
VRIJE UNIVERSITEIT

On the Development of an
Artifact and Design Description Language

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit te Amsterdam,

op gezag van de rector magnificus
dr. C. Datema

hoogleraar aan de faculteit der letteren,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der wiskunde en informatica
op dinsdag 15 september 1992 te 13.30 uur

in het hoofdgebouw van de universiteit, De Boelelaan 1705

door

Paulus Jan Veerkamp

geboren te Amsterdam

CWI , Amsterdam
1992

Promoter:
Copromotor:

Referenten:

prof. dr. J. Treur
F. Arbab Ph.D.

prof.dr.ir. N.J.I. Mars
prof.dr. R.P. van de Riet

Voor Sabine
en mijn ouders

Table of Contents

Table of Contents . v

Acknowledgements xi

1: Introduction . 1

1.1: Subject of the dissertation.... 1

1.2: Programming languages for CAD.. ... 2

1.3:

1.2.1: Object-oriented programming.. 3
1.2.2: Logic programming .. .
1.2.3: Reflective architectures
Outline of the dissertation .. .
1.3.1: Summary of chapter 2 .. .
1.3.2: Summary of chapter 3
1.3.3: Summary of chapter 4 .. .
1.3.4: Summary of chapter 5
1.3.5: Summary of chapter 6
1.3.6: Summary of chapter 7
1.3.7: Summary of chapter 8 .. .
1.3.8: Summary of chapter 9
1.3.9: Summary of chapter 10

4

5
5
6
6

6
7

7

8

8

8

9

2: Design Process Models . 11

2.1 : Introduction 11

2.2: A prescriptive model of the design process 12
2.2.1: Conceptual design.. 13
2.2.2: Fundamental design.... 14
2.2.3: Detailed design.... 15

vi On the Development of ADDL

2.3: A descriptive model of the design process.. 16
2.4: Other descriptive models. 21

2.4.1 : The design process model by Gero...... 22

2.4.2: The design process model by Mostow 24
2.4.3: The design process model by Takala 25

2.5: Discussion.... 26

3: A Small Design Problem... 29
3.1: Introduction 29
3.2: A bounded linear motion mechanism ... 30
3.3: Conceptual design of the linear motion mechanism.. 31
3.4: Fundamental design of the linear motion mechanism 36
3.5: Detailed design of the linear motion mechanism 39
3.6: Reasoning about the design process...... 40
3.7: Discussion..... ... 43

4: Design Criteria for ADDL 45
4.1: Introduction.. 45
4.2: The III CAD system 46

4.2.1: The interpreter.. 47
4.2.2: The fact-base and the object-base..... 49
4.2.3: Intelligent user interface........ 49
4.2.4: External applications........ 50

4.3: Specification of the design process 50
4.3.1 : Description of the stepwise nature of the design process... 51
4.3.2: Meta-level scenarios.. 52
4.3.3: Object-level scenarios... 53

4.4: Specification of the design object.. .. 54
4.4.1: The meta-model. 55
4.4.2: ADDL objects 56

4.5: Discussion.... 58
4.6: Conclusions............ 61

5: Representation of Objects in ADDL . 63
5.1: Introduction 63
5.2: The object-base... 65

5.2.1: Primitive objects.. 65
5.2.2: Composite objects........................... 67

5.3: The fact-base 70

5.4: Discussion 70

6: Object Knowledge Representation in ADDL 73

6.1: Introduction 73

6.2: Object-level languages.. ... 73

Table of Contents vii

6.3: Declarative aspects of object-level languages..... 76
6.3.1: Declarative semantics 77
6.3.2: The object-level derivation relation 79

6.4: Procedural aspects of object-level languages...... 82
6.4.1: An example... 82
6.4.2: Term evaluation and unification............ 86
6.4.3: Derivation procedures for the antecedent.... 90
6.4.4: Derivation procedures for the consequent.. 97
6.4.5: Built-in predicates..... 98

6.5: Discussion.. 104

7: Process Knowledge Representation in ADDL 107
7.1: Introduction 107
7.2: Meta-level languages 108
7.3: Declarative aspects of meta-level languages. 112

7.3.1: Declarative semantics ... 112
7.3.2: Meta-level inference.......................... 115

7.4: Procedural aspects of meta-level languages.. 119
7.5: Global interaction between the two levels 122
7.6: Discussion......... 128

8: Implementation 129
8.1: Introduction 129
8.2: Introduction to Smalltalk 130
8.3: The ADDL compiler. 131

8.3.1: The lexical analyzer...... 132
8.3.2: The parser... 133
8.3.3: The code generator................. 137

8.4: The ADDL interpreter 142
8.4.1: Scenario execution... 142
8.4.2: Rule selection and application....... 144
8.4.3: Belief revision...... 147

8.5: The programming environment 149
8.5.1: The scenario browser 149
8.5.2: The prototype browser.. 151
8.5.3: The experimental !CAD system 153

8.6: Discussion.... 155

9: An Example Design System in ADDL.. 157
9.1: Introduction.. 157
9.2: A linear motion design system ... 159

9.2.1: The knowledge base. 159
9.2.2: Overall design process. 162

viii On the Development of ADDL

9.3: Conceptual design of lever and pin ,..... 165

9.3.1: SolveMotionMetaModel 165

9.3.2: SolveGuideSpecs.................. 166

9.3.3: SolveMotionSpecs 167

9.3.4: SolveSlotSpecs...................... 168

9.4: Fundamental design of lever and pin 169

9.4.1: SolveGuideGeometry .. 169

9.4.2: SolveSlotGeometry 170

9.4.3: SolveAngleOfFaces 172
9.4.4: SolveMotionQualities........... 172
9.4.5: SolveGuideLimits 173

9.4.6: SolveSlotLimits 175

9.5: Detailed design of lever and pin 176

9.5.1 : SolveMotionFault 177

9.5.2: SolveGuideRefinement 178

9.5.3: SolveSlotRefinement 178

9.6: Discussion.. 181

10: Discussion..... 183

10.1: Introduction 183

10.2: Achievements 184

10.3: Comparison.. 185

10.3.1 : Expert system tools.. 186
10.3.2: Meta-level architectures..... 187

10.3.3: Intelligent CAD systems.......... 189

10.3.4: An integrated data description language. 189

10.4: Future directions 190
10.4.1 : Multi-world evaluation 190
10.4.2: The user interface 192

10.4.3: Feature modeling 192

10.5: Conclusions........... 193

11: Bibliography 195

Appendices 205

I: Lexical Analyzer 205

1.1 : Transition diagram ... 205

II: ADDL Definitions for Yacc 209

II. 1: Definition of object-level scenarios.............................. 209

11 .2: Definition of meta-level scenarios. 210
11.3: Definition of local operations 211

Table of Contents ix

ID: Signatures of the Example Design System , 213
III.I : Maximum signature of the process information state 213
III.2: Maximum signature of the fact-base 214
III.3: Signatures of the meta-level scenarios 215
III.4: Signatures of the object-level scenarios... 217

Nederlandse samenvatting 223

Acknowledgements

The work described in this dissertation is the result of research I performed while
employed at the CWI in Amsterdam. Many people have aided this effort amongst
whom I would like to mention a few especially.

First of all, I would like to thank my promotor Jan Treur and my copromotor
Farhad Arbab for their supervision. Although Jan Treur became my promotor only
during the last phase of my research, he convinced me to change the focus of my
research and therefore the overall thrust of the thesis advanced in this dissertation.
The many stimulating discussions and useful suggestions have contributed a great
deal to the final version of ADDL.

I am very grateful for the continual support of Paul ten Hagen, head of the
Department of Interactive Systems at CWI. He provided me with a pleasant research
environment and he gave me great latitude in choosing the scope of my research. I
owe a great deal to Tetsuo Tomiyama, Associate Professor at the University of
Tokyo. He not only started the IIICAD project and stimulated me to become
researcher, he also became a good friend with whom I shared a lot of time in pubs
and restaurants. I would especially like to thank 'Tomi' for allowing me to be a
visiting researcher to his laboratory in Japan. I would also like to thank Varol
Akman who succeeded Professor Tomiyama as project leader. We had many
fruitful discussions about ADDL and qualitative physics.

My roommates Jan Rogier and Daan Otten provided a great deal of help
during the past five years. They created a pleasant and inspiring atmosphere that
Jed to many stimulating discussions.

My thanks to you all, and to the other members of the department of
Interactive Systems at CWI. Amongst whom I thank Edwin Blake for improving my

xii On the Development of ADDL

English and Anco Smit for improving my Dutch. I am also grateful to Gusz Eiben
from the Vrije Universiteit Amsterdam for proofreading chapter5 till Chapter 7.

My parents were always my greatest supporters in every way. They created
the possibility and motivated me to study from the very beginning and they taught
me perseverance. But most of all I would like to thank my wife Sabine who
insisted in reading every chapter of my dissertation even when she couldn't follow
all of it. Every time I felt dispirited, she encouraged me to continue and challenged
me to finish my work.

1
Introduction

1.1 Subject of the dissertation
Although CAD (Computer Aided Design) systems have become an essential tool for
designers in many disciplines, it is also recognized that they are still inflexible and
too task specific. Supporting a designer in performing the entire design task is the
purpose of a CAD system. Routine tasks are delegated to the system. However, the
majority of existing CAD systems are merely sophisticated workbenches for
engineering drawings. As the application domain becomes more complex,
designing becomes unmanageable with only this type of support. Therefore,
designers need a more sophisticated system that can assist them in an intelligent
way, hence ICAD (Intelligent Computer Aided design). Furthermore, to obtain a
good system it must be highly interactive using the best human computer
interaction techniques. Existing programming languages do not have the special
properties that ICAD systems require. The lack thereof necessitated the
development of a special purpose programming language: ADDL (Artifact and
Design Description Language). This dissertation deals exclusively with the design
and implementation of ADDL.

The work described in this dissertation was carried out at the Centre for
Mathematics and Computer Science (CWI) as part of the IIICAD (Intelligent
Interactive Integrated CAD) project. The project started in 1987 with 75% funding
from NFI (Nationale Faciliteit Informatica, project NF 51/ 62-514: 1986-1992) plus
5% funding from TNO (Netherlands Organization for Applied Scientific Research).
Part of the research activity within the project was carried out by the Artificial
Intelligence group of the Department of Mathematics and Computer Science at the
Free University in Amsterdam. Their effort is complementary to the work at CWI. It

2 Chapter l . Introduction

is focussed on control of the design process and handling of incomplete
information.

The goal of the project is to study the issues involved in building CAD systems
that:

• contain more complete knowledge about the activity of design, as well as
domain dependent design knowledge;

• are better integrated to provide a consistent set of functionalities which can be
combined to cover a broad range of activities involved in a production cycle;

• have high-quality, high functionality, intelligent user interfaces.

The emphasis is in particular on the use of AI techniques.

The project started with the development of ADDL. The language has special
dedicated features to encode existing and newly acquired knowledge about the
design object, about the design process and their relations. The encoding and
treatment of design knowledge is studied in the context of geometric modeling,
object-oriented databases, user interfaces and geometric reasoning.

1.2 Programming languages for CAD

Early CAD systems were biased towards geometric information. A user was given a
tool to generate a drawing of the artifact. A next generation was equipped with a
database where product data could be stored and retrieved. However, during
several stages of the design process a product's specification needed to be verified.
This could be achieved by external modules, such as a FEM (Finite Element
Method) analysis module, or a cost analysis module, etc. These were separate
tools, forcing the CAD data to be transferred from one system to another, and back.
A future CAD system needs to be an integrated system which contains a central
design object model, and which has several application modules connected with
it, allowing the designer to analyze his product in several ways. Such a system
employs a uniform language which is used by all subparts.

An ICAD system makes high demands on the programming language that is
used for its implementation. Such a language must have the following
characteristics:

• It must provide a means to represent a design object as a collection of entities.
Each entity represents a structural component of the design object. Entities
must contain a set of attributes that represent dimensions of a component.
They must respond to a set of operations that can be applied to their
attributes.

• It must allow for representing relations among entities and properties of
entities in a flexible way. The complete set of relations and properties
describe the function and behaviour of the design object. It is called the

1.2 Programming languages for CAD 3

qualitative model of the design object. The qualitative model must also
describe a decomposition of the design object into parts.

• It must have a mechanism to represent knowledge of how to create, evaluate
and modify the above design object model. This knowledge is also called
object knowledge because it represents the designer's knowledge about the
objects. Designers use different kinds of expertise during various stages of the
design process. The object knowledge must therefore be encoded in a
modular fashion.

• It must also have a mechanism to represent knowledge of when and where to
apply the object knowledge. This knowledge is called process knowledge
because it represents knowledge about the design process. It controls the
application of the object knowledge. The process knowledge must also be
encoded in a modular fashion.

• It must provide a mechanism to integrate several sub-modules into the main
system. These are used for the evaluation of the central design object
description, i.e., the qualitative model.

• It must offer the means for high level interaction with a designer i.e., good
human computer interaction facilities.

A language that is based on both objects and logic, forms a firm basis for
implementing an !CAD system. Furthermore, if the language has a strict separation
between object and process knowledge, it is easier to use, debug and modify. The
following sections shortly introduce object-oriented programming languages,
logical programming languages and reflective architectures.

1.2.1 Object-oriented programming

An object-oriented programming language is based on a single universal data
structure (the object), a general control structure (message passing), and a general
data description structure (the class hierarchy). An object is a way of representing
properties of a data structure and operations allowed on that data structure in a
single location. A program obtains information from an object by means of an
answer to a message sent to that object. Message passing may also be used to give
a task to an object. Objects that have a common behaviour and related properties
are grouped together in a uniform description, viz. a class. Classes .are defined in
terms of other classes, i.e., a hierarchical organization. The objects themselves are
responsible for the way a message is executed. Each object has an internal state
where the effect of all messages sent to it is stored [Wegner, 1990; Rumbaugh et
al., 1991l.

The three most popular object-oriented languages are Smalltalk-SO [Goldberg
and Robson, 1983], Eiffel [Meyer, 1988], and C++ [Stroustrup, 1986]. They range
from a purely object-oriented language such as Smalltalk towards an object-

4 Chapter l . Introduction

oriented extension of an existing language (C) such as C++. Smalltalk was the first
popular object-oriented language. The Simula language served as a basis for
Smalltalk when it was developed at the Xerox Palo Alto Research Center. The
Smalltalk-80 System is not only a language but also a programming environment
that includes the functionality usually attributed to a computer operating system: a
file system, display handling, text and picture editing, a debugger, processor
scheduling, compilation and decompilation. Although the implementation of ADDL

is done in Smalltalk, the implementation does not depend on it. ADDL can also be
ported onto Eiffel, C++ or another programming language. The object-oriented
part of ADDL uses existing Smalltalk constructs as much as possible. For instance,
ADDL objects use Smalltalk Class definitions and for message passing in ADDL the
Smalltalk message passing mechanism is used.

