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Abstract: Artificial neural network (ANN) has been well applied in pattern recognition, classification and 

machine learning thanks to its high performance. Most ANNs are designed by a static structure whose 

weights are trained during a learning process by supervised or unsupervised methods. These training 

methods require a set of initial weights values, which are normally randomly generated, with different 

initial sets of weight values leading to different convergent ANNs for the same training set. Dealing with 

these drawbacks, a trend of dynamic ANN was invoked in the past year. However, they are either too 

complex or far from practical applications such as in the pathology predictor in binary multi-input multi-

output (MIMO) problems, when the role of a symptom is considered as an agent, a pathology predictor’s 

outcome is formed by action of active agents while other agents’ activities seem to be ignored or have 

mirror effects. In this paper, we propose a new dynamic structural ANN for MIMO problems based on the 

dependency graph, which gives clear cause and result relationships between inputs and outputs. The new 

ANN has the dynamic structure of hidden layer as a directed graph showing the relation between input, 

hidden and output nodes. The properties of the new dynamic structural ANN are experienced with a 

pathology problem and its learning methods’ performances are compared on a real well known dataset. The 

result shows that both approaches for structural learning process improve the quality of ANNs during 

learning iteration. 
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1. INTRODUCTION 

Artificial neural network (ANN) has been 

applied in numerous areas for a period of time. It 

has been widely studied and many ANN models 

have been introduced, which are normally 

categorized in terms of ANN architectures, 

activate functions and learning methods [32]. 

Most ANNs are designed with a static structure 

whose weights are trained during a learning 

process by supervised or unsupervised methods 

[8]. These training methods require a set of 

initial weights values, which are normally 

randomly generated, with different initial sets of 

weight values leading to different convergence 

for the same training set [7]. Even though ANN 

is considered a black box that represents a 

complex functional relationship between outputs 

and inputs, inside information of relation or cross 

affection between them is not well 

comprehended [33].  

Let us consider pathology prediction (aka 

medical diagnosis), which is a binary multi-input 

multi-output (MIMO) problem, as an example to 

illustrate why static structure ANN should be 

enhanced. A remarkable area of application of 

ANN is pathological expert systems, particularly 

in predicting health problems of people from 

their precedent symptoms [6]. In this problem, 

the appearance or absence of a symptom is 

represented by a binary variable and the 

prediction result is a binary variable as well. A 

feed-forward ANN using back-propagation 

learning method is often used therein. Besides, 

Deep Neutral Network [6], probability ANN 

[27], neuro-fuzzy system [28], etc. have been 

utilized alternatively. However, these models 

require a large number of iterations in the 

training stage and there is no guarantee for its 

convergence, especially when using short 

training data and a small error is required [4]. 

Moreover, traditional learning methods treat 

each instance of the training dataset the same and 

therefore the presence of exceptional inputs 

severely influences the ANN error and training 

rate [2]. 

Dealing with these drawbacks, a trend of 

dynamic ANN was invoked in the past year. 

The term ‘dynamic’ here involves the changes on 

the network’s structure or changes on the edges’ 

weights. Vanini et al. [31] proposed using 

dynamic neural networks for fault detection and 

isolation in aircraft jet engine. Wu et al. [34] 

described a novel method called Deep Dynamic 

Neural Networks for multimodal gesture 

recognition including a Gaussian-Bernoulli Deep 

Belief Network to handle skeletal dynamics, and 

3D Convolutional Neural Network to manage 

and fuse batches of depth and RGB images. Jin 

et al. [14] designed a dynamic neural network for 

recurrent calculation of manipulability-maximal 

control actions for redundant manipulators under 

physical constraints in an inverse-free manner. 

Aczon et al. [1] proposed a recurrent neural 

network to learn the course of patient encounters. 

Amozegar and Khorasani [3] developed an 

ensemble of dynamic neural network identifiers 

including a dynamic multi-layer perceptron, a 

dynamic radial-basis function neural network, 

and a dynamic support vector machine.  

Gaunt et al. [9] accelerated the Dynamic 

Neural Network through Asynchronous Model-

Parallel Training. Mustafa, Allen and Appiah 

[18] used Dynamic Multi-Layer Perceptron to 

minimize the required computational resource 

for an effective mobile-based speech recognition 

system. Torabi et al. [29] proposed a dynamic 

fuzzy neural network based on sequential fuzzy 

clustering for fault diagnosis. It uses Adaptive 
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Neural Fuzzy Inference Systems (ANFIS) to 

generate a set of IF-THEN fuzzy rules. After 

training, a prune process is applied to eliminate 

neurons that are less important or present 

redundant fuzzy rules to construct more precise 

neural network structure. Online dynamic neutral 

networks, on the other way, focus on online 

training algorithms.  

