to capture the

basic information from patterns. A tuple

of bias and weight is also important in

this structural learning, and they are set

by the ANN designer [15]. The bias is

set as high enough, much higher than

the weight, to ensure that the number of

hidden nodes required for a specific

problem is acceptable [15].

Stage two: structural learning process

- In general, minimizing the error of a

trained structural ANN on a specific

training data set is the target of the

structural ANNs’ learning algorithm. In

case of fixed-weight dynamic structural

ANNs, the learning process has to

change the connection between nodes

for better outcome according to

Property 1.

- This stage points out that in an iteration

of learning only active nodes are learnt

directly under the output errors [15].

And then, the active nodes request the

input ones to learn.

Algorithms 1-4 change the connections to

minimize the output errors. The learning

algorithm based on greedy algorithm has rate of

convergence dependent on the characteristic of a

problem. However in one iteration, the learning

algorithm updates all output nodes and continues

the update of relevant active nodes in the hidden

layer. The number of active nodes is Smaller

than or equal to the total number of nodes of the

hidden layer. Updating an active node in worst

case has to update all nodes in the hidden layer.

Update one node is simple task by turning a

selection connection on or off. Therefore, the

complexity of the learning algorithm is

Ο(𝑁, |𝑌|) = (|𝑌| ∙ 𝑁2) where N is the number of

hidden nodes and |𝑌| is the number of output

nodes.

2.3.2 Genetic algorithm

This section uses GA algorithm for learning

the structure of the dynamic structural ANN. In

general, the GA algorithm has four stages. The

first stage initializes a population of problem

solutions. The three remaining stages are

selection, crossover and mutation, which are

repeated until the population converges or a

fixed number of iterations is reached [5]. In order

to use GA algorithm, the first task is to represent

the problem as a chromosome. The structure

indeed includes the number of hidden nodes, the

connections between them and the connections

between hidden nodes and output nodes. Assume

the number of input nodes is 𝑙, the number of

hidden nodes is 𝑛 and the number of output

nodes is 𝑚. The structure of the ANN is

represented by a binary matrix of dimension

(𝑛) ∗ (𝑙 + 𝑛 +𝑚). Each row 𝑖𝑡ℎ of the

matrix represents the out connections of a hidden

node 𝑖𝑡ℎ to other hidden nodes and input, output

nodes. A chromosome to represent the above

structure matrix is a chain with (𝑛) ∗ (𝑙 + 𝑛 +

𝑚) bits [5].

However, this representation of a

chromosome would not guarantee that crossover

generates two new valuable chromosomes for

dynamic structural ANN. The fact is that, a

chromosome must represent an acyclic directed

graph, but the crossover of two chromosomes

would generate new chromosomes that represent

 11

a directed graph having cycle. Therefore, a

modification of crossover is introduced here for

dynamic structural ANN. In an acyclic directed

graph, there is an order of nodes and the

connections are fixed from lower rank node to

higher rank node. Therefore, in order to use GA,

all chromosomes have the same order of nodes,

which can be set as {1,2, … , 𝑛} without loss of

generality. New modification of crossover for

dynamic structural ANN has to keep the order of

nodes to guarantee that new chromosomes are

still acyclic directed graph. Subject to this

constraint, the crossover process has to choose

the cut point at the end of the nodes in a

chromosome. In this case, as two chromosomes

exchange their part, the new chromosomes

represent two acyclic directed graphs with the

same order of nodes. The purpose of GA is

finding the network structure that has smallest

error on the training data set. Therefore a fitness

value of a network is estimated by the below

equation (2) where 𝜕𝑗𝑘 is the error of output 𝑗

for an instance of inputs 𝑘. This fitness function

satisfies the requirements of GA: the value of

fitness function is positive and this value

increases when the fitness of solution increases.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

∑ ∑ 𝜕𝑗𝑘
𝑛
𝑗=1

𝑚
𝑘=1

(2)

Algorithm 5: Genetic Algorithm

Input: a set of training data set 𝑇 = (𝐼, 𝑂), where I is

the set of input instances and O is corresponding

output.