1.2.2 Logic programming

The fundamental idea of logic programming is that first order logic can be used as
a programming language. The need to use logic as a programming language stems
from natural language processing. It was argued that logic is a precise and formal
language as opposed to natural language, which is imprecise and ambiguous.
Logic was thus an appropriate means for representing natural language in a
computer. The popularity of logic programming became more widespread after
the success of the first logic programming language Prolog (Programming in logic
[Clocksin and Mellish, 1981]). It is now one of the most popular programming
languages used in Artificial Intelligence applications. The advantage of a logic
programmihg language is the combination of having a declarative semantics as
well as a procedural interpretation. The former gives the meaning of a program is
while the latter is concerned with how such a meaning is obtained.

Logic consists of propositions and relations among propositions [Clark and
Tarnlund, 1982; Lloyd, 1987; Apt, 1990). Propositions of sorted first order logic
consist of typed predicate symbols and terms. Furthermore, there is an inference
engine that can infer propositions from others, and which can validate
propositions. Most inference engines of logic programming systems are based on
resolution theorem proving [Paterson and Wegman, 19781. The basic idea of logic
programming can best be described by an example. Suppose I want to express that
'Socrates is a man'. This can be done by the proposition

man(socrates}.

Furthermore, I have the knowledge that all men are mortal. This can be expressed
by the implication

man(X} ➔ mortal(X}

where x is variable that ranges over all constants in the language . In ,>ther words,
if xis a man then he is mortal. Using these two expressions an inference engine

1.3 Outline of the dissertation

can infer the proposition that socrates is mortal, i.e.,

mortal(socrates).

1.2.3 Reflective architectures

5

A common property of reflective or meta-level architectures is that they consist of
two levels. The object-level at which reasoning is performed about the application
domain and the meta-level at which the object-level reasoning is controlled. The
main advantage of such architectures is the separation between what the system
knows (the object-level) and how this knowledge is applied (the meta-level). A
system with explicitly and separately represented process knowledge is more
modular, and thus easier to develop, debug and modify (see [vanHarmelen, 1989]
pp.14).

In ADDL both the object-level and the meta-level knowledge-base are
partitioned into scenarios. A scenario consists of a set of rules that are applicable
to an information state. An information state consists of a description of either a
design object or a design process, depending on the level of reasoning. The
application of the rules of an object-level scenario results in an extended object
information state. An object information state embodies a (partial) model of the
design object. It consists of the entities that describe parts of the design object
decomposition and it consists of relationships among these entities. Therefore, the
application of an object-level scenario causes an expansion of the entities and
relations in the object information state. Object-level scenarios represent
knowledge about a certain aspect of design. The reasoning involved is a forwardly
directed activity. Initially the design object model consists of a minimal description
which is gradually extended as the design proceeds. Both the meta-level and the
object-level language of the architectures presented in this paper are based on a
subset of sorted first order logic. Scenarios consist of a set of rules that are
equivalent to logical implications. The object-level language is based on three
valued logic. It describes the world as partial models in which every statement is
either true or false or unknown. The meta-level language only uses the classical
truth values and is based on the closed world assumption [Reiter, 1978].

1.3 Outline of the dissertation

The ordering of the chapters of this dissertation gives a chronological reflection of
the development of ADDL. Except for Chapter 3 which should actually be placed
between Chapter8 and Chapter 9. I moved it forward to provide the reader with an
example. The following sections briefly summarize the chapters of the dissertation.

6 Chapter l. Introduction

1.3.1 Summary of chapter 2

Chapter 2 starts with the presentation of a prescriptive model of the design process,
which explains how design should be performed. It discusses the representational
issues that a designer meets during the design process. It also serves as a tutorial
for readers unacquainted with design. The next topic of that chapter is a
descriptive design process model (DPM) that describes design as a cognitive
process. The model is based on the General Design Theory of Tomiyama and
Yoshikawa [Tomiyama and Yoshikawa, 1987]. It models the design process as a
mapping from the function space, where the specifications are described in terms
of functions and behaviour, onto the attribute space, where the design solutions
are described in terms of attributes. Each function given by the initial specification
is mapped to an attribute of the resulting design object model. Roughly speaking, a
designer starts with a functional specification of a design object and ends with a
manufacturable description [Tomiyama and Yoshikawa, 19871.

The basic ideas behind DPM are as follows. According to the given functional
specification a candidate for the design solution is selected. This candidate has a
very incomplete description. It is refined in a stepwise manner until the solution is
reached. The design process is thus regarded as an evolutionary process that
transfers the object model through a sequence of design steps from one state to
another. DPM is certainly not the one and only descriptive model of the design
process As in cognitive psychology, many approaches by different researchers
have led to various models. The last part of this chapter presents some alternative
models of the design process and compares them with DPM .

1.3.2 Summary of chapter 3

Chapter 3 introduces an example design problem. It shows how a designer solves
the problem in accordance with DPM . The problem deals with a bounded linear
motion mechanism. The chapter gives apart from a general solution to the
problem, also a worked out example of a real design using an experimental ICAD

system.

1.3.3 Summary of chapter 4

Chapter4 lists a set of of criteria that must be met by a design environment
consisting of the IIICAD system implemented in ADDL (Artifact and Design
Description Language). I used DPM as the initial inspiration for the derivation of
these criteria. They are presented in the form of twenty-nine design maxims. The
development of ADDL was done by collecting these design maxims and deriving
language constructs from them. The design maxims have led to the specifications
given in the subsequent three chapters. Note however, that the specifications are
not limited to DPM . The alternative models of the design process are also covered
by ADDL.

1.3 Outline of the dissertation 7

1.3.4 Summary of chapter 5

Chapter5 represents the object-oriented aspect of ADDL. It introduces two
categories of ADDL objects, namely primitive and composite objects. Four different
types of objects are distinguished within the category of primitive objects. These
types are number, symbol, string, and array. Each type defines its own set of
operations by which an object of the type can respond to a function call. A
primitive object is represented by its value. The operations and the value together
embody the behaviour of a primitive object. Whereas the set of primitive object
types is limited, the set of composite object types can be extended by the
application programmer. The type definition of composite objects does not only
give a set of operations but also a set of named slots that is used as a set of attribute
values. Thus, composite objects have an internal structure that consists of these
attribute values. Attributes are properties of objects such as length, height, colour
etc. Both the attribute values and the operations are accessed through functions .
The instantiation and modification of both primitive and composite objects is
accomplished through object-level expressions.

Each composite object and its set of associated attribute values is stored in an
object-base. Properties of objects that cannot be described by attribute values are
stored as a set of literal facts in a fact-base. Unary literal facts describe a specific
'quality' of an object. Literals with an arity greater than one describe a relationship
among two or more objects. The entire set of literal facts represents a qualitative
model of the current state of the design object. The fact-base is also manipulated
by object-level expressions. The joint states of the object-base and the fact-base are
called an object information state.

1.3.5 Summary of chapter 6

Chapter6 describes the class of object-level languages that are part of ADDL. Since
ADDL has a meta-level architecture, it consists of both a meta-level language and an
object-level language. The purpose of the object-level language is to represent
knowledge concerning the design object. This knowledge is distributed over
(object-level) scenarios. Each scenario is an autonomous module that knows how
to perform a design step. It contains a set of rules that evaluate the object
information state and add information to that state. Scenarios aim at satisfying goals
stated at the meta-level. A scenario remains active as long as its intended goal has
not (yet) been satisfied. After termination of a scenario, control is given back to the
meta-level interpreter. It merges the information derived from the scenario's
knowledge (i.e ., its rules) with the object information state resulting in a new state.
The application of an object-level scenario is equivalent to a design step as
introduced in Chapter 2.

8 Chapter l. Introduction

1.3.6 Summary of chapter 7

Chapter7 presents the meta-level language. Meta-level scenarios represent
knowledge about the design process. They state design goals that are either
satisfied by object-level scenarios or meta-level scenarios. In other words, the
meta-level interpreter controls the application of either kind of scenarios. Other
conclusions derived from meta-leve l scenarios are concerned with the process
state of the design object model represented by process parameters. These
conclusions are stored in a process information state. Thus, the process
information state consists of i) asserted design goals, ii) satisfied design goals, and
iii) parameters concerned with the process state of the design object model. Meta
level scenarios can also evaluate the object information state through a reflection
principle. Upward reflection maps object-level information onto the meta-level
information state. Using this mechanism, the meta-level interpreter can reason
about the truth value of information in the object information state.

1.3.7 Summary of chapter 8

Chapter 8 deals with the implementational aspects of ADDL. It consecutively
presents the ADDL compiler, its interpreter and a run-time environment. The
compiler consists of a lexical analyzer, a parser and a code generator. The parser
reads a token stream scanned by the lexical analyzer. The parser is written with the
use of Yacc. The code generator traverses the parse tree and creates a Smalltalk
method for each ADDL rule. The interpreter executes these methods when a
scenario is activated. Furthermore, it registers all information obtained by the
execution. Both the compiler and the interpreter consist of a meta-level and an
object-level part taking care of meta-level and object-level scenarios respectively.
The meta-level interpreter maintains control of the design process. It dictates the
object-level interpreter.

The run-time environment is on the one hand the programmer's workbench
where scenarios and prototype definitions can be edited. Its user interface is
similar to the Smalltalk-80 programming environment. On the other hand, it is an
experimental CAD system where scenarios can be executed. Two example design
systems have been implemented in the experimental system. Chapter9 presents
one of these, the other is presented in [Veerkamp and ten Hagen, 1991; Treur and
Veerkamp, 1992].

1.3.8 Summary of chapter 9

Chapter9 describes an example design system that has been implemented for the
class of design problems introduced in Chapter 3. The system c m~i.~r s of five
meta-level scenarios and nine object-level scenarios. The chaptc. sents and
discusses each of them. Appendix 3 gives a signature for each scena r, ,. It contains
the types, constant symbols, function symbols and predicate symbols heing used.

l .3 Outline of the dissertation 9

The chapter also gives a trace of the process information state in simulating a run
of the example design system. It uses the specifications of the working-out of a
real design presented in Chapter 3.

1.3.9 Summary of chapter 10

Chapter 10 gives a discussion on the topics of this dissertation. It evaluates the
results that have been obtained. It gives some topics for future research and it
compares ADDL with competing languages and systems.

2
Design Process Models

2.1 Introduction

Prescriptive and descriptive models of the design process form the central themes
of this chapter. A prescriptive model gives directions on how design ought to be
done while a descriptive model is a cognitive model that describes how people
solve design problems. Along with the prescriptive model of the design process I
survey the representational issues that arise during the evolution of a design
object. The presentation and comparison of some descriptive models of the design
process form the last part of this chapter.

It is recognized that designing is a 'mysterious' activity that is currently only
done by human designers. The expansion of computers in the society and their
growing utilization in the industrial process engendered the need to develop
computerized design systems as well. Recent research into CAD systems resulted in
tools for supporting a designer to generate a representation of an artifact, e.g., a
drawing. As a consequence, the issues concerning the representation of an artifact
are fairly well understood and agreed upon. This chapter starts with a discussion in
§ 2.2 on the several stages of the design process based on a literature study. It is
also referred to as a prescriptive model because it describes how design should be
done [Finger and Dixon, 19891. It serves a dual purpose; (i) it gives the
requirements that are put upon the representation of design objects and (ii) it
provides readers of no or very little knowledge of design with a short introduction
to the design process. This section has been inspired by the discussion session on
"design object representation" at the third IFIP TC 5/WG 5.2 workshop on intelligent
CAD [Arbab, 1991), which I attended and to which I contributed.

12 Chapter 2. Design Process Models

The second part of this chapter gives a formalization of the design process in
terms of a descriptive model. I present the model in § 2.3 and compare it with other
models in § 2.4. A descriptive model describes how a designer performs a design
task. The model, called DPM (Design Process Model) , is used as an inspiration for
the development of ADDL. I agree that it is rather pretentious and even dangerous
to give a descriptive model of a process that is not yet fully understood.
Nevertheless, since I am aiming at a system that (only) assists the designer during
the design instead of performing the task itself, it suffices to build a model of the
external behaviour of a designer. Therefore, developing a formal framework for an
!CAD system that solves a design problem in dialogue with a designer, is the main
issue of this dissertation. I am thus interested in how designers performs their job
but not why it is done in that way.

Finger and Dixon (1989) have summarized and reviewed research in
mechanical engineering design theory and methodology. They state:

"In a mature field, the research community will share a common view of what
are appropriate research methodologies, what are the difficult unanswered
questions, and what constitutes high quality research. In the emerging field of
design research, no such consensus exists."

Due to this lack of consensus it is neither possible nor desirable to present a single
model of the design process. Many design process models have been developed;
each having its advantages and disadvantages. Therefore, § 2.4 compares DPM with
other competitive but not orthogonal descriptive models. It turns out that it is
possible to develop a framework in which each of the descriptive models fits
[Waldron, 1991].

2.2 A prescriptive model of the design process
Designing is an activity that is based on both knowledge and experience.
Examination of designers at work shows that each individual designer tackles a
design problem in a different way. If one asks designers why they actually design
in the way they do, one gets an unsatisfactory answer. They do not really know
[Rogier, Veerkamp, and ten Hagen, 1989]. However, extensive research on
designing has been carried out by German researchers resulting in a number of
text books of which [Hubka, 1987) and [Pahl and Beitz, 1988) have been translated
to English. Both books include an extensive list of German references. They both
distinguish among three successive stages in the design process1, i.e., conceptual
design, fundamental design, and detailed design (see Fig. 2.1). Traditionally, these
stages are particularly distinguished in mechanical engineering due to differences

1 One cannot assume that design has always been viewed and represented in 1hi , "
nor can one assume that it will always remain in this from. The development o ,
design tools may influence the way design is performed.

2.2 A prescriptive model of the design process 13

in the way drawings are used. These stages are also called functional, basic and
detail design respectively [Arbab, 1991].

Conceptual
Design

Fundamental
Design

Functional
Specifications

Abstract
Anatomical

Structure

Concrete
Anatomical

Structure

Detailed
Design

Exact
Anatomical

Structure

Fig. 2. 1 The three successive stages passed through during the design process.