Pan et al. [22] used both online structure 

learning and online parameters learning to form 

an efficient online training progress of ANFIS. 

They also used an adaptive fuzzy control for 

online learning progresses [21, 23]. Pratama et 

al. [24-25] proposed condition monitoring 

approaches on learning progress, particularly 

improving two meta-cognitive what-to-learn and 

when-to-learn. They modified the original pClass 

by adding a process that initializes new fuzzy 

rules from an empty set so that a new model 

called pClass+ has the ability to end up with 

open and dynamic structure network [26]. 

Ghiassi et al. [10] proposed a successful 

dynamic architecture for Artificial Neural 

Networks called DNN2, in which the hidden 

layer includes many layers. A layer in the hidden 

layer has four nodes fixed but the number of 

layers is dynamically determined. This 

architecture has been well applied in forecasting 

time series events [10] and Pre-Production 

Forecasting of Movie Revenues [11]. Inspired by 

dynamic structure ANN, Han et al. [12] have 

introduced a new dynamic structure neural 

network for adaptive dissolved oxygen control 

issue. Their approach initializes the hidden layer 

with zero or few units and updates the hidden 

layer by adding more units during training 

process. The other success of using dynamic 

structure ANN is presented in [16], where the 

authors developed a modification of Weiner-

Type dynamic ANN for Modeling of Nonlinear 

Microwave Devices that can be implement in 

both software and hardware devices. Other 

works regarding the dynamic neural network can 

be seen in [17, 19, 20]. 

Even though there have been recent 

advances on the dynamic neural networks, they 

are either too complex or far from practical 

applications. For example, a pathology predictor 

in MIMO problems works like a multi-agent 

system in which the combination of each 

separate insiders’ activities influences the final 

prediction result. In fact, the appearance of a 

symptom itself would not be a clear indication 

for a specific illness but a set of co-appearance of 

symptoms. Moreover, within a set of symptoms 

some of them might not strongly belong to a 

specific illness; they are just precedents for other 

symptoms that directly belong to the true 

diagnosed illness. Capturing this aspect, when 

the role of a symptom is considered as an agent, 

a pathology predictor’s outcome is formed by 

action of active agents while other agents’ 

activities seem to be ignored or have mirror 

effects. The current dynamic neural networks are 

incapable to model such the cases. 

In order to mimic the relationship between 

agents in a system, we have to think about a new 

dynamic structural ANN model (e.g. for MIMO) 

including three layers with the most important 

different layer being the hidden layer. The 

hidden layer, which is modeled by the 

dependency graph, includes the set of nodes 

within dynamic adaptive topology. It means that 

the structure of the proposed ANN can represent 

the relationship between outputs and inputs; and 

the structure can be learnt or be updated during 

the learning process. By doing so, the dynamic 
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structural ANN is able to handle the variation of 

input data as well as the limitations above. 

In this paper, we propose a new Dynamic 

ANN for binary MIMO problems based on the 

dependency graph, which provides clear cause 

and result relationships between inputs and 

outputs. The dependency graph has been used in 

intelligent systems and applications such as 

instruction scheduling and job shop scheduling 

because it gives a clear relationship between 

elements involved in the system [13]. In this 

study, the dependency graph is applied in order 

to build a dynamic structural ANN that hierarchy 

both features of ANN and the dependency graph. 

In the new model, the dependency graph is used 

as a hidden layer and its topology is trained 

during the learning process of ANN. 

The rest of paper is organized as follows. 

Section 2 describes the proposal dynamic 

structural ANN and several proposed learning 

methods. Section 3 shows the experimental 

results on pathology prediction problem. Finally, 

the main results and further works are discussed 

in Section 4. 

2. DYNAMIC STRUCTURAL ANN 

In this section, the new dynamic structural 

ANN will be presented and it will be applied to 

the pathology prediction problem for illustration 

purposes. Specifically, Section 2.1 addresses the 

main ideas of the proposed ANN, including its 

theoretical validation. Section 2.2 proposes the 

design of the new dynamic structural ANN, 

while Section 2.3 focuses on two learning 

algorithms for the proposed ANN: greedy 

algorithm and Genetic Algorithm (GA). Lastly, 

Section 2.4 summarizes the advantages of the 

proposal against other works. 

2.1. Main ideas 

Considering pathology prediction as a multi-

agent system, each of its symptoms has a 

different impact on a body and their insiders’ 

activities influence a prediction result.  An agent 

mimics the action of a symptom or a set of 

similar effect symptoms. In fact, the appearance 

of a symptom itself might not give an insight 

direction for any specific illness because that 

symptom may belong to many illnesses. This is 

the case with fever, which is a symptom of wide 

spread diseases. However, a set of co-appearance 

symptoms provides a more confident clue of a 

specific illness. Even though the symptoms of an 

illness change during the time of such illness, in 

its middle stage symptoms are stable. In any 

case, within the set of symptoms, some might not 

directly belong to an illness; they just are 

precedents for other symptoms that directly 

belong to a diagnosed illness. This means that 

the outcome of pathology prediction is formed 

by action of active agents while other agents’ 

activities seem to be ignored. This relation would 

be clearly represented by a dependency graph 

[13]. 

The outcome of a dependency graph is not 

evaluated if there is a circular dependency [13]. 

Indeed, if no specific order is rationally applied 

for a circular of dependencies then no object is 

calculated first. To overcome this for a 

dependency graph, a directed acyclic graph 

needs to be formed. Combining features of 

dependency graph and properties of a real 

pathology diagnosis, a new dynamic structural 

ANN is proposed whose structure mimics real 

role of symptoms in a disease prediction system. 

The proposed new ANN mimics different effects 

of an agent to others and different agents’ roles 

to the result.  
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In principle, the proposed ANN has three 

layers: an input layer, a middle layer, and an 

output layer (Fig. 1). Each agent has different 

view for input signals and is represented by 

different input vectors. The output vector shows 

different roles of an agent in a specific economic 

factor. The different roles of agents are also 

represented by connections between agents. 

Therefore, an active agent effect on others can be 

represented by high number of nodes 

connections, while the output vector can be used 

to represent its effect on the output. 

 

Fig. 1. Architecture of static ANN 

 

In the new dynamic structural ANN, the role 

of nodes is strongly represented by its topology 

of connection rather than connections’ weights. 

Therefore, a fixed weight is applied to all edges 

to avoid the affection of weight in this type of 

ANN. Certainly, it needs to be proved that the 

proposed ANN using dynamic topology and a 

fixed weight works as the original ANN. Fig. 1 

depicts the architecture of a traditional static 

ANN. 

The existence of an ANN with a single fixed 

weight w  that works as the above architecture is 

proven by replacing a single input iji wx in static 

ANN by a sub ANN with single fixed weight w . 

As all inputs of a node will be replaced by sub 

ANNs that have fixed weight, a static ANN is 

transposed into an expected ANN. In this study, 

such existence is proved only in case of positive 

activation functions. Notice that the most well-

known and applied activation function for ANN 

is the sigmoid function, which is a positive 

function. Thus, we have the following lemma. 

Lemma1. If ANN uses a positive activation 

function, a node can be replaced by a sub ANN 

having fixed weight. 

Proof: Without loss of generality, assume 

that input ix  has corresponding weight ijw , 

which differs from others. We need to build a 

sub ANN having a single weight w  for all edges 

and prove that there exists a structure of sub 

ANN that has single input ix  and the ability to 

generate same input value iji wx
 
for node j . 

Denote by )( wxy i  the output of a node 

having single input ix  and weight w . In the 

simplest case, the input iji wx  is mimicked by a 

sub ANN with ywx iji /  nodes as illustrated in 

Fig. 2. 

 

Fig. 2. A neuron with fixed weight 
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Node j  would be completely replaced by a 

sub ANN having fixed weight if all its inputs are 

replaced by the same way above. Therefore, 

Lemma 1 is proved.                                           

Lemma 2: For each ANN with different 

weights, there exists an ANN that has fixed 

weight working the same. 

Proof: Replacing the nodes in the ANN 

with the same structure constructed by Lemma 1 

trivially proves this lemma.                              

However, the question of finding optimal 

structure of fixed weighted ANN is still open 

herein. Notice that the sigmoid activation 

function is both a positive and monotonic 

function. The positive monotonic property of 

activation functions gives the key point for 

searching a suitable topology of dynamic 

structural ANN. In the ANN using positive 

monotonic activation functions, the relation 

between density of structures and output values 

is clear since the number of connections does not 

decrease. This is summarized in the following 

property 1. 

Definition 1. Assume two ANNs, A and B, 

have the same number of nodes and are 

represented by directed graphs without cycle. 

Then, B is called a sub ANN of A if all directed 

edges in B also appear in A. 

Property 1. If an ANN uses a positive 

monotonic activation function, its output value is 

greater than or equal to those of its sub ANNs. 

Proof: We prove that adding an edge to a 

given ANN does not decrease the output values. 

Given an ANN A that uses a positive monotonic 

activation function, without loss of generality, 

assume that its node j  has a new direct edge 

from node i . In this case, the value of jnet  is 

added, and because the activation function is 

positive and monotonic the output of node j

does not decrease. If the output value of node j  

is a direct or indirect input of the output node, 

the output value of A does not decrease. 

Otherwise, node j  does not affect the output 

node and then the output remains the same.   

Remark 1. Property 1 is a consequence of 

the following: If B is a sub ANN of A, then A 

would be formed by adding one or more edges to 

B and therefore the output value of A will be 

equal to or greater than that of B. There exists a 

limitation of connection between an acyclic 

directed graph with a fixed number of nodes. 

Therefore, a dynamic structural ANN has a 

limited output value. 

Definition 2. A network is called a full 

connected network if it is represented by a 

directed graph that has at least one cycle 

providing that any edge is added into this graph. 

Remark 2. In an ANN with specific number 

of nodes, there is more than one full connected 

network. This is because once a full connected 

network is obtained by adding edges to the 

ANN, the order of adding edges can be changed 

to produce a new full connected network. For 

example, in a directed graph, if an edge ),( ji  is 

added, the edge ),( ij  cannot be added to avoid 

cycle, or in an extension, if two edges ),( ji  and 

),( kj
 

are added then edge ),( ik
 

cannot be 

added. Therefore, the order of adding edges leads 

to different full connected network.  

Property 2. If an ANN has fixed weight and 

number of nodes, then output values are upper 

bounded. 

Proof: Starting from a partial network, i.e. a 

not fully connected network, a full connected 

network is reached by repeatedly adding an edge 
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into the network. As per Property 1, when an 

edge is added, output values do not decrease. 

However, with a specific number of nodes, the 

number of full connected network is limited. 

Therefore, there exits an upper bound for outputs 

values and this is generated by the full connected 

network having highest output values.         

Remark 3. In order to break its upper 

bound, a full connected network must increase 

the number of nodes. However, in a full 

connected network, no more edges can be added. 

Therefore, the only way to break through the 

upper bound of output values is increasing the 

number of node. As soon as new nodes are added 

into a dynamic structural ANN, there is a set of 

new edges that can be added to increase the 

output values. 

2.2. Design of the new ANN 

From the above idea, we propose a new 

ANN that shares several important properties 

with the original ANN: the topology of a neuron; 

and three layers architecture. However, a 

dynamic structural ANN has the following key 

differences: every connection between nodes in 

the ANN has the same weight; and the hidden 

layer is represented by an acyclic directed graph. 

Each neuron of a dynamic structural ANN has 

multiple inputs, a fixed weight w  and one 

output with a bias, as depicted in Fig. 3. 

 

Fig. 3. A neuron of dynamic structural ANN 

The activation function is sigmoid as 

defined below: 

 

(1) 

The network architecture has three layers: an 

input layer, a hidden layer and an output layer 

(Fig. 4): 

Input layer: Each input node has 

connections to hidden nodes; at least one 

connection represented by an input vector iV  has 

the same weight w . 

Dynamic hidden layer: 

- One hidden node can connect to any 

node in the same layer. The number of 

connections of a node shows its effect 

on others and, therefore, its indirectly 

effect on the output. 

- A hidden node having direct connection 

to an output j  is an active node of j . 

A hidden node that does not have direct 

connection to an output j  is regarded 

as a normal/inactive node of j . 

- All connections have same weights. 

- The hidden layer’s structure shows the 

roles of nodes and can be represented 

by a directed graph. If a node A has a 

directed connection to node B, this 

means that output of node A is an input 

of node B. 

- There is no cycle in a directed graph 

that represents the hidden layer.  

Output layer: 

- The output value depends on the active 

hidden nodes’ output. 

- An output vector jU  represents the 

effect of active nodes on the output j , 

and has the same weight. 

Output calculation:  

- Outputs of NN are calculated through 

the activation function and the directed 

graph of the hidden layer. As described 

b 

y 
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in the design, the structure of the hidden 

layer aims to avoid any directed cycle 

because a cycle will prevent the 

calculation process of outputs. In 

general, the structure of the hidden layer 

must be represented by an acyclic 

directed graph. 

 

Fig. 4. Architecture of the proposal ANN 

2.3. Learning algorithms 

When applying the new dynamic structural 

ANN to a real problem, the input and output 

layers assign its numbers of nodes according to 

the requirement of the problem at hand. The 

target of the structural learning process of the 

new dynamic structural ANN reduces thus to 

learning the structure of the hidden layer. A 

directed graph form the structure of all layers 

represents the number of nodes and their 

connections. Therefore, the leaning algorithm 

has to learn a suitable number of nodes and the 

topological connections for a training data set. 

Learning the structure of ANN is a new learning 

process without clear previous instructions [4].  

In this section, we propose two approaches 

for structural learning. The first one learns 

directly by calculating output errors and uses 

these errors to update the number of active 

hidden nodes based on the Greedy algorithm [5]. 

Then, back propagation process is applied to 

calculate the active hidden nodes, output errors 

and update its income connections. This process 

repeats until an expected error or maximal 

iteration is reached. The second approach uses 

Genetic Algorithm (GA) as a key of structural 

learning. A set of ANN structures is initialized as 

a population, and then using the output errors as 

fitness function. The GA will lead to the best 

possible structure of the ANN even if it is not a 

global optimal structure. 

2.3.1. Greedy algorithm 

The structure of the hidden layer is learnt 

using Property 1 and Property 2: increasing the 

number of connections or active nodes in the 

hidden layer when using a positive monotonic 

activation function leads to increasing the output 

values. However, as the network structure forms 

a full connection network and a new connection 

cannot be added, the only option, according to 

Property 2, is to add a new node. The priority 

between the two above factors determines the 

final resultant structure with high number of 

nodes. Therefore, in this section we use the 

approach with priority of topological 

connections. The designed learning method has 

two stages. The first stage initializes the 

parameters of the ANN, and the second stage 

learns the hidden layer structure by input data 

stream. 

Stage one  

- Randomly initialize a number of hidden 

nodes N in the interval [2n- MAX_INT] 

where n is the number of inputs, 

MAX_INT  is the maximum value for a 
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Algorithm 1: Dynamic structure ANN learning 

algorithm 

Input: a set of training data set 𝑇 = (𝐼, 𝑂), where I is the 

set of input instances and O is corresponding output. The 

expected error 𝜀. 

Output: a Dynamic structure ANN represented by a 

direct graph 𝐺 = {𝑉, 𝐸}{ 

𝐺 = Init( N, r, w, b)   

Do  

Foreach 𝑡𝑖 ∈ 𝑇     { 

 foreach output nodes 𝑗𝑡ℎ { 

                Calculate the outputs by current structure 𝑦̂𝑗

 ; 

                Calculate the outputs error (MMSE):  𝐸𝑗 =

√(𝑦̂𝑗 − 𝑦𝑗)2; 

                 If (𝐸𝑗 < 𝜀 ) UpdatingNodeStructure(j, 

(𝑦̂𝑗 − 𝑦𝑗)); 

                       Recalculate output error 𝑦̂𝑗; 

                 } 

               D= TopologicalOdering(hidden layer) ; 

 Foreach hidden node  𝑖𝑡ℎin reverse order of D

 { 

𝛿𝑗𝑖 =
𝐸𝑗

|𝑁𝑗|
 ;   𝐸𝑖 = ∑ 𝛿𝑗𝑖

𝑛
1  

                      If (Ei > 𝜎) 

UpdatingHidenNodeStructure(ith, Ei) 

} while (a target error or expected iteration are 

reached) 

} 

Algorithm 2: UpdatingOutputNodeStructure(j,(𝑦̂𝑗 −
𝑦𝑗)) 
{ 

If  (𝑦̂𝑗 − 𝑦𝑗)< 0 {  

 𝜀𝑚𝑖𝑛 = √(𝑦̂𝑗 − 𝑦𝑗)2; // min error 

 a = null;   //Hidden node  

 Foreach ignored node A of 𝑗𝑡ℎ { 

                      If A is active (connects to output node), the 

output value changes to 𝑦′̂𝑗 and new error is 𝐸′𝑗 =

√(𝑦′̂𝑗 − 𝑦𝑗)2; 

       If  𝜀𝑚𝑖𝑛 > 𝐸′𝑗  then { 

 𝜀𝑚𝑖𝑛 = 𝐸′𝑗;   a = A; } 

} 

 Ignore node 𝑎 to be active node; 

} else { 

 𝜀𝑚𝑖𝑛 = √(𝑦̂𝑗 − 𝑦𝑗)2; // min error 

 b = null;      //Hidden node  

 Foreach active node B of 𝑗𝑡ℎ    { 

                      If turn B into ignored node (not connects to 

output node), the output value changes to 𝑦′̂𝑗 and new 

error is 𝐸′𝑗 = √(𝑦′̂𝑗 − 𝑦𝑗)2; 

        If  𝜀𝑚𝑖𝑛 > 𝐸′𝑗  then { 

 𝜀𝑚𝑖𝑛 = 𝐸′𝑗;   b = B; } 

} 

 Turn active node 𝑏 into ignored node; 

} 

} 

Algorithm 3 [4]: TopologicalOdering(hidden layer) { 

Return a valid topological ordering of the graph 

representing the hidden layer using breadth first search 

algorithm. 

} 

Algorithm4: UpdatingHidenNodeStructure(𝑖𝑡ℎ, 𝐸𝑖) { 

𝜀𝑚𝑖𝑛 = 𝐸𝑖;                        // min error 

a = null;   //Hidden node  

Foreach ignored node A of 𝑖𝑡ℎ { 

         If A is active (connects to output node), the output value changes to 𝑦′̂𝑖 and new error is 𝐸′𝑗 = √(𝑦′̂𝑖 − 𝑦𝑖)2; 

         If  𝜀𝑚𝑖𝑛 > 𝐸′𝑖 then { 

 𝜀𝑚𝑖𝑛 = 𝐸′𝑖;  a = A; } 

  }  

b = null;   //Hidden node  

Foreach active node B of 𝑖𝑡ℎ 

{ 

            If turn B into ignored node (not connects to output node), the output value changes to 𝑦′̂𝑖 and new error is 

𝐸′𝑖 = √(𝑦′̂𝑖 − 𝑦𝑖)2; 

           If  𝜀𝑚𝑖𝑛 > 𝐸′𝑖  then { 𝜀𝑚𝑖𝑛 = 𝐸′𝑖;  b = ; } 

} 

If (b!= null) 

 Turn active node 𝑏 into ignored node; 

Else if (a!= null) 

Turn ignored node 𝑎 to be active node; 

} 
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32 bit integer and a structure of hidden 

layer (with small number of 

connections). The number of 

connections in the initial structure 

should be small in order to capture the 

basic information from patterns. A tuple 

of bias and weight is also important in 

this structural learning, and they are set 

by the ANN designer [15]. The bias is 

set as high enough, much higher than 

the weight, to ensure that the number of 

hidden nodes required for a specific 

problem is acceptable [15]. 

Stage two: structural learning process 

- In general, minimizing the error of a 

trained structural ANN on a specific 

training data set is the target of the 

structural ANNs’ learning algorithm. In 

case of fixed-weight dynamic structural 

ANNs, the learning process has to 

change the connection between nodes 

for better outcome according to 

Property 1. 

- This stage points out that in an iteration 

of learning only active nodes are learnt 

directly under the output errors [15]. 

And then, the active nodes request the 

input ones to learn. 

Algorithms 1-4 change the connections to 

minimize the output errors. The learning 

algorithm based on greedy algorithm has rate of 

convergence dependent on the characteristic of a 

problem. However in one iteration, the learning 

algorithm updates all output nodes and continues 

the update of relevant active nodes in the hidden 

layer. The number of active nodes is Smaller 

than or equal to the total number of nodes of the 

hidden layer. Updating an active node in worst 

case has to update all nodes in the hidden layer. 

Update one node is simple task by turning a 

selection connection on or off. Therefore, the 

complexity of the learning algorithm is 

Ο(𝑁, |𝑌|) = (|𝑌| ∙ 𝑁2) where N is the number of 

hidden nodes and |𝑌| is the number of output 

nodes. 

2.3.2 Genetic algorithm 

This section uses GA algorithm for learning 

the structure of the dynamic structural ANN. In 

general, the GA algorithm has four stages. The 

first stage initializes a population of problem 

solutions. The three remaining stages are 

selection, crossover and mutation, which are 

repeated until the population converges or a 

fixed number of iterations is reached [5]. In order 

to use GA algorithm, the first task is to represent 

the problem as a chromosome. The structure 

indeed includes the number of hidden nodes, the 

connections between them and the connections 

between hidden nodes and output nodes. Assume 

the number of input nodes is 𝑙, the number of 

hidden nodes is 𝑛 and the number of output 

nodes is 𝑚. The structure of the ANN is 

represented by a binary matrix of dimension 

(𝑛) ∗ (𝑙 + 𝑛 +𝑚). Each row 𝑖𝑡ℎ of the 

matrix represents the out connections of a hidden 

node 𝑖𝑡ℎ to other hidden nodes and input, output 

nodes. A chromosome to represent the above 

structure matrix is a chain with (𝑛) ∗ (𝑙 + 𝑛 +

𝑚) bits [5]. 

However, this representation of a 

chromosome would not guarantee that crossover 

generates two new valuable chromosomes for 

dynamic structural ANN. The fact is that, a 

chromosome must represent an acyclic directed 

graph, but the crossover of two chromosomes 

would generate new chromosomes that represent 
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a directed graph having cycle. Therefore, a 

modification of crossover is introduced here for  

dynamic structural ANN. In an acyclic directed 

graph, there is an order of nodes and the 

connections are fixed from lower rank node to 

higher rank node. Therefore, in order to use GA, 

all chromosomes have the same order of nodes, 

which can be set as {1,2, … , 𝑛} without loss of 

generality. New modification of crossover for 

dynamic structural ANN has to keep the order of 

nodes to guarantee that new chromosomes are 

still acyclic directed graph. Subject to this 

constraint, the crossover process has to choose 

the cut point at the end of the nodes in a 

chromosome. In this case, as two chromosomes 

exchange their part, the new chromosomes 

represent two acyclic directed graphs with the 

same order of nodes. The purpose of GA is 

finding the network structure that has smallest 

error on the training data set. Therefore a fitness 

value of a network is estimated by the below 

equation (2) where 𝜕𝑗𝑘  is the error of output 𝑗 

for an instance of inputs 𝑘. This fitness function 

satisfies the requirements of GA: the value of 

fitness function is positive and this value 

increases when the fitness of solution increases. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

∑ ∑ 𝜕𝑗𝑘
𝑛
𝑗=1

𝑚
𝑘=1

 
(2) 

Algorithm 5: Genetic Algorithm 

Input: a set of training data set 𝑇 = (𝐼, 𝑂), where I is 

the set of input instances and O is corresponding 

output. 

Output: a Dynamic structure ANN represented by a 

direct graph 𝐺 = {𝑉, 𝐸} 
{ 

Initialization 

- Select a number of populations in 

initial generation (N, select a fix 

number of hidden nodes 𝑛, and 

randomly choose an order 

𝐷 = {𝑣𝑖} of 𝑛 nodes. 

- For each initial structure:  

 Randomly create a 

structure of hidden layer 

by randomly choose a 

number 𝑧 of connection. 

 Repeats 𝑧 time: choose 

randomly two hidden 

nodes 𝐴, 𝐵and create a 

connection from 𝐴 to 𝐵, 

ensure that A stand 

before B in order 𝐷. 

While (the error of the best chromosome in current 

population larger than target of number of iteration 

smaller than expected number) 

{ 

  Selection 

- Calculate fitness function of all 

chromosomes in current 

population.  

- Using tournament selection 

mechanism to select parents set. 

Repeats N time the following 

progress to choose N parents: 

 Randomly choose 𝑧 

chromosomes form 

current population 

 Select the best 

chromosomes to insert 

into parents set. 

 Crossover 

- Take randomly two chromosome 

from parents set. 

- Randomly choose one cut-points. 

- Crossover to create two off-

springs. 

- Off-springs replace two worst 

chromosomes in current 

population. 

Mutation 

- Randomly choose 10% 

chromosomes in current 

population. 

- Randomly switch 10% bits of each 

chosen chromosomes. 

Choose the best chromosome of the current 

population. 

} 

} 
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There are several remarkable advantages of 

the designed GA for NN structure learning 

problem. First, the simplicity of chromosome 

encryption and the selection, crossover and 

mutation mechanisms lead to easy 

implementation. Second, the underneath 

mathematical process of GAs guarantees to reach 

local optimal solution. Third, if an initialized 

population of GAs is large enough and diverse, 

the final solutions of NN structure will be close 

to the global optimum.  

However, the most important disadvantage 

of GA is computing cost. GA requires 

calculating fitness values for all chromosomes of 

each generation, and these values are estimated 

for all input instances of training set making it 

computationally expensive. Reducing the 

number of chromosomes or the number of 

generations will not solve this issue because they 

directly influence to quality of GA. However the 

computation time of GA can be reduced by using 

Parallel GA [5]. The second disadvantage of GA 

is that it works as a “gray-box”, meaning that 

although the GA has a clear reaching target, such 

as the fitness of a structure for a specific input 

set, it does not show the relationship between 

fitness convergence and structural change. In 

other words, the algorithm does not have a 

specific method to change the NN structure 

based on target error. The process of GA 

algorithm for the dynamic structural ANN is 

depicted in Algorithm 5. 

In the learning method based on GA, the 

rate of convergence is depended on the 

characteristics of a problem where it is applied. 

However, the complexity of algorithm in one 

iteration of GA depends on selection, crossover 

and mutation processes. 

2.4. Advantages of the proposal 

The proposed dynamic structure ANN 

differs from other dynamic ANNs mentioned in 

the surveyed literature by using a dependency 

graph to mapping between multi-inputs and 

multi-outputs. In the scope of this paper, we used 

fixed weights for any connections between nodes 

of the three layers: input layer, hidden layer and 

output layer. This approach turns the dynamic 

structure into the center of research, where it has 

also been proved that a suitable dynamic would 

be constructed by a suitable learning process. 

Two learning algorithms are used in the new 

ANN including the greedy and genetic algorithm 

approaches; however in future, new other 

efficient learning processes could be 

implemented. 

The capacity of the proposed dynamic 

structure ANN depends on the number of nodes 

of the hidden layer that a computing system can 

process. Ideally, this number will be extended as 

the system need (the number of hidden node will 

increase as the size and diversity of data 

increase), but in practice, system designers will 

have to balance computing time with the number 

of hidden units. 

3. EVALUATION 

This section reports on the experimental 

results of the proposed dynamic structural ANN 

on training data of heart attack from UCI [30]. 

The data has 1 output and 22 inputs; the 22 

inputs represent the symptoms of patients and 

the output is the conclusion about their heart 

problem. The training set has 80 instances and 

the testing set has 187 instances. In order to 

validate the properties of the proposed dynamic 

structural ANN, we used the two learning 

methods separately and then compare their 

accuracy. At first, each learning methods’ 

performance is tested on the training database to 
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figure out the best parameters, and then, the 

results of the two algorithms are compared. 

3.1. Greedy algorithm based learning 

method 

For running the test of greedy algorithm 

based learning method, we use different sets of 

parameter (N, r, w, b) where N is the number of 

hidden node, r is the ratio of initial connections, 

w is the weight of connection and b is the bias of 

neuron. However, for the purpose of showing the 

inside properties of the learning method, we have 

run the test with N=100, r=5%, w=0.05, b=0.1. 

Each training process runs a maximum of 100 

iterations, and the result is estimated by 5 time 

testing. The training shows several interesting 

results as below. 

Instance error during one iteration: 

During the iterations of the learning process, 

the error of each instance in the training set 

varies to balance average errors for all instances. 

For example, in the first three iterations, the 

errors of training input are shown in Fig.5. 

 

Fig. 5. Learning method performance 

Average error vs. number of iteration: 

The result shows that the greedy algorithm, 

even though designed to improve the quality for 

each instance in the training set separately, does 

not guarantee convergence to global optimum. 

The different instance has affected the ANNs’ 

structure in deferent ways and a structural 

updating improves for one input instance but 

reduces results of others (Fig.6). 

 

Fig. 6. Average error during training iteration 

3.2. Genetic algorithm based learning 

method 

We applied GA algorithm with the same 

number of hidden node tested by the greedy 

algorithm. In general, GA has several important 

parameters to test and choose the good 

candidate. The number of candidates in 

tournament of selection stage is set at 10% of the 

population. The rate of mutation is set at 10% of 

connection in a chromosome. The performance 

of the GA based learning method is shown in 

Figs. 7-8. In experience, the algorithm leads to 

local convergence after a short number of 

iterations. This situation can be improved by 

increasing the population size, because a larger 

population gives a more diversity generation, 

and then the GA will search in larger space, or 

increasing the mutation rate [5]. The result 

shows the problem of convergence in GA using 

tournament selection, with the best chromosome 
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having high possibility to reproduce in next 

generation. Besides, we have to limit the number 

of cross point selection in the crossover stage; 

therefore the searching space is limited. The 

consequence is that the GA converges fast to a 

local optimum. 

 

Fig. 7. Average testing error vs. number of 

population 

 

Fig. 8. Average error in training iteration 

3.3. The comparison of learning methods 

In case of using 100 hidden nodes, the 

performance of both learning methods in the 

testing set is depicted below (Fig. 9). The 

experimental results show that GA algorithm 

gives better prediction for most cases in the 

testing set. 

 

Fig. 9. Two learning methods’ performance 

 

4. CONCLUSIONS 

In this paper, we focused on designing a 

novel dynamic structural artificial neural 

network (ANN) for binary multi-input multi-

output (MIMO) problems. We introduced the 

fundamental knowledge for the dynamic 

structural ANN and its comparison with respect 

to the static structural ANN. The important 

definitions and properties of the dynamic 

structural ANN regarding positive activation 

functions, such as sigmoid functions, have been 

theoretically examined. Considering as the first 

effort to present the dynamic structural ANN for 

binary MIMO problems, we believe that it is 

valuable in reality thanks to the dynamically 

relationship between inputs and outputs with the 

support of dependency graph. This fosters the 

adaptability and survival capability of the 

proposal for a wide variety of practical problems.  

The proposed model of dynamic structural 

ANN has been validated using a real data set of 

heart attack in UCI. The result shows that both 

approaches for structural learning process 
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improve the quality of ANNs during the learning 

iteration. In experience, the drawback of both 

learning methods is caused by the limitation of 

computing power, which curbs for running test 

with large number of hidden nodes.  

In future, we will expand this research with 

other learning methods to construct better results 

for the dynamic structural ANN. Large number 

of hidden nodes will be tested for better 

performance, and suitable areas for applications 

of the new dynamic structural ANN to benefit 

from the cause and result relationship 

represented by the ANN’s structure will be 

studied. 
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