Output: a Dynamic structure ANN represented by a

direct graph 𝐺 = {𝑉, 𝐸}
{

Initialization

- Select a number of populations in

initial generation (N, select a fix

number of hidden nodes 𝑛, and

randomly choose an order

𝐷 = {𝑣𝑖} of 𝑛 nodes.

- For each initial structure:

 Randomly create a

structure of hidden layer

by randomly choose a

number 𝑧 of connection.

 Repeats 𝑧 time: choose

randomly two hidden

nodes 𝐴, 𝐵and create a

connection from 𝐴 to 𝐵,

ensure that A stand

before B in order 𝐷.

While (the error of the best chromosome in current

population larger than target of number of iteration

smaller than expected number)

{

 Selection

- Calculate fitness function of all

chromosomes in current

population.

- Using tournament selection

mechanism to select parents set.

Repeats N time the following

progress to choose N parents:

 Randomly choose 𝑧

chromosomes form

current population

 Select the best

chromosomes to insert

into parents set.

 Crossover

- Take randomly two chromosome

from parents set.

- Randomly choose one cut-points.

- Crossover to create two off-

springs.

- Off-springs replace two worst

chromosomes in current

population.

Mutation

- Randomly choose 10%

chromosomes in current

population.

- Randomly switch 10% bits of each

chosen chromosomes.

Choose the best chromosome of the current

population.

}

}

 12

There are several remarkable advantages of

the designed GA for NN structure learning

problem. First, the simplicity of chromosome

encryption and the selection, crossover and

mutation mechanisms lead to easy

implementation. Second, the underneath

mathematical process of GAs guarantees to reach

local optimal solution. Third, if an initialized

population of GAs is large enough and diverse,

the final solutions of NN structure will be close

to the global optimum.

However, the most important disadvantage

of GA is computing cost. GA requires

calculating fitness values for all chromosomes of

each generation, and these values are estimated

for all input instances of training set making it

computationally expensive. Reducing the

number of chromosomes or the number of

generations will not solve this issue because they

directly influence to quality of GA. However the

computation time of GA can be reduced by using

Parallel GA [5]. The second disadvantage of GA

is that it works as a “gray-box”, meaning that

although the GA has a clear reaching target, such

as the fitness of a structure for a specific input

set, it does not show the relationship between

fitness convergence and structural change. In

other words, the algorithm does not have a

specific method to change the NN structure

based on target error. The process of GA

algorithm for the dynamic structural ANN is

depicted in Algorithm 5.

In the learning method based on GA, the

rate of convergence is depended on the

characteristics of a problem where it is applied.

However, the complexity of algorithm in one

iteration of GA depends on selection, crossover

and mutation processes.

2.4. Advantages of the proposal

The proposed dynamic structure ANN

differs from other dynamic ANNs mentioned in

the surveyed literature by using a dependency

graph to mapping between multi-inputs and

multi-outputs. In the scope of this paper, we used

fixed weights for any connections between nodes

of the three layers: input layer, hidden layer and

output layer. This approach turns the dynamic

structure into the center of research, where it has

also been proved that a suitable dynamic would

be constructed by a suitable learning process.

Two learning algorithms are used in the new

ANN including the greedy and genetic algorithm

approaches; however in future, new other

efficient learning processes could be

implemented.

The capacity of the proposed dynamic

structure ANN depends on the number of nodes

of the hidden layer that a computing system can

process. Ideally, this number will be extended as

the system need (the number of hidden node will

increase as the size and diversity of data

increase), but in practice, system designers will

have to balance computing time with the number

of hidden units.

3. EVALUATION

This section reports on the experimental

results of the proposed dynamic structural ANN

on training data of heart attack from UCI [30].

The data has 1 output and 22 inputs; the 22

inputs represent the symptoms of patients and

the output is the conclusion about their heart

problem. The training set has 80 instances and

the testing set has 187 instances. In order to

validate the properties of the proposed dynamic

structural ANN, we used the two learning

methods separately and then compare their

accuracy. At first, each learning methods’

performance is tested on the training database to

 13

figure out the best parameters, and then, the

results of the two algorithms are compared.