These design stages have in common that they operate on a design object
representation. But each stage has its own demands on representational issues.
The design object representations are depicted in the rounded boxes of Fig. 2.1.
There is an implied need for a design object model that allows for the
representation of properties characteristic for each of the three stages. What kind
of characteristics these are is shown in § 2.2.1 through § 2.2.3. There is no clear
borderline between these three stages. A designer gradually moves from one
design stage to another without noticing. Obviously, this leads to the conclusion
that there should be a single design process model that captures all three stages of
design. Moreover, there should also be a single design object model. In other
words, in each of the different phases of design a uniform design object
representation is manipulated. A design process model is presented in § 2.3. The
sections below treat each of the design stages separately.

2.2.1 Conceptual design

Design starts with a need , the statement of a design problem. A design problem
does not necessarily have to be an entirely new problem; it might have been
solved by previous designs. Design is thus often a matter of improving existing
designs. The necessity for these improvements may be caused by several reasons,
e .g. , changed requirements, a disappointing performance, excessive costs, etc. In
another case, the design problem may be of a totaly new kind. The former is
called routine design, the latter creative design. The way both categories of design
problems are solved is basically the same. The difference lies in the amount of time

14 Chapter 2. Design Process Models

spend in one of the three stages. However, creative design demands more from an
!CAD system than routine design, since for routine design existing design schemes
are known and can be applied. For creative design new design schemes have to be
developed.

In the early stage of design the problem is analyzed by the human designer,
and the output of this analysis consists, amongst others, of:

• a precise statement of the problem in terms of function and behaviour,

• limitations placed upon the resulting product, e .g., spatial requirements, cost
constraints, international standards etc.

• the measure of quality that should be worked to.

The last item is in most cases the bottleneck; how to produce reasonable quality at
the lowest possible costs. The analysis of the design problem is carried out
without use of an !CAD system. The result of this phase is called a functional
specification.

The functional specification of a design problem is used as a starting point for
the design process modeled by the IIICAD system. A designer supplies a functional
specification to the system, and the system translates it to an initial design object
model. The statement of the design problem is thus transformed into an abstract
anatomical structure, which describes the problem in terms of broad solutions.
The broad solutions are represented in the fonn of design schemes. The
transformation from a design problem specification to an abstract anatomical
structure is accomplished through an interaction between the designer and the
design system. The schemes specify the kind of dialogue being held, in other
words, they denote the design process knowledge. In this phase the most
important decisions are taken and it makes the greatest demands on the designer.
It is the designer who decides what kind of design scheme is executed.

The abstract anatomical structure is the initial representation of the design
object in the IIICAD system. It is a rough solution to the design problem, which
describes the behaviour of each major function, and gives the spatial and structural
requirements of the major components. It allows for inclusion of subparts and
attributes to be specified later. It is important that feasibility of a solution can be
checked at a state as early as possible.

2.2.2 Fundamental design

During the course of fundamental design the abstract anatomical structure is
converted to a more concrete anatomical structure. It is a description of something
one can actually make. A rough decomposition of the artifact is created and the
principal shape of the design object is fixed. A primary solution for the major
components of the decomposition is chosen. To find such a partial solution a
designer uses experience obtained during previous design sessions. It is often the

2.2 A prescriptive model of the design process 15

case that a certain part of the design object has been designed before, or that it is
similar to a part which has been designed before. For this purpose the designer
possesses a collection of prototype solutions which are applied as standard
components for parts of a new design [Gero, 1990; Rogier, 1991).

Such a collection of possible design solutions is part of the IIICAD system. A
library of standard components allows a designer to use a certain component as a
prototype for a part of a new design. The prototype may be modified according to
a designer's wishes. If a suitable prototype is absent, a designer is allowed to
choose a prototype which resembles closest to the desired component and to
change it completely. The design knowledge necessary for choosing the right
prototypes, and manipulating them, is also denoted by means of design schemes.

The concrete anatomical structure which is the result of the fundamental
design phase is represented by a decomposition containing empty and fuzzy parts.
The model is by far not complete and most of the parts are still absent. Dimensions
and tolerances have not yet been determined. The relationships among the several
parts are not yet known. In a certain situation, however, the system may need a
value for a certain attribute, or might want to know about a certain relationship
(e.g., to generate a geometric representation). In that case the system assumes
default values for those attributes, and uses uncertain facts for those relationships.
Hence, the behaviour of the model is simulated by assuming default behaviour for
the parts which are uncertain or unknown.

This phase of the design process consists of several steps. Initially, there is
hardly any structure in the model, most of the parts are unknown. Then during
several steps the model is gradually structured. When the last phase of
fundamental design is reached, the entire structure of the design object model is
determined. Now, the only thing to be done is refining the model and working out
the details. This happens in the next phase of the design process.

2.2.3 Detailed design

Prior to this phase of the design process, a complete structure of the design object
model has been defined. The major parts of the design object have been
determined and a decomposed model represents them. The purpose of detailed
design is producing an exact description of the anatomical structure. Dimensions
and tolerances are set, all constraints are satisfied and all parts are integrated into
one coherent model. Therefore, all attributes of the model receive a definite value,
and all relations among the various parts are defined. The model is verified with
the initial specifications, and it is evaluated to check whether the requirements are
met.

The design focuses on specific parts of the design object model without
worrying about global issues. Local optimizations are achieved which result in

16 Chapter 2. Design Process Models

small changes. Allowing a designer to concentrate on a certain part of the design
object is the main issue at this phase. The part is highlighted and it is modeled in
its own context, i.e. special conditions which only apply for this particular part are
now valid. After being modeled such a part is replaced in the whole, and checked
whether it still fits . The llICAD system allows the designer to generate such models
on specific parts of the design object model. It is done by certain design schemes.

During this stage of design, a designer consults various experts, to obtain
some information on various aspects of the design. These experts perform domain
specific calculations, or they evaluate the design object model in a certain context.
They add new information to the design object model. Sometimes a designer asks
several experts for information at the same time. Each expert adds data from its
own field of expertise to the design object description. Some experts may add
contradictory information to the design object description, since they have
different background knowledge. It is the designer's task to maintain the
consistency of the design object model.

2.3 A descriptive model of the design process
This section gives a descriptive design process model (DPM) applicable to the three
stages presented in the previous section. I used DPM as a source of inspiration for
the ADDL specifications and the IIICAD architecture [Veerkamp, 1989]. They serve as
a general framework in which DPM can be implemented. The framework is not
restricted to DPM only. The models presented in § 2.4 also fit in the framework.
Knowledg~ about the three stages of the design process and about the design
object can be embedded in the framework. Thus, the system is always informed
about the current state of both the design process and the design object [Akman et
al., 1988). However, a designer decides how to perform the design process and
the llICAD system is an intelligent aid that support designers in achieving their goal
by supplying the right tools for each specific stage of the design process.

The General Design Theory of [Tomiyama and Yoshikawa, 1987] serves as a
basis for DPM. It is based on axiomatic set theory. It describes design as a mapping
from the function space where the design object specifications are described in
terms of functions, onto the attribute space where the design solutions are
described in terms of attributes. Roughly speaking, one starts with a functional
specification of the design object and ends up with a manufacturable description.
The overall outlook of DPM is depicted in Fig. 2.2.

•
The basic ideas behind the DPM are as follows:

From the given functional specifications a candidar, for the de-;ign
selected and refined in a stepwise manner uni.ii a cornrl
obtained, rather than by trying to get the solution dire
specifications. The latter is not possible in a non-trivial design 1 >•,

olution is
,lution is
from the

ilem, since

2.3 A descriptive model of the design process

Function
Space

Design

Fig. 2.2 Basic model of the design process.

it involves a very complex object with a multitude of parts.

Attribute
Space

17

• The design process is regarded as an evolutionary process which transfers the
model of the design object from one state to another, gradually obtaining a
more detailed description. The number of attributes that received a value
grows as the design process proceeds and a growing number of functional
specifications is met.

• To evaluate the current state of the design object model, various
interpretations of the design object model need to be derived in order to see
whether the object satisfies the specifications or not.

I call those interpretations of the design object model contexts and they can be
regarded as interpretations of the design object observed from certain points of
view. Contexts allow a designer to model the current state of the design object in a
certain environment, i.e. they represent an aspect model. More information about
the design object is obtained through these contexts and hence the number of
attributes grows. Contexts are created by means of scenarios, which contain design
knowledge and data necessary to build an aspect model. Scenarios perform the
reasoning about a context and they lead the dialogue with the designer.

According to DPM, a design object model is refined in a stepwise manner. An
intermediate state of both the design process and the design object is called a
meta-model. A meta-model consists of the following three components:

I . Entities that describe parts of the design object decomposition. Each entity
can in turn be composed of other entities. Entities may have one or more
attributes that denote its quantitative properties.

2. Relationships among entities that represent their qualitative properties. They
describe the anatomical structures introduced in§ 2.2.

3. Process parameters of relationships that give the process information state of
the structures. In other words, they represent the design process state of (a
part of) the design object.

The stepwise refinement process shown in Fig. 2.3 behaves as follows: at a certain
stage of the design process the meta-model Mi-i contains the current, incomplete
description of the design object. A scenario interprets this state in a context in

18 Chapter 2. Design Process Models

order to get a more detailed description. Through this scenario new information
about the design object is obtained. After this refinement the new information from
the aspect model is merged with the meta-model Mi-i · If the merge is succe.-,sful ,
i.e., the new information is consistent with the current Mi-i, then the resu l of the
merge is a new state of the meta-model, Mi . The move from one meta-model to
another is called a state transition. This process is continued, obtaining Mi+1 , etc.,
until the design object model is a complete and satisfactory description of the
desired artifact. I stress that here 'complete' has the meaning of satisfying all initial
requirements. As a matter of fact a design can never be complete, there is always
something which can be improved, or which can be made cheaper. In this context
complete has a rather subjective meaning.

modeling

(co! ext)

Fig. 2.3 Stepwise refinement of the meta-model.

Design
Solution

In Fig. 2.4 an example of this process is depicted. It shows several stages of
the design of a linear motion mechanism. In Fig. 2.4.a the state of design is at the
conceptual design phase. The meta-model consists of an abstract anatomical
description of the design object. Some states later the design is arrived at the
fundamental design phase (see Fig. 2.4.b). The meta-model is a concrete
anatomical description of the design object without detail , i.e there are some
inconsistencies between the geometric and the kinematic representation. The
stroke achieved by the geometric representation is not the desired stroke. The
detail is present in Fig. 2.4.c when the design is at the detailed phase. Here, the
meta-model consists of an exact anatomical description which is almost complete.
Inconsistencies caused by results from different contexts are removed.

The design process as described above deals with the ideal situation in which
the stepwise refinement process is a linear process from functional specifications
straight to the design solution. It can be regarded as a sketch of the design process
in retrospect. In practice, it is merely a process of trial and error, rather than the
straightforward process shown in Fig. 2.3. The designer might not be satisfied with
a certain state of the design and wants to redo it from a certain point. But (s)he
keeps in mind the things which were useful and which were not, and the redesign
will therefore be more efficient. In another occasion, designers might like to regard

2.3 A descriptive model of the design process 19

stroke
linearMotion (ii

direction

a. Conceptual Phase

stroke stroke

OI _I __ 00_1
b. Fundamental Phase c. Detailed Phase

Fig. 2.4 Three different stages of the design of a linear motion mechanism.

a design object from different points of view at the same time, i.e., they want to
create multiple aspect models concurrently in order to compare the outcome from
different experts.

A third possibility is that a designer is not sure about the direction the design
should go at a certain point and wants to model some possibilities in parallel, i.e.
(s)he conducts the design in multiple directions at the same time. Therefore, the
stepwise refinement model must be extended with a mechanism to create multiple
models in parallel. It allows the designer either to create multiple views on a single
design object description, or to create multiple design object representations
concurrently. These three different ways to direct the design are presented in the
three sections below.

During the course of the design, an occasion frequently occurs that the
designer is not satisfied with the current state of design. Instead of redesigning
everything from scratch, the designer wants to preserve part of the results . The
designer restarts the design from a previous design state which still met his/ her
demands. The implication for DPM is that it must be possible to withdraw the
current meta-model and perform some backtracking to a previous one. In
consequence, each individual state of the meta-model must be maintained as the
design process proceeds. On top of that, when the design is continued from a
prior meta-model, it must be prevented from taking the direction which led to the
unwanted result. Thus not only the meta-model states, but also the design process
history must be maintained.

In Fig. 2.5 an example of the backtracking process is shown. For some
reason, the meta-model Mj does not fulfill the designer's requirements, so (s)he
decides to redesign from a prior state. In this case, (s)he backtracks to the
previous meta-model Mi-i . The design is restarted from this state taking a different
direction. The design now proceeds to meta-model Mi, and so forth.

In some design situations there are more than one possibility to model the
design object. Instead of forcing a designer to choose either of these possibilities,
(s)he must be allowed to model multiple models concurrently. Such multiple

20

Fig. 2.5 Backtracking to a previous meta-model.

Chapter 2. Design Process Models

Design
Solution

models refer to a single design object description. In other words, multiple models
allow the designer to model different aspects of a design object, but these models
must merge into a single design object description when there is a transition to a
next state (see Fig. 2.6). Multiple models are alternatives that converge into a single
meta-model. Therefore, multiple models are only a temporaiy fork in the design
process.

Fig. 2.6 M~ltiple models.

Design
Solution

An illustration of this mechanism is given in Fig. 2.6. From the meta-model
Mi-l the design process continues with two multiple meta-models Mj and Mi .

These two meta-models represent a single design object description. They are
therefore merged into a single unique meta-model Mi+l. The design process is
continued from this meta-model, eventually by generating multiple models once
again.

In other cases, the designer faces a situation in which there are several
possibilities to solve a design problem. Each of these alternatives looks promising.
So, instead of taking a decision at that time, the designer models each of possible
solutions in parallel. Hence, the designer models multiple versions of the design
object simultaneously. I call these versions concurrent models, since they refer to
distinct design object descriptions. From this point on the design process proceeds
on these concurrent models possibly resulting in multiple design sob ,tion.'-. Each of
the concurrent models follows its own path and has nothing in C('" ·1 ·ith other
concurrent models.

2.4 Other descriptive models 21

An example of concurrent models is depicted in Fig. 2.1. Arrived at the meta
model Mi-i a designer can continue the design process in two different ways.
Therefore, (s)he creates two concurrent meta-models M j and M i , and continues
the design process following two parallel paths. The meta-models are transferred
to M j+1 and M i+1 , etc. At last the design process may result in two different design
solutions.

