1,968 research outputs found

    MELT - a Translated Domain Specific Language Embedded in the GCC Compiler

    Full text link
    The GCC free compiler is a very large software, compiling source in several languages for many targets on various systems. It can be extended by plugins, which may take advantage of its power to provide extra specific functionality (warnings, optimizations, source refactoring or navigation) by processing various GCC internal representations (Gimple, Tree, ...). Writing plugins in C is a complex and time-consuming task, but customizing GCC by using an existing scripting language inside is impractical. We describe MELT, a specific Lisp-like DSL which fits well into existing GCC technology and offers high-level features (functional, object or reflexive programming, pattern matching). MELT is translated to C fitted for GCC internals and provides various features to facilitate this. This work shows that even huge, legacy, software can be a posteriori extended by specifically tailored and translated high-level DSLs.Comment: In Proceedings DSL 2011, arXiv:1109.032

    Mathemagix User Guide

    No full text
    101 pagesThis manual describes the Mathemagix programming language (http://www.mathemagix.org)

    Pure subtype systems: a type theory for extensible software

    Get PDF
    This thesis presents a novel approach to type theory called “pure subtype systems”, and a core calculus called DEEP which is based on that approach. DEEP is capable of modeling a number of interesting language techniques that have been proposed in the literature, including mixin modules, virtual classes, feature-oriented programming, and partial evaluation. The design of DEEP was motivated by two well-known problems: “the expression problem”, and “the tag elimination problem.” The expression problem is concerned with the design of an interpreter that is extensible, and requires an advanced module system. The tag elimination problem is concerned with the design of an interpreter that is efficient, and requires an advanced partial evaluator. We present a solution in DEEP that solves both problems simultaneously, which has never been done before. These two problems serve as an “acid test” for advanced type theories, because they make heavy demands on the static type system. Our solution in DEEP makes use of the following capabilities. (1) Virtual types are type definitions within a module that can be extended by clients of the module. (2) Type definitions may be mutually recursive. (3) Higher-order subtyping and bounded quantification are used to represent partial information about types. (4) Dependent types and singleton types provide increased type precision. The combination of recursive types, virtual types, dependent types, higher-order subtyping, and bounded quantification is highly non-trivial. We introduce “pure subtype systems” as a way of managing this complexity. Pure subtype systems eliminate the distinction between types and objects; every term can behave as either a type or an object depending on context. A subtype relation is defined over all terms, and subtyping, rather than typing, forms the basis of the theory. We show that higher-order subtyping is strong enough to completely subsume the traditional type relation, and we provide practical algorithms for type checking and for finding minimal types. The cost of using pure subtype systems lies in the complexity of the meta-theory. Unfortunately, we are unable to establish some basic meta-theoretic properties, such as type safety and transitivity elimination, although we have made some progress towards these goals. We formulate the subtype relation as an abstract reduction system, and we show that the type theory is sound if the reduction system is confluent. We can prove that reductions are locally confluent, but a proof of global confluence remains elusive. In summary, pure subtype systems represent a new and interesting approach to type theory. This thesis describes the basic properties of pure subtype systems, and provides concrete examples of how they can be applied. The Deep calculus demonstrates that our approach has a number of real-world practical applications in areas that have proved to be quite difficult for traditional type theories to handle. However, the ultimate soundness of the technique remains an open question

    Kolmogorov Complexity in perspective. Part II: Classification, Information Processing and Duality

    Get PDF
    We survey diverse approaches to the notion of information: from Shannon entropy to Kolmogorov complexity. Two of the main applications of Kolmogorov complexity are presented: randomness and classification. The survey is divided in two parts published in a same volume. Part II is dedicated to the relation between logic and information system, within the scope of Kolmogorov algorithmic information theory. We present a recent application of Kolmogorov complexity: classification using compression, an idea with provocative implementation by authors such as Bennett, Vitanyi and Cilibrasi. This stresses how Kolmogorov complexity, besides being a foundation to randomness, is also related to classification. Another approach to classification is also considered: the so-called "Google classification". It uses another original and attractive idea which is connected to the classification using compression and to Kolmogorov complexity from a conceptual point of view. We present and unify these different approaches to classification in terms of Bottom-Up versus Top-Down operational modes, of which we point the fundamental principles and the underlying duality. We look at the way these two dual modes are used in different approaches to information system, particularly the relational model for database introduced by Codd in the 70's. This allows to point out diverse forms of a fundamental duality. These operational modes are also reinterpreted in the context of the comprehension schema of axiomatic set theory ZF. This leads us to develop how Kolmogorov's complexity is linked to intensionality, abstraction, classification and information system.Comment: 43 page

    Types and Intermediate Representations

    Get PDF
    The design objectives and the mechanisms for achieving those objectives are considered for each of three systems, Java, Erlang, and TIL. In particular, I examine the use of types and intermediate representations in the system implementation. In addition, the systems are compared to examine how one system\u27s mechanisms may (or may not) be applied to another
    • 

    corecore