3.1. Greedy algorithm based learning

method

For running the test of greedy algorithm

based learning method, we use different sets of

parameter (N, r, w, b) where N is the number of

hidden node, r is the ratio of initial connections,

w is the weight of connection and b is the bias of

neuron. However, for the purpose of showing the

inside properties of the learning method, we have

run the test with N=100, r=5%, w=0.05, b=0.1.

Each training process runs a maximum of 100

iterations, and the result is estimated by 5 time

testing. The training shows several interesting

results as below.

Instance error during one iteration:

During the iterations of the learning process,

the error of each instance in the training set

varies to balance average errors for all instances.

For example, in the first three iterations, the

errors of training input are shown in Fig.5.

Fig. 5. Learning method performance

Average error vs. number of iteration:

The result shows that the greedy algorithm,

even though designed to improve the quality for

each instance in the training set separately, does

not guarantee convergence to global optimum.

The different instance has affected the ANNs’

structure in deferent ways and a structural

updating improves for one input instance but

reduces results of others (Fig.6).

Fig. 6. Average error during training iteration

3.2. Genetic algorithm based learning

method

We applied GA algorithm with the same

number of hidden node tested by the greedy

algorithm. In general, GA has several important

parameters to test and choose the good

candidate. The number of candidates in

tournament of selection stage is set at 10% of the

population. The rate of mutation is set at 10% of

connection in a chromosome. The performance

of the GA based learning method is shown in

Figs. 7-8. In experience, the algorithm leads to

local convergence after a short number of

iterations. This situation can be improved by

increasing the population size, because a larger

population gives a more diversity generation,

and then the GA will search in larger space, or

increasing the mutation rate [5]. The result

shows the problem of convergence in GA using

tournament selection, with the best chromosome

 14

having high possibility to reproduce in next

generation. Besides, we have to limit the number

of cross point selection in the crossover stage;

therefore the searching space is limited. The

consequence is that the GA converges fast to a

local optimum.

Fig. 7. Average testing error vs. number of

population

Fig. 8. Average error in training iteration

3.3. The comparison of learning methods

In case of using 100 hidden nodes, the

performance of both learning methods in the

testing set is depicted below (Fig. 9). The

experimental results show that GA algorithm

gives better prediction for most cases in the

testing set.

Fig. 9. Two learning methods’ performance

4. CONCLUSIONS

In this paper, we focused on designing a

novel dynamic structural artificial neural

network (ANN) for binary multi-input multi-

output (MIMO) problems. We introduced the

fundamental knowledge for the dynamic

structural ANN and its comparison with respect

to the static structural ANN. The important

definitions and properties of the dynamic

structural ANN regarding positive activation

functions, such as sigmoid functions, have been

theoretically examined. Considering as the first

effort to present the dynamic structural ANN for

binary MIMO problems, we believe that it is

valuable in reality thanks to the dynamically

relationship between inputs and outputs with the

support of dependency graph. This fosters the

adaptability and survival capability of the

proposal for a wide variety of practical problems.

The proposed model of dynamic structural

ANN has been validated using a real data set of

heart attack in UCI. The result shows that both

approaches for structural learning process

 15

improve the quality of ANNs during the learning

iteration. In experience, the drawback of both

learning methods is caused by the limitation of

computing power, which curbs for running test

with large number of hidden nodes.

In future, we will expand this research with

other learning methods to construct better results

for the dynamic structural ANN. Large number

of hidden nodes will be tested for better

performance, and suitable areas for applications

of the new dynamic structural ANN to benefit

from the cause and result relationship

represented by the ANN’s structure will be

studied.

ACKNOWLEDGEMENT

This research is funded by Graduate

University of Science and Technology under

grant number GUST.STS.ÐT2017- TT02.

The authors are grateful for the support from

the Institute of Information Technology,

Vietnam Academy of Science and Technology.

We received the necessary devices as experiment

tools to implement proposed method.

REFERENCES

1. Aczon, M., Ledbetter, D., Ho, L., Gunny,

A., Flynn, A., Williams, J., & Wetzel, R.

(2017). Dynamic Mortality Risk Predictions

in Pediatric Critical Care Using Recurrent

Neural Networks. arXiv preprint

arXiv:1701.06675.

2. Amato, F., López, A., Peña-Méndez, E. M.,

Vaňhara, P., Hampl, A., & Havel, J. (2013).

Artificial neural networks in medical

diagnosis. Journal of applied biomedicine,

11(2), pp.47-58.

3. Amozegar, M., & Khorasani, K. (2016). An

ensemble of dynamic neural network

identifiers for fault detection and isolation of

gas turbine engines. Neural Networks, 76,

106-121.

4. Azar, A. T. (2013). Fast neural network

learning algorithms for medical

applications. Neural Computing and

Applications, 23(3-4), 1019-1034.

5. Cantú-Paz, E. (2007). Parameter setting in

parallel genetic algorithms. Parameter

setting in evolutionary algorithms, 259-276.

6. Cireşan, D. C., Giusti, A., Gambardella, L.

M., & Schmidhuber, J. (2013, September).

Mitosis detection in breast cancer histology

images with deep neural networks.

In International Conference on Medical

Image Computing and Computer-assisted

Intervention (pp. 411-418). Springer, Berlin,

Heidelberg.

7. Das, R. (2010). A comparison of multiple

classification methods for diagnosis of

Parkinson disease. Expert Systems with

Applications, 37(2), 1568-1572.

8. Er, M. J., Zhou, M. J. (2008). Automatic

generation of fuzzy inference systems via

unsupervised learning. Neural Networks,

vol. 21, no. 10, pp. 1556-1566.

9. Gaunt, A., Johnson, M., Riechert, M.,

Tarlow, D., Tomioka, R., Vytiniotis, D., &

Webster, S. (2017). AMPNet: Asynchronous

Model-Parallel Training for Dynamic Neural

Networks. arXiv preprint arXiv:1705.09786

10. Ghiassi, M., & Nangoy, S. (2009). A

dynamic artificial neural network model for

forecasting nonlinear processes. Computers

& Industrial Engineering, 57(1), 287-297.

11. Ghiassi, M., Lio, D., & Moon, B. (2015).

Pre-production forecasting of movie

revenues with a dynamic artificial neural

network. Expert Systems with

Applications, 42(6), 3176-3193.

 16

12. Han, H. G., & Qiao, J. F. (2011). Adaptive

dissolved oxygen control based on dynamic

structure neural network. Applied Soft

Computing, 11(4), 3812-3820.

13. He, M., & Zhang, J. (2011). A dependency

graph approach for fault detection and

localization towards secure smart grid. IEEE

Transactions on Smart Grid, 2(2), 342-351.

14. Jin, L., Li, S., La, H. M., & Luo, X. (2017).

Manipulability optimization of redundant

manipulators using dynamic neural

networks. IEEE Transactions on Industrial

Electronics, 64(6), 4710 – 4720.

15. Keysers, C., & Gazzola, V. (2014). Hebbian

learning and predictive mirror neurons for

actions, sensations and emotions. Phil.

Trans. R. Soc. B, 369(1644), 20130175.

16. Liu, W., Na, W., Zhu, L., Ma, J., & Zhang,

Q. J. (2017). A Wiener-Type Dynamic

Neural Network Approach to the Modeling

of Nonlinear Microwave Devices. IEEE

Transactions on Microwave Theory and

Techniques.

17. Mohammed, A. M., & Li, S. (2016).

Dynamic neural networks for kinematic

redundancy resolution of parallel Stewart

platforms. IEEE transactions on

cybernetics, 46(7), 1538-1550.