Fig. 2.7 Concurrent models result in different design solutions.

Design
Solutionj

Design
Solution i

In some cases the designer likes some of the ideas in each concurrent model.
Then, the system has a mechanism allowing the designer to merge several
concurrent models into a single coherent model, eliminating conflicts and
unwanted properties. Such a join operation is executed in dialogue with the
designer. ~gain, the decision in which way the design process should be directed
is totally the responsibility of the designer. The IIICAD system provides designers
with a framework that assists them in their design activities.

2.4 Other descriptive models
There are many types of design problems and many approaches to each of them.
Therefore, the model presented in § 2.3 is not the only possible or desirable model.
Nevertheless, many of the variations between different design process models
have little impact on the requirements for design object representations [Arbab,
1991] as discussed in § 2.2. This section presents some design process models of
different researchers. I used DPM as an inspiration for the development of ADDL

though there is no strong connection between DPM and ADDL specifications. As a
matter of fact , each of the models presented here fits within the general framework
of ADDL. It can be regarded as a generic computer-based model.

Waldron [Waldron, 1991] presents a general framework of the design process
in which multiple models of different researchers can be incorporated. As is stated
in § 2.2 design is a mapping from function (problem) to structure (solution). Fig. 2.8
shows this process as moving along the axis of a cylinder. The spiral around the
cylinder is an indication of the amount of knowledge used by a designer to

22 Chapter 2. Design Process Models

perform the mapping. Thus the larger the diameter of the cylinder the more
knowledge a designer needs for a certain job. The latter may be an indication for
the complexity of the task measured by the amount of experience or creativity
required from the designer. Thus, a problem that is considered as a routine task
because of a designer's experience will proceed along a narrow bound down the
axis. Whereas the same problem may require all the knowledge of a designer who
is less experienced. Therefore, the process will proceed over the surface of the
cylinder, i.e. the designer applies full creativity.

structure
creativity

function

Fig. 2.8 A general framework for the design process.

2.4.1 The design process model by Gero

Gero has formulated a generic model for design that captures routine design,
innovative design as well as creative design [Gero, 1990]. In his view, design is
basically a transformation of a function Finto a design description D (see Fig. 2.9).
The described artifact is capable of producing these functions. The basic model is:

F ➔ D.

However, such a direct transformation does not exist. In his model a design
description represents the artifact's elements and their relationships denoted by the
structure s. The transformation of such a structure to a design description can be
done with computer-aided drafting systems, i.e.,

S ➔ D.

Occasionally, there exists a direct transformation between function and structure.
According to Gero it is called catalog lookup and it is not considered designing.
Generally speaking, there is no direct transformation between function and
structure, which leaves a requirement for an indirect transformation.

In another context, Bobrow defined function as the relation between the goal
of a human user and the behaviour of a system [Bobrow, 1984). Gero introduces
two ways in which behaviour can be viewed in designing. The first view is the
behaviour of the structure, i.e., B5 • It is termed analysis and it is a direct
transformation from structure:

2.4 Other descriptive models 23

F------~ S > D F = Set of functions

i i
8 1111(> B

S = Structure
D = Design description
B = Set of expected behaviours
8

9
= Set of actual behaviours s

e s

-----. = Transformation -----► = Occasional transformation - = Comparison

Fig. 2.9 A generic model for design.

S ➔ B5 •

Secondly, it can be viewed as the expected behaviour of the functions, i.e., B •. The
model is:

This process is called formulation or specification in design. In § 2.2, I call it
specification and I call the expected behaviour functional specification. In order to
judge the correctness of the designed structure, the behaviour of the structure
needs to be compared with the expected behaviour, hence:

The comparison process is called evaluation in design.

Another model of design is

Be ➔ S(Bs).

Here, the expected behaviour is used in the selection and combination of structure
based on a knowledge of the behaviours produced by this structure. This process
is termed synthesis. Synthesized structures produce their own behaviours, which
can be a useful superset of the expected behaviours. Synthesis can change the
range of expected behaviours and through them the function being designed for,
leading to a reformulation. Reformulation can also occur when the actual
behaviour of the structure is not satisfactory and cannot be made satisfactory. This
happens when the evaluation has a negative result. Fig. 2.10 shows the activities
involved with the design process: formulation, synthesis analysis, evaluation,
reformulation, and production of a design description.

24 Chapter 2. Design Process Models

t: -----~ 1---► D g,......~---► O

a. formulation b. synthesis

F------- F- - - - - - -► S > 0

i
c. analysis d. evaluation

F------- F-------

i
B <)Ii 8

e s

e. reformulation e. production of design description

Fig. 2. 10 Activities in design.

2.4.2 The design process model by Mostow

According to Mostow, the key research problem in AI-based design is to develop
better models of the design process [Mostow, 1985]. In his article, he presents
some aspects of the design process that a comprehensive model should address.
They are:

1. The state of the design. Design evolves a series of artifact descriptions at
various levels of detail. Design is viewed as a sequence of correctness
preserving transformations from one intermediate state of the artifact
description into the other.

2. The goal structure of the design process. If design is a purposive activity,
goals guide the choice of what to do at each point. These goals are not artifact
descriptions but prescribe how those descriptions should be manipulated. An

explicit goal structure roughly modeled as a tree makes it easier to replay the
design process. The leaves of the tree form a sequence of transformations
from functional specification to a design description.

3. Design decisions. Given a goal, there may be several plans for achieving it.
Design decisions represent choices among them. Decision makin· ,hould be
represented as explicit goals.

2.4 Other descriptive models 25

4. Rationales for design descriptions. The rationale for choosing a particular plan
to achieve a goal explains why the plan is expected to work and why it was
selected instead of the alternatives. They are useful in replaying the design
history to solve a new problem. Furthermore, explanation forces the
reasoning behind the design to be made explicit which improves the quality
of the design.

5. Control of the design process. Guiding design requires choosing which goal
to work on at each point and choosing which plan to achieve it with. The
reasoning behind the decisions what to do next need to be uncovered and
represented explicitly. Various relationships between two goals are possible:
independence, cooperation, competition, and interference.

6. The role of learning in design. Solving a design problem requires both general
knowledge about the domain and specific knowledge about the problem.
Learning is a way to acquire such knowledge.

2.4.3 The design process model by Takala

Takala bases his extended model of designing [Takala, 1987a] on the General
Design Theory of Yoshikawa [Yoshikawa, 1981]. He recognizes some limitations in
the theory. First of all, the theory assumes a fully specified design problem, which
is often not the case in practice. Many larger design projects have specifications
that change over time, or there are no exact evaluation procedures that tell
objectively whether or not the requirements have been met. A second deficiency is
that the theory does not describe the whole design process, but rather an
unordered set of specifications and solutions.

According to Takala, a model of the design process contains two
complementary representations of the design object: the abstract intensional
(functional) requirements and the concrete extensional (metaphorical) realizations
of them [Takala , 1987b]. The design process is aiming at situations where these are
consistent with each other (see Fig. 2.11). Analysis functions check consistency by
recognizing relevant properties of extensional representations. Design synthesis is
the inverse of these analysis functions . It is a problem solving process to find a
solution for the given specifications and implicit constraints.

Both the specifications and the solutions are subdivided in a tree structure. A
specification tree represents the intensional description and the proposal tree
represents the extensional description. The nodes of the trees contain different
states of the design process. A generator-filter pair acts as an interface between the
nodes. The generator synthesizes new states in the proposal tree and the filter
analyzes them with the current state of the specification tree. During the design
process both trees may be extended though it is more likely that only the proposal
tree is extended.

26 Chapter 2. Design Process Models

intensional

extensional

Fig. 2.11 The design process according to Takala.

2.5 Discussion

In this chapter, I have firstly given a prescriptive model of the design process. It
describes how design should be done. The model distinguishes three different
stages during the design process, viz. conceptual, fundamental and detailed
design. Each of the three stages has its distinct demands concerning the
representation of the artifact description. The descriptive model (DPM) presented in
§ 2.3 is one of the models that describe design as a cognitive process. DPM is based
on the extended general design theory of Tomiyama and Yoshikawa. It describes
activities performed during the design process by means of the meta-model. The
meta-model is a series of models of the design object which obtains data through
stepwise refinement. Aspect models are derived from the meta-model in order to
model and evaluate the design object from specific view points.

The meta-model plays a central role in this model. The meta-model serves a
dual purpose, i) it is a central description of the design object that evolves during a
stepwise refinement process, and ii) it is used as a reference model, from which
aspect models can be derived. The meta-model contains the knowledge how to
integrate aspect models. Aspect models have only information about the field of
expertise they focus on. Therefore, only in the meta-model the knowledge is
embedded how to integrate data derived from different aspect models, and how to
solve eventual inconsistencies resulting from these data . The multi-context
mechanism allows a designer to create multiple aspect models concurrently.
Again, the meta-model serves as an intermediate among active aspect models. The
multi-context mechanism can either result in a single integrated meta-model, or it
can create different meta-models which are treated independently during the
remainder of the design process. In the former case, I call them multiple aspect
models, and in the latter case I call them concurrent.

Many descriptive models have been developed by different researchers.
Three of them are discussed in § 2.4. A common property of each of the models
(including DPM) is that they regard design as an evolutionary process. The

2.5 Discussion 27

description of the artifact evolves as the design proceeds. Furthermore, each of the
four models regard design as a goal oriented activity. The major difference among
the models is the level of detail in which the design subprocesses are described. At
the one end, there are DPM and Takala's model that model designing solely as
synthesis/ analysis. At the other end, Gero's model distinguishes seven distinct
activities in the design process.

DPM served as a source of inspiration for the development of ADDL. Chapter4
lists a number of design maxims that represent the requirements that a
programming language for implementing the IIICAD system must fulfill. They serve
as a basis for the formal language specifications of ADDL. However, ADDL is not
restricted to implementing DPM only. Each of the descriptive models is reflected in
ADDL's specifications.

3
A Small Design Problem

3.1 Introduction
Chapter 2 proposed a prescriptive model concerned with three consecutive stages
of the design process. The remainder of this dissertation concentrates on a
representation language for design. To some extent, demonstrating the language
constructs by means of an example is inevitable. Therefore, this chapter introduces
a small de~ign problem referred to throughout the dissertation. It discusses how a
designer solves this problem in accordance with the prescriptive model. The
problem dealt with has been inspired by discussions with the staff of the
Yoshikawa/Tomiyama Laboratory at the University of Tokyo in Japan. It involves
the design of a mechanism for generating an oscillation motion of a lever from a
linear motion of an air cylinder. It originates from a Japanese text book on
mechanical engineering (see [Kumagai, 1976], p .88) and it is first introduced in a
paper by Xue et al. [Xue et al., 19901.

I give a description of the design process resulting in ;i solution to the design
problem. The design process is subdivided into the three consecutive stages
presented in the previous chapter, viz. conceptual, fundamental, and detailed
design. In the next section a general description of the design problem is
presented. In § 3.3, I present the various types of reasoning involved with finding
the design solution. The stepwise solution to the problem successively passing
through one of the three design process stages is given in § 3.4 till § 3.6. Interwoven
with the description of the stepwise refinement process, I give the outcome of the
design by actually assigning values to attributes of the lever and its parts. The last
section discusses the design problem and the way it is solved.

30 Chapter 3. A Small Design Problem

3.2 A bounded linear motion mechanism

The problem treated in this chapter deals with the design of a bounded linear
motion between two specified points. This mechanism is a part of a more
complex object. I assume the existence of a lever being part of a rack and pinion
assembly (shown in Fig. 3.1). The mechanism is used for converting reciprocal into
circular motion. It can be used for a pick-and-place task. The assembly consists of
a pinion which is rigidly attached to a crank. Furthermore, it has a rack which is
moved by an air pressure cylinder, and it has a lever which performs the circular
motion. The motion is achieved by a pin which itself performs a linear motion
bounded by a slot inside the lever. The design of the latter mechanism is the
problem dealt with in this chapter.

lever

air pressure cylinder

Fig. 3.1 A rock and pinion assembly. The horizontal movement of the rack is converted
to a circular movement of the lever.

The assembly behaves as follows. When the rack moves to the right, it makes
the pinion rotate and, consequently, the attached crank as well. This results in a
linear motion of the pin inside a slot of the lever, which will therefore rotate also.
The centre of rotation is determined by the position of a pivot being part of the
lever.

The lever is therefore built up by two components, i.e., a pivot and a slot. The
position of the pivot is taken as the origin of a (local) coordinate system for
determining the geometry of the lever. The coordinates of all vertices of both the
lever and the slot are relative to this origin. The position of the pivot itself is given
by the distance to the lever's nearest face. The x-axis is parallel to the longest face
of the lever, and the y-axis is parallel to the shortest face. The pivot has a diameter
of 10 mm, and its position is on the centre line of the width of the lever. The slot is

3.3 Conceptual design of the linear motion mechanism 31

used to bound the linear motion of the pin. It must be constructed in such a way
that it does not obstruct the pin's movement. The pin is not one of the lever's
components, it is a separate object. The lever, the pivot, the slot and the pin are
depicted in Fig. 3.2.

x-axis

Fig. 3.2 A lever with a slot and a pivot, and a pin. The pin moves along the x-axis.

The functional specification of the linear motion mechanism consists of a
starting point of the motion, s , and an ending point of the motion, E. Both points
are given by their distance to the pivot along the x-axis. The design starts by giving
requirements of the form: S = value 1 and E= v a lt.:e2 . Both v alue 1 and va lue 2

are values given by the designer. The design is finished when there is a
mechanism which allows the pin to move from s to E without being obstructed
by the slot.

3.3 Conceptual design of the linear motion mechanism
During conceptual design of the linear motion mechanism the designer constructs
an abstract anatomical description of the mechanism. Since I am dealing with
mechanical engineering, this description consists of a qualitative model of the
desired functionality . This model is a generic model to be used for the solution of a
certain category of design problems dealing with linear motion mechanisms. In the
example design system presented in Chapter7, one solution uses a slot and a pin
for the guide of the motion and the object in motion respectively. Another uses a
shaft and a slider. A third solution uses a rail and a table. The qualitative model of
the mechanism reads as follows:

There are two objects, one object that accomplishes the motion, the object
in-motion, and another that guides the object in motion, the guide. The object-in
motion performs a linear motion between two given points , s and E. In each of
these two points there is a limit arrangement between the object in motion and

32 Chapter 3. A Small Design Problem

the guide of the motion, i.e., there is a situation in which the object in motion is
stopped by the guide. An outline of such a linear motion mechanism is shown in
Fig. 3.3. The solution to the design problem, dealt with in this chapter, uses a slot
for the guide and a pin for the object-in-motion. The qualitative model of the
motion mechanism is extended during the fundamental design, when more
properties about the linear motion mechanism are known.

limit-arrangement object-in-motion guide

I
start-point end-point

Fig. 3.3 Linear motion mechanism.

The abstract anatomical structure is applicable to three different linear motion
mechanisms. The one which use a slot and a pin is discussed in this chapter. The
slot and pin solution is chosen by the designer at an earlier stage of design. This
choice stems from the nature of the rack and pinion assembly. This assembly puts
constraints on the carrier of the linear motion mechanism, viz. it must be erected in
such a way that it can rotate. Both the shaft and slider, and the rail and table
solution are statically located mechanisms. Therefore, a lever is chosen for the
carrier of the motion, and the slot is a feature of the lever. The lever, slot and pin
form a triad.

The lever must meet certain requirements that have nothing to do with the
linear motion mechanism. For instance, the lever is attached to an arm which picks
an item, moves it, and places it in another location. The lever's dimensions are
determined during its conceptual design. The lever has the following attributes: a
length, L1 , a width, w1 , a thickness, T1 , a position of the pivot, P1 , and a range of
the motion, R1 , which is equal to the length minus the position of the pivot.
(Which is, in fact, the length of the part of the lever to the right of the y-axis
illustrated in Fig. 3.3). In order to meet the constraints imposed by the arm, the
designer assigns the values shown in Table 3.1 to the lever's attributes.

When the abstract anatomical structure is determined, the designer specifies
values for the requirements the mechanism must fulfill. The value for the starting
point s of the motion is given, I call it S0 , and the value for the end point E of the
motion, being E0 is given. The object in motion is regarded as a point mass
moving from s to E. In practice, it is the centre point of the object in motion.

3.3 Conceptual design of the linear motion mechanism 33

Attribute of lever Notation Specification

length L 1 520

width W1 100

thickness T 1 20

position of pivot P 1 20

range of motion R1 L 1 - P1

Toble3.1 Dimensions of the lever2.

Both values are given by their distance to the origin, i.e ., the location of the pivot.
These requirements must obey some constraints imposed by the physical
properties of the lever. These constraints are (see Table 3.2):

i. The value for starting point of the motion must be greater than or equal to half
of the value of the width of the lever and it must be smaller than or equal to
value of the range of the lever minus one and a half times the value of the
width of the lever.

ii. The value for the ending point of the motion must be greater than or equal to
the value of the starting point plus the value of the width of the lever and it
must be smaller than or equal to value of the range of the lever minus half of
the value of the width of the lever.

Requirement

start of motion s
end of motion E

Notation Constraint

S 0 W1 / 2 :,:; S 0 :,:; R1 - W1 * 1. 5

E0 S 0 + W1 :,:; E0 :,:; R1 - W1 / 2

Specification

100

300

Table3.2 Requirements, notations constraints, and specifications of the linear motion
mechanism.

In other words, the first constraint ensures that the starting point is located at a
minimum distance from the hole, and it ensures also that a minimum space is
preserved for the linear motion mechanism. The latter constraints the end point. It
ensures a minimum space for the motion mechanism and it guarantees that the
end point is located at a minimum distance form the right-most edge of the lever.
The requirements, notations, constraints, and specifications are shown in Table 3.2.

2 All dimensions are in millimetres.

34 Chapter 3. A Small Design Problem

Besides a general solution to the design problem, I give the working-out of a
real design using the example design system presented in Chapter7. The steps
and actions taken by the designer are examined as the design proceeds. The
example is presented with indentation in a different font as shown below.

The designer starts the conceptual design of the linear motion mechanism
during the fundamental phase of the rack and pinion assembly shown in
Fig. 3.1. The design of the mechanism is therefore strongly influenced by
the physical properties of the lever being part of it. First of all, since the
motion mechanism will be part of the lever, the designer is forced to choose
a slot and pin solution. Secondly, the dimensions of the lever constrain the
position and the maximum size of the slot. The lever and its dimensions are
shown in Fig. 3.4.

length: 520
width: 100
thickness: 40
positionOfHole: 20
start: 100

300

end: 300 100

520

Fig. 3.4 Initial state of the lever.

The functional specifications of the linear motion mechanism are given by
the designer. The motion must start at least at position: s 0 = 100 and must
end at most at position: E0 =300. Then the designer builds the abstract
anatomical structure of the mechanism. It reads as follows: there is a linear
motion of the pin between 100 and 300, and there are two limit
arrangement between the slot and the pin, one in position 100 and the other
in position 300. In other words, the pin must be able to move between 100

and 300 without being obstructed by the slot. The functional specification
and the abstract anatomical structure together form a qualitative model
describing the function and behaviour of the linear motion mechanism.

In order to build an initial (possibly inconsistent) model of the mechanism,
the designer specifies some of the attributes of the mechanism. The concrete
structure of the lever is already determined at an earlier stage of design, i.e., the
fundamental design of the lever. The detailed design of the lever involves the
design of the slot and pin. The attributes of the pin and the slot are: i) the position
of the slot, Ps (given by the distance to the origin, i.e., the pivot) , ii) the length of
the slot, Ls, iii) the width of the slot, Ws , and iv) the diameter of the pin, DP. The
attributes of the mechanism can be revised at a later stage of the design process.

3.3 Conceptual design of the linear motion mechanism 35

The specifications must obey some constraints imposed by the physical
properties of the lever, and by already provided attributes (e.g. the length of the
slot is constrained by the position of the slot). These constraints are:

i. The position of the slot must be greater than or equal to 10 mm since there
must be a minimal clearance between the hole and the slot. It must be
smaller than or equal to the range of the lever minus the width of the lever
minus 10 mm since there must be room for the slot having a certain minimal
length specified by the next constraint.

ii. The length of the slot must be greater than the width of the lever. Note that
this is quite an arbitrary choice based on the fact that the length of the slot
must be greater than the width. It must be smaller than or equal to the range
of the lever minus the position of the slot minus 10 mm since the slot would

otherwise not fit in the lever.

iii . The width of the slot must be greater than or equal to 10 mm being the
minimal diameter of the pin. It must be smaller than or equal to the width of
the lever minus 20 mm allowing a minimal clearance of 10 mm at both sides of
the lever.

iv. The diameter of the pin must be greater than or equal to 10 mm certifying a
minimal strength of the pin. It must be smaller than or equal to the width of
the slot for obvious reason.

The attributes, notations, constraints, and specifications are shown in Table 3.3.

Attribute Notation Constraint Specification

position of slot PS 10 $ Ps $ R1 - W1 - 10 100

length of slot Ls W1 :,; Ls :,; R1 - Ps - 10 200

width of slot Ws 10 :,; Ws :,; W1 - 20 50

diameter of pin DP 10 :,; DP :,; Ws 40

Table3.3 Attributes, notations, constraints, and specifications of a linear motion
mechanism.

The designer has described the mechanism in terms of function and
behaviour. A slot meets such a description. Next, a concrete structure of the
mechanism is made, i.e., a rough geometric model of the slot. In order to
realize such a model the designer gives some provisional values to the slot's
attributes. These values are shown in the fourth column of Table 3.3. The
choice of values is quite arbitrary, since the designer is not yet interested in
an accurate model. He just wants a rough description whose behaviour can
be tested.

36 Chapter 3. A Small Design Problem

The initial specifications for the slot are used to determi.ne an initial concrete
anatomical structure of the slot. When the dimensions of the slot are known, its
geometric model can be constructed. The coordinates of the vertices of the slot are
computed using these dimensions. The geometric model allows the designer for
checking the consistency of the specifications. However, finding values for the
slot's attributes is the aim of the presented design problem. Therefore, the values
for the attributes given by the designer are only assumptions used as initial values
to work with. These values might be incorrect, e.g. the length of the slot might
not be sufficient to realize the linear motion. Such an inconsistency will be
detected during the design process and it will result in a revision of the initial
specifications.

In this particular case, the designer takes the specification of the start
position of the motion as the value for the position of the slot, i.e., 100. For
the length of the slot, he chooses the stroke of the motion, i.e., 200.

Obviously, these specifications will not lead to a correct solution since it
demands a pin with a zero width, which is evidently not possible.
Establishing a rough geometric model is the only purpose of these
specifications. The specifications are revised during detailed design.

3.4 Fundamental design of the linear motion mechanism
The abstract anatomical structure constructed so far, serves as a basis to perform
fundamental design. A concrete anatomical structure is built in three steps. During
the first step the geometry of the slot of the lever is constructed using the attribute
specifications provided by the designer during conceptual design (see Fig. 3.5).
The qualitative model of the motion mechanism is extended by interpreting the
geometrical properties. This is the second step. At the third step, the designer
creates a kinematic model of the linear motion mechanism to check whether the
mechanism fulfills the requirements, i.e., the pin can move between s and E

without being obstructed.

◄
length ... diameter

◄ ...
◄ position ►1 I tw;d~ 0

connected G-----------
Fig. 3.5 Geometrical properties of the slot and the pin.

3.4 Fundamental design of the linear motion mechanism 37

Hence, constructing a geometric model of the slot and the pin is the first step
the designer takes. The slot has four faces forming a rectangle. The faces are one
by one adjacent and they are in parallel with the faces of the lever. The position
of the left face is determined by the specified position of the slot. The length of the
left and right face , and the length of the top and bottom face are determined by the
width and length of the slot respectively. The pin has three faces, one face
forming the front face, another face forming the back, and a third face forming a
cylinder. The first two faces are not of importance and are omitted from the
discussion.

The designer uses the attributes of the slot to construct a geometric model. It

is composed of four adjacent faces having x- and y-coordinates for four
vertices. The z-coordinates are omitted since the slot is positioned relatively
to the lever in the same surface. The position of the slot is used to
determine the values the left-most x-coordinates. The length of the slot is
used to determine the values of the right-most x-coordinates. The y
coordinates are determined by taking half the width of the slot in either
upward or downward direction. The four adjacent faces have the following
vertices: (100 , 25) , (100 ,-25) , (300 ,-25), (300 , 25). Theyareoriented
in an anti-clockwise direction starting form top left. This tentative
geometric representation of the slot is shown in Fig. 3.6. It also shows two
pins. They are positioned on the desired start and end positions indicating
that the design is inconsistent.

position:
length:
width:

100
200
50

Fig.3.6 Tentative geometric model of the slot.

At the second step when the geometry of the slot is defined, the designer
extends the qualitative model of the linear motion mechanism. The start and end
positions of the linear motion can now be determined. This can be done by
applying the knowledge, acquired in § 3.4, about the limit arrangement between
the object in motion and the guide of the motion. The start position is equal to the
location of the centre of the pin, when there is a contact between the pin's face
and the left face of the slot. The end position is likewise determined by the
location of the centre of the pin when there is a contact between the pin's face and
the right face of the slot. I call these positions s 1 and E 1 .

38 Chapter 3. A Small Design Problem

The designer knows that in a limit position there is a contact between the
pin and one of the slot's faces. Since both the diameter of the pin and the
coordinates of that face are known, the designer can determine the location
of the pin. That location is the attained start position s 1 of the motion,
obtained by adding half the diameter of the pin to the x-coordinate of the

vertices of the slot's left-most face, i.e., lOO+_i.2.. =1 20 . By the same token,
2

the location of the end position of the motion is obtained by subtracting half
the diameter of the pin form the x-coordinate of the vertices of the right-

most face, i.e., 300- ~o =280. The left-most face and the right-most face of

the slot are the faces in contact with the pin in the limit positions.

The start and the end positions are used to validate whether the design

satisfies the requirements S 0 and E 0 . The obtained start position S 1 must be
smaller than or equal to the required start position S0 and the obtained end

position E1 must be greater than or equal to the required end position E 0 . The
design is consistent, if these requirements are fulfilled. The possible states of
design are illustrated in Fig. 3.7.

(a) Consistent design (b) Inconsistent design

Fig.3.7 Consistent and inconsistent designs. In (b) the pin can not move to the required
position S0 .

The designer compares the attained limit positions of the motion
mechanism with the required positions. The design turns out to be
inconsistent at both limit positions, for S1 >So (120>100) and E1 <Eo

(280<300).

It is important to realize that the attribute values of the slot provided by the

designer are only assumed values. They are employed as temporary values used to
set up the slot's geometry. Since the geometry is now constructed and the

requirements have been checked, the design can be refined during detailed
design. If no inconsistencies are found , the values given by the designer appear to

be correct, and they can be sustained. On the other hand, the slot's attributes must
be revised during detailed design, if the values appear to be incorrect, i.e. ,
inconsistencies are detected.

3.5 Detailed design of the linear motion mechanism 39

3.5 Detailed design of the linear motion mechanism
The values for the slot's attributes given by the designer are used to build a
tentative geometric model of the slot. This model turned out to be inconsistent,
and will be refined during detailed design. There are three possible cases of
inconsistency, viz. i) the slot obstructs the pin at the start position of the motion,
ii) the slot obstructs the pin at the end position of the motion, and iii) the slot
obstructs the pin at both positions. In either case, the slot's specifications must be
refined to meet the specified requirements. This amounts to a modification of the
slot's attribute values.

In the first case, the face of the slot which is in contact with the pin in the start
position must be moved to the left. This is achieved by increasing the slot's length
and decreasing the slot's position. In the second case, the face of the slot which is
in contact with the pin in the end position must be moved to the right, i.e., the
length of the slot is increased. In the third case, when both situations apply, the
slot's length is doubly increased, and the position is decreased. The three cases are
shown in Fig. 3.8.

position length position length

S1

(a) Move to the left (b) Move to the right

position len th

1

(c) Move to both sides

Fig.3.8 Three cases of inconsistency.

The designer has detected an inconsistency in the both the slot's limit
positions. In order to remove the inconsistency, the slot has to be enlarged
at both ends. Hence, the left-most face of the slot must be moved to the left
by s1 - s0 (120 - 100 = 20). The right-most face must be moved to the right
by E0 -E1 (300-280 = 20).

The geometry of slot is updated in accordance with the modified length and
position. For the cases in Fig. 3.8(a) and Fig. 3.8(c) the face in contact with the pin
in the start position must be moved to the left. The adjacent faces must be updated
as well. The face in contact with the pin in the end position must be moved to the

40 Chapter 3. A Small Design Problem

right in the cases Fig. 3.8(b) and Fig. 3.8(c). Now I have adjusted the slot's
geometry, I redetermine the start and end position of the motion, resulting in new
values for S1 and E1 . The mechanism finally meets the desired requirements, i.e .,

The designer changes the attributes of the slot in accordance with the
desired modifications. The position of the slot is reduced by 2 o and the
length of the slot is increased by 2 o + 2 o = 4 o. The designer employs the
slot's modified attributes to create a new geometric model. The slot's
attributes and its updated geometric model are shown in Fig. 3.9. The
updated coordinates of the slot's faces are: (80 , 25), (80 ,-25) ,

(320,-25), (320,25).

position:
length:
width:

80
240
50 r

Fig. 3.9 State of the slot after detailed design.

The designer calculates the new limit positions s 1 and E1 of the linear

motion mechanism. The new values are: 80 +
4
2
° =100 and 320-

4
2
° =300,

which is in accordance with the requirements.

3.6 Reasoning about the design process
Concerning the reasoning mechanisms applied by the designer, I distinguish
between meta-level reasoning and object-level reasoning [Takeda et al., 1990;
Treur, 1991cl. When reasoning at the meta-level , the designer takes strategic
decisions on how to proceed with the design, i.e. , what must be done next? The
state of the design process is examined. Depending on that state the designer
formulates a design goal which needs to be fulfilled. An example of such a goal is
constructing an abstract anatomical structure of the desired artifact. When a goal is
too complex to be solved in a single step, it is subdivided into sub-goals and so
on.

At the object-level the designer thinks about the state of the design object.
How to extent the design object model in order to reach the current design goal.
For instance, when the current goal is to find an abstract anatomical structure,
reasoning at object-level concerns with examining the object description and
adding facts to it in order to obtain such a structure. The subdivision of goals

3.6 Reasoning about the design process 41

describing a design process is therefore a tree structure with meta-level goals in the
nodes and object-level goals in the leaves. The design problem introduced in this
chapter can similarly be described by a tree. This tree is shown in Fig. 3.10 to 3.13.
The words appearing in rounded boxes are meta-level goals. Those appearing in
square boxes are object-level goals.

linear-motion-mechanism

fundamental design

detailed design

Fig.3.10 Goal structure of a linear motion design problem.

The goal linear-motion-mechanism is the root of the tree. It represents the
ultimate goal of the design problem, i.e to design a linear motion mechanism. It is
subdivided into eight sub-goals. The first two goals (a meta-level and an object
level goal) represent the conceptual phase of design. The third till the fifth
represent fundamental design, and the last three stand for detailed design of the
linear motion mechanism. These three branches of the tree representing
conceptual, fundamental , and detailed design are now further explained. The
top-level goal of the tree is presented in Fig. 3.10, detailed information about the
branches is left out.

In order to solve the top-level goal a complete description of a linear motion
mechanism must be made. The reasoning at this level is meta-level reasoning. It

concerns the state of the design process. The goal is solved in three conceptually
different stages, conceptual, fundamental, and detailed design. First of all, if
nothing is known about the guide of the motion, its abstract anatomical structure
(the meta-model) should be created. When the meta-model has been made, it has
to be extended to a concrete anatomical structure. Then, if the concrete anatomical
structure is not yet exact, the meta-model has to be refined during detailed design.

In Fig. 3.11 the part of the tree concerning conceptual design is depicted. The
first goal to be solved is constructing the meta-model of the linear motion
mechanism. It involves object-level reasoning. The designer will try to find a
qualitative model which describes the design object in terms of function and
behaviour. When the goal has been solved the output of the reasoning process will

42 Chapter 3. A Small Design Problem

be an abstract anatomical description of the design object. The next goal is a
meta-level goal. The reasoning pertains to the kind of solution chosen for guide of
the linear motion mechanism. In this particular example, a slot will be chosen for
the guide. This decision will be taken by the designer and will lead to a sub
division into two sub-goals. Both goals implicate object-level reasoning. At first ,
the designer has to specify the requirements the motion mechanism must meet.
The meta-model will be extended with this information. Then, the designer must
specify some provisional values for the attributes of the slot. These assumptions
will be necessary for constructing the slot's shape during the next stage of design.

linear-motion-mechanism

I meta-model-of-motion-mechanism

specifications-of-guide

I specification-of-motion-mechanism

I specifications-of-slot

Fig. 3.11 Goal structure of the conceptual phase.

The branch of the tree regarding fundamental design is shown in Fig. 3.12.
The first meta-level goal is about the kind of solution chosen for the guide. Since
the design deals with a slot, the next goal to be solved is constructing a geometric
representation of the slot, which is purely object-level reasoning. When the
geometry is known, the designer will extend the meta-model with facts which can
be derived from the geometry. This again is object-level reasoning. Arrived at this
point of the design process the validity of the design can be checked. Again, a
decision on the kind of solution is made. Then, the limit positions of the motion
mechanism can be calculated. If these fit within the geometry of the slot, the
design fulfills the specifications. If they do not, the provisional specification of the
slot must be revised during detailed design.

The remaining part of the goal tree concerning detailed design is shown in
Fig. 3.13. This part of the tree will only be reached if the initial specifications of the
slot were incorrect. Detecting the fault in the motion mechanism is the first goal. It

is solved by object-level reasoning. Again a choice on the kind of solution is made.
Next, object-level reasoning about how to modify the slot in order to meet the
specified requirements. The last node of the tree limit-positions-of-guide is

3.7 Discussion

linear-motion-mechanism

! geometry-of-slot

! angle-of-faces I
extended-meta-model-of-motion-mechanism

limit-positions-of-guide

Fig.3.12 Goal structure of the fundamental phase.

43

the same as last node of the fundamental design phase. Checking the consistency
of the solution is its purpose. When the limit-position of the linear motion
mechanism are within the required bounds, the design will be exact. If the design
is not yet exact the last steps of the design process have to be redone in order to
improve the design. This kind of meta-level reasoning is executed for solving the
top-level goal linear-motion-mechanism.

3. 7 Discussion
This chapter presented a small design problem and it showed a way to solve this
problem. The stepwise refinement of the design object in accordance with the
design process model (DPM) is demonstrated. A qualitative model of the
mechanism is used to serve as the part of the meta-model to derive aspect models
from. The qualitative model consists of the following propositions:

linear-motion(pin,pointl,point2)
limit-arrangement(pin , slot,pointl)
limit-arrangement(pin , slot , point2)
contact(slot-facel,pin-face,pointl)
contact(slot-face3 , pin-face,point2)
startPosition(pointl)
endPosition(point2)

The aspect models used in this chapter are a geometric and a kinematic aspect
model. The former is used to determine the limit positions of the linear motion

44 Chapter 3. A Small Design Problem

linear-motion-mechanism

I fault-of-motion-mechanism

I angle-of-faces

limit-positions-of-guide

limit-positions-of-slot

Fig. 3.13 Goal structure of the detailed phase.

mechanism, the latter is used to validate whether the mechanism actually meets the
specified requirements. It also contains the knowledge how to correct
inconsistencies. The geometric knowledge is subsequently used to adjust the slot's
geometrical properties accordingly.

The characteristics of the three stages of the design process presented in the
previous chapter became apparent. During conceptual design the designer builds
a qualitative model of the design object without being focussed on physical
structures. The model is described in terms of function and behaviour. Namely,
there is a linear motion between two points, and there is a limit arrangement in
each of these two points. Then, during fundamental design the qualitative model
is mapped to a decomposed structure describing the principal shape of the design
object. Its geometry is defined and its functionality is conform the desire
requirements. However, the design may contain some deficiencies , which are
removed during detailed design. This is a revision process which detects the slot's
attributes causing the inconsistency, and gives them a proper value. The geometry
of the slot is therefore corrected in accordance with the inconsistencies found in
the kinematic model.

Chapter7 presents an example design system implemented in ADDL. It solves
in dialogue with the designer the design problem introduced in this chapter.
Technical details about the solution, for instance how the inconsistency is
detected, are given in ample discussion.

4
Design Criteria for ADDL

4.1 Introduction

The descriptive models of the design process explained in Chapter 2 form a source
of inspiration for the ADDL language specifications and the IIICAD system
architecture. The formal language specifications are given in the next three
chapters. The subject of this chapter is the transition from the absolutely abstract
model to the complete concrete specifications. From the models a number of
criteria for the design of ADDL and the underlying IIICAD system can be derived.
They are concerned with the architecture of the IIICAD system and the requirements
for a programming language to implement the system. Both the requirements for
the system architecture and the language specifications are formulated with the
concepts presented in the second chapter of this dissertation in mind.

The environment, in which ADDL runs , plays a substantial role in its
development. Since ADDL is a special purpose programming language designed for
implementing intelligent CAD systems, I am not overly concerned with portability
and generality. The system and the language are thus strongly coupled. I employ a
number of design maxims3 for the formulation of the system architecture and the
language specifications. They are an informal means to bridge the gap between a
descriptive model on the one hand, and a formal specification of the design
knowledge representation language on the other hand.

3 Design maxims are introduced here to describe a requirement that ADDL must meet. The
Concise Oxford Dictionary of Current English states: "maxim, n. A general truth drawn
from science or experience; principle, rule of conduct."

46 Chapter 4. Design Criteria for ADDL

The next section gives a representation of the IIICAD system. In § 4.3, I specify
the requirements for the representation of the design process. The resulting
programming language constructs are subsequently presented. In § 4.4 the
language constructs for the specification of the design object are given. All derived
language constructs are prefixed with DM (Design Maxim). The organization of this
chapter is influenced by Veth's paper [Veth, 1987) where the original IDOL language
specifications were presented.

4.2 The IDCAD system
I want IIICAD to be a system based on expandable ideas and a framework where
designers can exercise their faculties at large. I believe that the essential thing in
designing is that the designer creates his own design environment and the IIICAD

system must give him the freedom to do so [Tomiyama and ten Hagen, 1987;

Rogier, 1989; Bylander and Chandrasekaran, 19871. The system must understand
the designers commands and translate them into system's tasks. Routine tasks must
be performed automatically, but irregularities must be detected and reported, so
that the designer can react adequately to them. The intended behaviour of the
system requires the system to know about many different aspects of design. A lot
of different kinds of knowledge must be embedded in the system in order to
achieve the above functionality. The IIICAD architecture is composed of several
components. Each of these has knowledge about and the responsibility for one or
more of the tasks it is charged with. Fig. 4.1 shows the architecture.

Fig. 4. 1 IIICAD architecture.

I
u
I

ADDL
Interpreter

E
A
I

APl

AP2

AP3

4.2 The IIICAD system 47

The IIICAD system consists of i) an ADDL interpreter, ii) a fact-base, iii) an
object-base, iv) an intelligent user inteiface and v) an external application
inteiface. The kernel language of the system is ADDL, i.e., the several system
components are either an integral part of the language (the object-base and the
fact-base) or they have an interface to ADDL (the ADDL interpreter, the intelligent
user interface, and the external application interface). An important construct in
ADDL is a scenario. It is a set of methods and rules applicable to a certain stage of
the design process. The execution of an ADDL program involves a sequence of
scenarios being applied to the design object model. The ADDL interpreter controls
the execution of scenarios and the flow of information among the components of
the system. Therefore, it maintains the consistency of the object-base and the fact
base and it also directs the dialogue with the designer.

The fact-base contains all the literal facts currently known about the object
being designed. It is gradually extended as the design proceeds to contain more
and more detailed information about the artifact. The fact-base describes the
structure of all parts an artifact is composed of. The object-base stores these parts
as separate objects, each object having its own internal state. The objects are
recognized by the relationships that are defined among them. The object-base is
embedded in the fact-base, i.e ., it is a part of the fact-base . The fact-base and the
object-base together contain the data currently known about the artifact, called
object information state.

The Intelligent User Interface (JUI) interacts with the designer. It translates
tasks given by the designer into system commands. Furthermore it shows the
designer the design tasks the system is currently involved in, and it reports the
most recent state of the design object.

External applications are programs that provide the IIICAD system with
information not available from any of the system's components. The information
can be provided in the form of extra information about the design object
description or it can be the evaluation of the design object in a certain context,
e.g. , FEM analysis. The External Application Interface (EAI) takes care of the
contents of the flow of information between the IIICAD system and an external
application. External applications can be written either in ADDL or in another
programming language. In the former case, the EAI has a nearly trivial job.

4.2.1 The interpreter

An ADDL scenario is a piece of design knowledge employed by the system to
perform a design step as mentioned in § 2.2.2. It consists of a set of methods and
rules that query the object information state and derive some information based on
that state (more about scenarios in § 4.3). The interpreter's control loop is as
follows: depending on the current design goal, a scenario is activated. This
scenario is interpreted until it terminates. The state of either the design process or

48 Chapter 4. Design Criteria for ADDL

the design object is updated. A next scenario is chosen. When an applicable
scenario cannot be found the interpreter asks the designer to provide more
information, which is either a more precisely described design goal or more data
concerning the design object. A sequence of consecutively active scenarios
represents the design process. The above can be summarized in the following
design maxim:

DM 1. Tbe ADDL interpreter controls the execution of scenarios in order to
conduct the design process.

Furthermore, the interpreter takes care of the backtracking of the system. When, at
a certain stage of the design process, the designer decides that the current
direction, in which the design process is going will not lead to anything, the
interpreter allows the designer to restart from a certain point back in time. The
interpreter allows for two types of backtracking, complete backtracking and partial
backtracking. Both methods are based on belief revision [De Kleer, 1986b]). In the
former case, all assumptions generated from a certain point in time will be
removed, and the design process will recontinue from that point on. The
unsuccessful sequence of scenarios is remembered by the interpreter. Repetition of
the same undesirable sequence of scenarios can then be avoided by choosing
different design goals. Recall that the designer will always be the one who actually
selects the design goals. By the same token, it is the designer who initiates
complete backtracking.

DM 2. Tbe ADDL interpreter allows for complete backtracking by adding a time
stamp to assumptions and by storing a history of scenario sequences.

In the latter case (i.e. partial revision), the designer decides that a certain
assumption, done at a certain point in time will be rejected. The interpreter, then,
removes all assumptions that depend on the rejected assumption. Assumptions
depending on these are removed as well, and so on until all dependencies are
removed. The interpreter continues the design process from the current state.

DM 3. Tbe ADDL interpreter allows for partial backtracking by maintaining a
dependency tree of assumptions.

The difference between the two types of backtracking it that with complete
backtracking all assumptions asserted after a retracted assumption are removed
regardless of a dependency tree. With partial backtracking only the assumptions
that depend on a retracted assumption are removed. In the first case the interpreter
'steps back' in time, while in the second case it does not. While the interpreter
corrects the obvious designer errors, it does not have the initiative for the design
process itself because IIICAD is envisaged to be a designer's apprentice, not an
automatic design environment.

4.2 The IIICAD system 49

4.2.2 The fact-base and the object-base

While scenarios encode the design process representation staticly, the fact-base
and the object-base represent the object information state dynamicly. During
conceptual design an abstract anatomical description of the design object is
constructed. The description consists of entities and relationships among entities.
The design object description represented by the entities and the relationships
among these is called a meta-model. It is a qualitative model of the design object
describing its intended function and behaviour. The relations and entities are
represented in the fact-base in the form of first order propositions because they
allow for a flexible representation [Lloyd, 19871. A predicate symbol denotes a
relationship and its arguments (constantterms) refer to the entities.

DM 4. ADDL should have a fact-base to store the meta-model in the form of first
order propositions.

The abstract anatomical description is transferred to a concrete anatomical
description while the design proceeds. The latter describes the design object as a
structural decomposition, i.e. an assembly, of entities. These entities have attributes
and certain operations attached to them. They are represented as objects in the
object-base. Each object has a unique name and a constant term in the fact-base
refers to the name of an object in the object-base. Only scenarios can access the
object-base or the fact-base.

DM 5. ADDL should have objects that assemble a design object description stored
in an object-base.

4.2.3 Intelligent user interface

The IIICAD system must be a tool that allows designers to construct expressions that
give them control over the behaviour of the system. The system must avoid
getting in the way of designers, i.e. , the designer should not unnecessarily be
hindered by the system. This stipulation leads to a number of conditions that the
system, or rather the IUJ, must fulfill.

• The designer and not the system determines the way the design process is
directed.

• The JUI must allow the designer to express his ideas in his own terminology.

• The designer must always be informed about what the system is doing and
what has been achieved so far.

• The JUI must adapt to the level of expertise and experience of the designer.

The communication between the JUI and the ADDL interpreter is accomplished
through special scenarios that carry out the instructions given by the designer. The
JUI itself is not written in ADDL and its actual design and implementation goes
beyond the scope of this dissertation. I refer the interested reader to

50 Chapter 4. Design Criteria for ADDL

[van Klarenbosch, 1991] for a description of the JUI. For ADDL it is important that it
can handle tasks and instructions given by the IUI and that it can provide
information for the 1u1.

DM 6. ADDL should have constructs to maintain a dialogue with the JUT.

4.2.4 External applications

The object information state describes the design object as the design proceeds
ranging from an abstract anatomical structure to an exact anatomical structure. At
certain stages of design it needs to be evaluated in a certain context through an
aspect model. An aspect model can be a geometric model, a kinematic model, a
dynamic model, a mathematical model and so on.

An external application is a separate system attached to the IIICAD system. It

uses ADDL data about the design object description as input to generate an aspect
model. The external application produces some data, which are transferred back to
ADDL. The EAi secures the mapping between the object information state and aspect
models generated by external applications. An application program is not
necessarily written in ADDL. The EAi is capable of translating the information of the
object information state into code understandable by a certain modeler.

DM 7. ADDL should have constructs to interface to an external application.

The relationships between the design maxims encountered so far are outlined in
Fig. 4.2. This tree structure comprises rectangular and rounded boxes. The former
represent the system's components. The latter stand for ADDL design maxims. The
keywords appearing in transparent boxes are abstract requirements that the system
or the language must fulfill. They can be implicitly retrieved in either the IIICAD
system or ADDL. Those in gray boxes refer to derived language constructs. They are
explicitly present in the language specifications. The number appearing in a circle
identifies the design maxim. The boxes are connected with arrows. In the sequel,
I call a box that has a leaving arrow an original box, and one that has an arriving
arrow a terminal box. There are two types of arrows, viz. has-component and
makes-use-of arrows (respectively indicated by @ and EB). The semantics of the
former is that the construct described in the terminal box is a part of the construct
described in the original box. The latter means that the construct described in the
original box uses the one in the terminal box.

4.3 Specification of the design process

The following two sections give the design criteria for a ADDL. The IIICAD system
will be implemented in this language. The previous section presented ADDL's
criteria imposed by the IIICAD system architecture. This section gives the design
maxims concerned with the design process representation. Special language
constructs are needed to represent design knowledge in order to implement the

4.3 Specification of the design process

sceoor1o
execution

assumption
dependencies

: abstract requirement

: language construct

: component

Fig.4.2 IIICAD system requirements.

@ : design maxim number

@

EB
: has component

: makes use of

51

0

IIICAD system, that inhabits a meta-model and a process model based on stepwise
refinement.

DM 8. ADDL should have constrncts to describe not only design objects but also
design processes.

The next section (§ 4.4) provides the design maxims concerning the design object
representations.

4.3.1 Description of the stepwise nature of the design process

Designing is a process that refines a design object model step by step. This model
gradually evolves from an incomplete to a detailed description. A solution to a
design problem is thus obtained by stepwise refinement rather than by direct
mapping from the specifications. Therefore, I need a construct in ADDL to model
an intermediate description of the design object. A design step is performed by the
execution of a scenario. For each incomplete state of a design object a scenario
appropriate to that state is selected and executed. It contains the design knowledge
necessary for refining the design object description. A scenario consists of rules
and operations applicable to the state involved.

DM 9. ADDL should have a scenario constrnct to describe the stepwise nature of
the design process.

I distinguish two levels of the design process in considering the designer's mental
activity [Takeda et al., 1990; Brumsen, Pannekeet, and Treur, 19921 On the one
hand there is the object-level, at which the designer thinks about the design objects

52 Chapter 4. Design Criteria for ADDL

themselves, e.g. what properties the design object has, how it behaves in a certain
context, and so on. On the other hand there is the meta-level, at which the
designer thinks about how to proceed with the design, i.e., what he should do
next. Therefore, I need two types of scenarios, viz. meta-level and object-level
scenarios. Meta-level scenarios evaluate the current state of the design process
(process information state), and assert design goals to be solved in order to obtain
more refined description of the design-object.

DM 10. ADDL should have meta-level scenarios to evaluate the process
information state and to choose design goals.

Object-level scenarios evaluate the object information state. They assert new literal
facts about the design object to the fact-base or they assign values to objects'
attributes. These literal facts and values are derived from the design knowledge
incorporated in the scenario.

DM 11. ADDL should have object-level scenarios to evaluate the object
information state and to add new object information.

Design goals stated by meta-level scenarios can either be solved by object-level
scenarios or by meta-level scenarios. The former may add information to the object
information state while the latter may add information to the process information
state.

A design step is performed by the application of the knowledge embedded in
a scenario. Since designing is regarded as a stepwise refinement process, forward
reasoning seems to be the proper inference mechanism. The design knowledge is
represented by means of IF-THEN rules and the inference strategy is forward
chaining. [Davis, Buchanan, and Shortliffe, 1977; Davis and King, 19771. A rule
consists of an antecedent and a consequent. The intuitive meaning of a rule is: "if
the antecedent holds true, then it is reasonable to assume that the consequent
holds true as well. " Rules have a purely declarative meaning.

DM 12. An ADDL scenario should incorporate a collection of IF-THEN rules and a
forward chaining inference engine.

4.3.2 Meta-level scenarios

The knowledge embedded in a meta-level scenario is applied to add information
about the design process state. The knowledge represented by meta-level
scenarios is also described by IF-THEN rules. During the course of a design process
the design object description changes continuously. Recall that object information
state represents the current state of the design object. For controlling its stepwise
refinement there is a need to express status information about the literal facts that
represent it. The status of the literal facts is represented by process parameters.
They are used both to query and assert information of the process state of literal
facts .

4.3 Specification of the design process 53

DM 13. ADDL should have process parameters to represent the design process
status of literal facts, viz. abstract, concrete and detailed.

Depending on the object information state and the process information state a
scenario is selected. The scenario will contribute to the information states and
hence the design object model will be refined. The selection of scenarios is done
by means of the meta-predicate symbol g oal. The assertion of a goal predicate
states a new design goal that needs to be solved.

DM 14. ADDL should have meta-predicate symbols to assert design goals.

With the selection of scenarios in ADDL, the designer creates a context, in which the
design object is modeled. An example of a context might be a geometric
representation of the design object. Extending the geometrical representation of
the design object is the use of such a context. Another example of such a context is
a kinematic aspect model, in which the motion of the design object is modeled. A
context allows a designer to focus on a specific part of the design object. Parts of
the design object that are irrelevant at that stage of the design process are kept
hidden.

DM 15. ADDL should have a mechanism to activate a scenario that looks only at
a subset of the object information state. Tbe subset is relevant to the
context it describes.

However, a designer should be allowed to model multiple aspects of the design
object simultaneously. This amounts to two or more scenarios being active at the
same time. They work on the same design object description.

DM 16. ADDL should have constructs to activate multiple scenarios at the same
time.

Meta-level scenarios allows a designer to choose a next design goal. Quite often
such a choice is not uniquely determined, and a designer may want to model
different alternatives simultaneously. Concurrent scenarios enable a designer to
model alternative information about the design object. They may result in different
design solutions.

DM 17. ADDL should have constructs to activate concurrent scenarios.

4.3.3 Object-level scenarios

The knowledge embedded in an object-level scenario is applied to extend the
information about the design object's state. The antecedent of a rule checks
whether the rule is applicable to the object information state. The consequent
depends on the antecedent, it add information to the object information state. The
antecedent can query either the object information state, or the designer (the rur),

or an external application (the EAi) .

54 Chapter 4. Design Criteria for ADDL

DM 18. ADDL should have constrncts to query the object information state, the
designer, and an external application.

The consequent is the part of a rule that follows logically from the antecedent. Two
kinds of statements can be made by a consequent. It can (i) extend the meta
model by asserting literal facts , and (ii) it can refine the design object description
by assigning values to objects' attributes.

DM 19. ADDL should have constructs to assert literal facts and to assign
attributes.

The directed acyclic graph in Fig. 4.3 shows the design maxims concerned with the
design process representation. The symbols in the figure have the same meaning
as for Fig. 4.2.

@♦@

multl-WO!fd
mechanism

@

@
process
state C=:) : abstract requirement

C=:) : language construct

~ :category

Fig. 4.3 Design process requirements.

4.4 Specification of the design object

design process ADDL

@)

EB
Gi)

: has component

: makes use of

: design maxim

Thus far, I have given language constructs for the specification of the design
process. This section introduces ADDL constructs for the specification of the design
object. Since design is regarded as a mapping form function space onto attribute
space, it requires ADDL to have both attributive and functional representations.
There are several issues in representing attributive information. First of all, an
attribute represents the value of a certain property of an object. They define the
internal properties, e.g. the height of a table. Secondly, attributive information

4.4 Specification of the design object 55

refers to the structure of an entity, e.g. a leg of a table. The structure of an entity is
characterized by a decomposition of the object into sub-structures and by
relationships among sub-structures. The structural decomposition defines the
external properties of an object.

DM 20. ADDL should have constructs to describe both the internal and external
properties of objects.

The external properties of objects are stored in the fact-base, the internal
properties of objects are stored in the object-base. All system components (e.g.
scenarios, the object-base, the fact-base, and so on) refer to an object by its
(unique) name.

DM 21. Each ADDL object should have a unique reference.

4.4.1 The meta-model

The ADDL meta-model describes the external properties of objects. It is used as a
central model for the design object representation, from which aspect models can
be derived. Thus, it describes the design object in terms of function and behaviour.
The meta-model is represented by first order propositions that consist of objects
and relationships among objects. In ADDL these propositions are called literal facts,
and they are stored in the fact-base.

DM 22. ADDL should ideally be based on first order predicate logic to specify
literal facts about objects.

The entire design object is composed of several objects, which in turn are
decomposed. This part-whole hierarchy is represented in ADDL by a binary built-in
predicate symbol hasPart. It denotes a relationship between two objects: the
latter is a part of the former (e.g. has Part (pinionl, pinl)). The whole physical
object decomposition is tied up by the hasPart predicate symbol. A class of
predicate symbols with a special meaning is the set of unary object instantiation
predicate symbols starting with is followed by the capitalized name of a type, e.g.
i sPin ()). Upon assertion it instantiates its argument to an object of its type. In
ADDL, there is a library of prototype descriptions that are used as templates for
object creation. Each instantiation predicate symbol has a attached procedure that
creates a copy of such a prototype description. The issue of instantiation will be
discussed in detail in the next section. Another example of a built-in predicate
symbol is value. The assertion of a such a literal fact assigns a value to an object's
attribute.

DM 23. ADDL should have a number of built-in predicate symbols with a special
meaning obtained by an attached procedure.

56 Chapter 4. Design Criteria for ADDL

4.4.2 ADDL objects

The meta-model describes the relationships among objects, i.e., the external
properties. The literal facts and rules act together as a deductive data-base. The
internal properties of an object describe the specific properties of an object itself. It

consists of attributes and operations. The object-base acts as an object-oriented
environment. Attributes and operations are equivalent, respectively, to instance
variables and methods in object-oriented terminology [Wegner, 1990). The
operations of an object share a state that is formed by the object's attributes. The
names of the attributes and operations determine the functions, to which an object
can respond. The collection of functions that can be applied to an object
determine the object's interface and its behaviour. They bridge the gap between
the fact-base and the object-base. Functions are similar to messages in object
oriented languages.

DM 24. ADDL objects should have a collection of attributes and operations that
represents its internal structure.

DM 25. ADDL should have data abstraction, the object's internal structure can
only be accessed through functions.

For the construction of a design object model a designer employs so called
'building blocks' [Hayes, 19791. Existing entities are taken from a libra1y of
building blocks and modified in such a way that they are suitable to form a new
design object structure. In ADDL such building blocks are called prototypes
[Lieberman, 1986). Prototypes serve as templates , from which objects are created.
When during fundamental design the concrete anatomical structure is created, it is
made by copying prototypes from the prototype library. I call this copying the
instantiation of an object. Whereas the attributes of a prototype are copied to the
instantiated object, the operations of the prototype are shared by all objects
instantiated from the same prototype. An object is instantiated in the fact-base by a
built-in predicate.

DM 26. ADDL should have a prototype library that is used for the instantiation of
objects.

During design, it may be desirable to modify an object's internal structure. Due to
the absence of a proper prototype, a designer may wish to add/ delete attributes or
operations to/ from the instantiated object. In case of attributes it is simply a matter
of adding/deleting the attribute and its access function . Where operations are
concerned, deletion is a matter of removing the operation and access function,
whereas for adding an operation a designer must be given an interface to write
such an operation using his own terminology.

DM 27. ADDL should have a mechanism to dynamically mod(fy an object's
internal structure.

4.4 Specification of the design object 57

There are several reasons for using multiple prototype definitions to instantiate a
single object. First of all, it might be the case that for a given design problem a
suitable prototype definition cannot be found. In many cases such a description
can be made by merging different prototypes into a single description. Secondly,
in order to reduce the size and the number of prototype definitions it is vital to use
multiple prototype definitions. For instance, when a designer creates a lever to
build a linear motion mechanism, he wants it to behave as a lever as well as a
motion mechanism. Thus instead of having a separate prototype definition for an
object that has the functionality of both a lever and a motion mechanism, the
designer can combine two prototype definitions.

The third and most important reason is related to the concept of aspect
models. Since multiple aspects of the same design object need to be highlighted
during the design process, objects must have multiple representations. For
example, geometric information about the above mentioned lever can be made
available by further instantiating it as a geometrical object, e.g. as a block. The
same mechanism applies when a dynamic model must be made by instantiating it
as physical object, e.g. a lever, and so on.

DM 28. ADDL should allow for multiple typed objects.

A non-trivial design problem easily results in a design object model that consists of
an enormous number of objects. Many of these objects have some properties in
common while other properties differ. Objects in ADDL that share properties with a
particular prototype, but have some extra properties added to them are called a
specialization of that particular prototype. The prototype library contains a
hierarchy of prototype definitions. Prototypes are defined in terms of other
prototypes. Therefore, if a prototype is a specialization of another prototype, the
former inherits properties from the latter [Cook, 1987]. This allows the system
designer to reuse previously defined code and to specialize a certain prototype.

DM 29. ADDL should have constructs for the defi,nition of a prototype hierarchy,
and for an inheritance mechanism.

In Fig. 4.4, the design maxims related to the design object representation are
depicted. The arrows have the same meaning as those in the previous figure. The
design maxim concerning functions (no. 24) plays a special role. It has only
makes-use-of arrows attached to itself, and no has-component arrows. The reason
for this stems from the role of a function as an interface between the part of ADDL

describing the design object and the part describing the design process. In the
next section, I merge the three diagrams into a single coherent diagram describing
the relationships amongst all design maxims.

58 Chapter 4. Design Criteria for ADDL

~-~©
ADDL design object

: abstract requirement

: language construct

: component

Fig. 4.4 Design object requirements.

4.5 Discussion

@ : design maxim number

@ : has component

EB : makes use of

In the preceding sections, I have encountered twenty-nine design maxims (DMs).

The derivation of ADDL specifications took place as follows. First, I classified them
into several functional components. These components were: system architecture,
design process 'specification, and design object specification. The first component is
subdivided into the five system components shown in Fig. 4.1: interpreter, Jact
base, object-base, JUI, and EAi. The latter two components form the ADDL language
specifications. These components are shown in Fig. 4.5. It represents a directed
acyclic graph showing the relationships between the counted DMS.

The DMS have been distributed over these components representing them by
keywords, and established links between them. Fig. 4.5 shows the relationships
among DMs, keywords, components and derived language constructs. In this
figure , the small circles correspond to DMs, rounded boxes are keywords, and the
rectangular boxes are components. The keywords appearing in transparent boxes
are abstract requirements that the system or the language must fulfill. They can be
implicitly retrieved in either the IIICAD system or ADDL. Those in gray boxes refer to
derived language constructs. They are explicitly present. The arrows are either
has-component or makes-use-of relationships.

It is interesting to note that the design of ADDL has proceeded in accordance
with DPM. The graph shown in Fig. 4.5 has looked quite different during previous

4.5 Discussion

~----~©
~ design process + design object

: abstract requirement

: language construct

: category

Fig. 4.5 Classification of ADDL design maxims.

G) : design maxim number

@) : has component

EB : makes use of

59

®

0

60 Chapter 4. Design Criteria for ADDL

stages of its development. Parts of it were missing and other parts looked entirely
different. An overview of the design history of AOOL (and formerly IDOL) can be
obtained by comparing the successive papers [Veth, 1987; Veerkamp et al., 1989;
Veerkamp, PietersKwiers, and ten Hagen, 1991; Tomiyama, Xue, and Ishida, 1991;
Xue et al., 1990]. The difference is especially notable when comparing Veth's
paper [Veth, 1987] and this chapter. Both have a similar structure, but the former
presented a number of OMS that a future implementation should meet. While the
OMS presented in the latter reflect the current implementation of ADDL.

For example, the concept of modal operators [Hughes and Cresswell, 1972],
which seemed to be an important feature of IDOL has completely disappeared from
the current implementation. They have been replaced by meta-predicate symbols.
The reason stems from the need to make a clear distinction between process and
object knowledge. In an early implementation these two kinds of knowledge were
mixed at the same level. But during the course of writing a serious application, this
mixture made the maintenance and understanding of ADDL code very hard. The
implementation of a meta-level architecture was a natural consequence of the
decision to split the representation of object and process knowledge. A sub-graph
of the entire graph will now be explained in detail. The remainder of the graph
can be understood by analogy. Fig. 4.6 shows the sub-graph centered around OM

24. The box has two incoming has-component arrows and a single incoming
makes-use--0/ (From the poim of view of the box it must be read is used by. The
box has a single outgoing arrow of the type make-use-of In other words this can
all be translated as:

Both assertions and queries are (partly) composed of functions. In order to use
dynamic modification one needs a function. Finally, attributes and operations
can only be accessed by fu:1.ctions .

dynamic
mod~lcatlon

0

~----- @
assertions

attr1butes +
ope(ations

Fig.4.6 Sub-graph concerning unctions.

: has component

: makes use of

: design maxim number

C==:) : abstract requirement

C=:J : language construct

4.6 Conclusions 61

When taking a closer look at the entire graph, it can be observed that the box
containing the keyword Junctions plays a central role. It is the only part of the
sub-graph describing the design-object that is directly connected to the part
describing the design process. This stems from the requirement that design object's
internal structure may only be accessed by functions . Hence there is no other
direct link between the design object representation and the design process
representation. Hence, ADDL objects have strong encapsulation, they are protected
against external access. In object-oriented terminology it is said that ADDL supports
data abstraction. Potential conflicts between literal facts about an object and its
internal properties must be solved by the knowledge embedded in the rules of a
scenario. They can access both the object-base and the fact-base, and thus an
object's internal and external properties. The concept of data abstraction shows up
in Fig. 4.5, since there is only a single makes-use-of arrow arriving at box no. 23
(attributes + operations). The meta-model plays a similar role concerning the
object's external structure.

4.6 Conclusions

This chapter presented a unifying framework for representing design knowledge.
The starting point, DPM, inspired me to formulate design maxims that are converted
into ADDL specifications. The model enabled me to understand, clarify, model , and
formalize design process and design object knowledge in an intelligent CAD

environment.

The design maxims can be grouped into three functional components, system
architecture, design process representation, and design object representation. Each
component was represented by a directed acyclic graph. Such a graph shows the
design maxims belonging to a component and the relationships amongst these.
The three graphs were merged into a single graph representing the full
functionality of ADDL and the IIICAD system. The next three chapters give an
overview of the formal ADDL specifications that were a result of the design maxims
presented in this chapter.

5
Representation of Objects in ADDL

5.1 Introduction
The knowledge representation and processing language ADDL (Artifact and Design
Description Language) presented in this chapter aims at implementing Computer
Aided Design systems (CAD systems). Every human controlled production process
for some artifact is containing numerous design tasks. Only very few of those are
supported by computerized design tools. ADDL contains new constructs that
support writing CAD systems for a wide range of design tasks. In the previous
chapter, I distilled a number of design maxims that such a language must meet.
These maxims have been translated into language specifications. This chapter and
the next two present the ADDL specifications.

ADDL is basically a logic programming language. However, to facilitate an easy
and flexible representation of objects some constructs from the object-oriented
programming paradigm are embedded in ADDL. An essential property of CAD

systems is the ability to represent a complex artifact. In ADDL, an artifact is
decomposed into a large set of objects that represent its parts. Each ADDL object has
a private state that can be accessed through functions and it has a type that defines
the characteristics of the private state. The object types are classified in a type
lattice. This is in short a simplified characterization of the object-orientedness of
the language. Relationships among these objects can be defined in a deductive
database with only unit clauses, called the fact-base. Reasoning about these objects
and relationships among them is performed by a rule-based knowledge base. This
knowledge-base is modularized by a set of scenarios. A scenario consists of a
collection of IF-THEN rules.

64 Chapter 5. Representation of Objects in ADDL

Chapter4 presented the design maxims in a top-down manner. Initially, the
language concepts at the highest conceptual level were presented. Then, these
concepts were detailed till the basic design maxims showed up. The language
specifications are organized in an opposite fashion, i.e., bottom-up. I start by
giving the basic language constructs. Thereafter, I gradually increase the level of
complexity. This approach is commonly used in books on programming languages
and it has proven to be successful.

The components of ADDL consist of a static part and a dynamic part. The
dynamic part consists of an object-base, a Jact-base and a set of process parameters.
The static part consists of the object knowledge representation and the process
knowledge representation. Fig. 5.1 shows the components. The object-base stores
the ADDL objects that constitute a model of the artifact during the design process.
The fact-base contains the relationships among these objects. The object-base is
embedded in the fact-base. The process parameters describe the current state of
the design process. The object knowledge representation is used for object-level
reasoning about the model of the artifact. The process knowledge representation
is used for meta-level reasoning about the state of the object-level reasoning. It

controls the object-level. The arrows between meta-level and object-level
reasoning indicate a flow of control while the other arrows indicate a flow of
information.

meta-level
reasoning

object-level
reasoning

Fig. 5. 1 The static and dynamic components of ADDL.

process
parameters

fact-base

object-base

The representation of objects is the subject of this chapter. Chapter6 and
Chapter7 discuss object-level and meta-level reasoning respectively. The next
section presents the object-base. Since Chapter6 gives a formal specification of the
fact-base, § 5.3 only gives an informal introduction to the fact-base. Chapter7 gives
a formal specification of the process parameters. In the sequel , I refer to the
design object by artifact in order to prevent confusion with an ADDL object. The
artifact is represented by means of objects and relationships among these objects.
The object structuring is explicitly obtained by asserting relationships. These

5.2 The object-base 65

relationships together make up an object's external properties. Equally, objects
have internal properties that are made up by attributes and operations.

5.2 The object-base
The artifact representation is composed of a single uniform data structure , an ADDL

object. An ADDL object consists of one or more attributes (the data) combined with
a set of operations for manipulating that data. The attributes can have values which
define an object's internal state. The interface to an object's internal state is
accomplished through Junctions. ADDL attributes, operations, and functions can
respectively be compared with instance variables, methods, and messages in an
object-oriented language such as Smalltalk-80 [Goldberg and Robson, 1983;
Goldberg, 1984]. An operation consists of a selector and a body containing the
operation's code. A selector is represented by the selector's denominator and one
or more argument(s) between parentheses, e.g. distance (pointl , point2).
The body of an operation is executed when a function denoted by the selector is
applied to an object. The first argument is the object to which the function is
applied. The code of a body is simply Smalltalk-80 code. Since I did not want to
reinvent the wheel, I tried to take as much advantage as possible of the underlying
programming environment.

In their modeling task CAD systems need to establish structures. Objects have
particular properties which make it possible to treat them as either manipulable
entities (constants) or to extract information from them. Every object has i) an
object name and ii) an object type. The former serves as a reference to the object
base and is used as a constant symbol in the logical language, the latter is a
reference to the object's prototype definition. Such a prototype serves as a template
to build up the object's internal structure in the object-base. Prototypes are further
treated in § 5.2.2. There are two kinds of objects: viz. primitive objects and
composite objects. The former are nothing but the value that they represent while
the latter have an internal structure, i.e. , attributes.

5.2.1 Primitive objects

Primitive objects are the building blocks of the object-base, they are recognized by
their value. For example, 8, 3 .14 and 'foo' are primitive objects. ADDL provides
four types of primitive objects: number, symbol, string, and array. Opposite to that
of composite objects, the set of primitive object types can not be extended by the
system programmer. Each type of primitive object has its own set of operations to
which the object responds. The four types are separately discussed below.

Number: Numbers in ADDL are represented in the usual way. An example of a
number is 4, -4 56. 88 or 1. 23e2. Objects belonging to the type number
respond to the following operations. Note that for convenience an infix notation is
used for the well known arithmetic operators:

66

Selector

+

*
I

**
abs()

gcd(,)

negated ()

sin()

sqrt ()

Comment

addition
subtraction
multiplication
division
raised to

Chapter 5. Representation of Objects in ADDL

returns the absolute value of the number
Returns the greatest common divider of the first and the
second argument.
Returns the negative value of the number. If the number is
negative, it returns the positive value.
Returns the sine value of the number.
Returns the square root of the number.

This list is not complete. It gives some insight what kind of operations one can
expect for numbers.

Symbol: Symbols are words starting with a lower-case letter. It can contain
letters but punctuation is not allowed. Examples of symbols are: foo, slotl, and
y45I71. Symbols ar reserved for names of composite objects. They have no
operations defined on them. A special symbol is used to denote an undefined
object, viz. nil. It represents the null value given to attributes that have not yet
received a value.

String: Strings are sequences of characters enclosed by single quotes. A quote
can be included in a string by preceding it by a quote. Examples of strings are:
'qwerty', 'length of slot', and 'Tom"s house'. The following operations on
strings are defined:

Selector

atPut(, ,)

add(,)

Comment

Puts the third argument at the second argument's
position in the string denoted by the first argument.
Returns a copy of the first argument concatenated
with the second one.

Array: An array is an indexable number of objects of a fixed size. An array of
size n is represented by a hash (#) followed by n objects between parentheses
separated by spaces. The index starts at one. An element of an array may be an
array as well. Examples of arrays are: # (1 2 3), # (foo bar 12), and
(# (1 22) # (12 13 14) 3). The following operations are applicable to arrays:

5.2 The object-base 67

Selector Comment

at () Returns the element at the argument's position in the array.
at Put (, ,) Puts the third argument at the second argument's position in

the array denoted by the first argument.
first () Returns the first element of the array.
indexOf (,) