144 research outputs found

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN

    Joint Symbol-Level Precoding and Reflecting Designs for IRS-Enhanced MU-MISO Systems

    Get PDF
    Intelligent reflecting surfaces (IRSs) have emerged as a revolutionary solution to enhance wireless communications by changing propagation environment in a cost-effective and hardware-efficient fashion. In addition, symbol-level precoding (SLP) has attracted considerable attention recently due to its advantages in converting multiuser interference (MUI) into useful signal energy. Therefore, it is of interest to investigate the employment of IRS in symbol-level precoding systems to exploit MUI in a more effective way by manipulating the multiuser channels. In this article, we focus on joint symbol-level precoding and reflecting designs in IRS-enhanced multiuser multiple-input single-output (MU-MISO) systems. Both power minimization and quality-of-service (QoS) balancing problems are considered. In order to solve the joint optimization problems, we develop an efficient iterative algorithm to decompose them into separate symbol-level precoding and block-level reflecting design problems. An efficient gradient-projection-based algorithm is utilized to design the symbol-level precoding and a Riemannian conjugate gradient (RCG)-based algorithm is employed to solve the reflecting design problem. Simulation results demonstrate the significant performance improvement introduced by the IRS and illustrate the effectiveness of our proposed algorithms

    When Meta-Surfaces Meet Users: Optimization of Smart Radio Environments in 6G Sub-THz Communications

    Full text link
    We consider a smart radio environment where meta-surfaces are employed to improve the performance of wireless networks working at sub-THz frequencies. To this end, we propose a comprehensive mathematical channel model, taking into account both the ability of the meta-surfaces to redirect the impinging signal towards a desired direction, and the signal reflection due to large objects. We show how the design of both the meta-surface and the transmitter precoder influences the network throughput. Furthermore, we compare several algorithms to optimize the effect of the meta-surfaces in a realistic scenario. As a result, a simpler algorithm that associates network users and meta-surfaces provides a performance comparable to more complex numerical optimization methods. Simulation results suggest how many users are supported in the designed system

    Intelligent Reflecting Surface based Passive Information Transmission: A Symbol-Level Precoding Approach

    Full text link
    Intelligent reflecting surfaces (IRS) have been proposed as a revolutionary technology owing to its capability of adaptively reconfiguring the propagation environment in a cost-effective and hardware-efficient fashion. While the application of IRS as a passive reflector to enhance the performance of wireless communications has been widely investigated in the literature, using IRS as a passive transmitter recently is emerging as a new concept and attracting steadily growing interest. In this paper, we propose two novel IRS-based passive information transmission systems using advanced symbol-level precoding. One is a standalone passive information transmission system, where the IRS operates as a passive transmitter serving multiple receivers by adjusting its elements to reflect unmodulated carrier signals. The other is a joint passive reflection and information transmission system, where the IRS not only enhances transmissions for multiple primary information receivers (PIRs) by passive reflection, but also simultaneously delivers additional information to a secondary information receiver (SIR) by embedding its information into the primary signals at the symbol level. Two typical optimization problems, i.e., power minimization and quality-of-service (QoS) balancing, are investigated for the proposed IRS-based passive information transmission systems. Simulation results demonstrate the feasibility of IRS-based passive information transmission and the effectiveness of our proposed algorithms, as compared to other benchmark schemes.Comment: 14 pages, 11 figures, major revisio

    Intelligent Reflecting Surfaces and Next Generation Wireless Systems

    Full text link
    Intelligent reflecting surface (IRS) is a potential candidate for massive multiple-input multiple-output (MIMO) 2.0 technology due to its low cost, ease of deployment, energy efficiency and extended coverage. This chapter investigates the slot-by-slot IRS reflection pattern design and two-timescale reflection pattern design schemes, respectively. For the slot-by-slot reflection optimization, we propose exploiting an IRS to improve the propagation channel rank in mmWave massive MIMO systems without need to increase the transmit power budget. Then, we analyze the impact of the distributed IRS on the channel rank. To further reduce the heavy overhead of channel training, channel state information (CSI) estimation, and feedback in time-varying MIMO channels, we present a two-timescale reflection optimization scheme, where the IRS is configured relatively infrequently based on statistical CSI (S-CSI) and the active beamformers and power allocation are updated based on quickly outdated instantaneous CSI (I-CSI) per slot. The achievable average sum-rate (AASR) of the system is maximized without excessive overhead of cascaded channel estimation. A recursive sampling particle swarm optimization (PSO) algorithm is developed to optimize the large-timescale IRS reflection pattern efficiently with reduced samplings of channel samples.Comment: To appear as a chapter of the book "Massive MIMO for Future Wireless Communication Systems: Technology and Applications", to be published by Wiley-IEEE Press. arXiv admin note: text overlap with arXiv:2206.0727

    Resource Allocation for Near-Field Communications: Fundamentals, Tools, and Outlooks

    Full text link
    Extremely large-scale multiple-input-multiple output (XL-MIMO) is a promising technology to achieve high spectral efficiency (SE) and energy efficiency (EE) in future wireless systems. The larger array aperture of XL-MIMO makes communication scenarios closer to the near-field region. Therefore, near-field resource allocation is essential in realizing the above key performance indicators (KPIs). Moreover, the overall performance of XL-MIMO systems heavily depends on the channel characteristics of the selected users, eliminating interference between users through beamforming, power control, etc. The above resource allocation issue constitutes a complex joint multi-objective optimization problem since many variables and parameters must be optimized, including the spatial degree of freedom, rate, power allocation, and transmission technique. In this article, we review the basic properties of near-field communications and focus on the corresponding "resource allocation" problems. First, we identify available resources in near-field communication systems and highlight their distinctions from far-field communications. Then, we summarize optimization tools, such as numerical techniques and machine learning methods, for addressing near-field resource allocation, emphasizing their strengths and limitations. Finally, several important research directions of near-field communications are pointed out for further investigation
    • …
    corecore