18. Mustafa, M. K., Allen, T., & Appiah, K.

(2017). A comparative review of dynamic

neural networks and hidden Markov model

methods for mobile on-device speech

recognition. Neural Computing and

Applications, 1-9.

19. Nanda, T., Sahoo, B., Beria, H., &

Chatterjee, C. (2016). A wavelet-based non-

linear autoregressive with exogenous inputs

(WNARX) dynamic neural network model

for real-time flood forecasting using

satellite-based rainfall products. Journal of

Hydrology, 539, 57-73.

20. Neubig, G., Dyer, C., Goldberg, Y.,

Matthews, A., Ammar, W., Anastasopoulos,

A., ... & Duh, K. (2017). DyNet: The

Dynamic Neural Network Toolkit. arXiv

preprint arXiv:1701.03980.

21. Pan , Y., Er, M. J., Huang, D., Wang, Q.

(2011). Adaptive fuzzy control with

guaranteed convergence of optimal

approximation error.IEEE Transactions on

Fuzzy Systems, 19 (5), 807-818.

22. Pan , Y., Er, M. J., Li, X., Yu, H., Rafael, G.

(2014). Machine health condition prediction

via online dynamic fuzzy neural networks.

Engineering Applications of Artificial

Intelligence,35, 105-113.

23. Pan, Y., Yu, H. (2016). Biomimetic hybrid

feedback feedforward neural-network

learning control. IEEE Transactions on

Neural Networks and Learning Systems, 28

(6), 1481-1487.

24. Pratama, M., Dimla, E., Lughofer, E.

(2017). Metacognitive Learning Approach

for Online Tool Condition Monitoring.

Journal of Intelligent Manufacturing, 2017.

25. Pratama, M., Lughofer, E., Anavatti, S.,

Lim, C. P. (2017). Data driven modelling

based on recurrent interval-valued

metacognitive scaffolding fuzzy neural

network. Neurocomputing, 2017.

26. Pratama, M., Lughofer, E., Lim, C. P.,

Rahayu, W., Dillon, T., Budiyono, A.

(2017). pClass+: A novel evolving semi-

supervised classifier. International Journal

of Fuzzy Systems, DOI: 10.1007/s40815-

016-0236-3.

27. Shanbhag, S. S., Udupi, G. R., Patil, K. M.,

& Ranganath, K. (2014). Quantitative

 17

analysis of diffusion weighted MR images

of brain tumor using signal intensity

gradient technique. Journal of medical

engineering, 2014.

28. Son, L.H., Linh, N. D., & Long, H. V.

(2014). A lossless DEM compression for

fast retrieval method using fuzzy clustering

and MANFIS neural network. Engineering

Applications of Artificial Intelligence, 29,

33-42.

29. Torabi, A. J., Er, M. J., Li, X., Lim, B. S.

(2016). Sequential fuzzy clustering based

dynamic fuzzy neural network for fault

diagnosis and prognosis.

Neurocomputing,vol. 196, pp. 31-41.

30. UCI 2015“Heart Attack dataset,” Available

at:

https://archive.ics.uci.edu/ml/datasets/Heart

+Disease(Accessed on: September 15,

2015).

31. Vanini, Z. S., Khorasani, K., & Meskin, N.

(2014). Fault detection and isolation of a

dual spool gas turbine engine using dynamic

neural networks and multiple model

approach. Information Sciences, 259, 234-

251.

32. Walczak, S. (2018). Artificial neural

networks. In Encyclopedia of Information

Science and Technology, Fourth

Edition (pp. 120-131). IGI Global.

33. Witten, I. H., Frank, E., Hall, M. A., & Pal,

C. J. (2016). Data Mining: Practical

machine learning tools and techniques.

Morgan Kaufmann.

34. Wu, D., Pigou, L., Kindermans, P. J., Le, N.

D. H., Shao, L., Dambre, J., & Odobez, J.

M. (2016). Deep dynamic neural networks

for multimodal gesture segmentation and

recognition. IEEE transactions on pattern

analysis and machine intelligence, 38(8),

1583-1597.

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease

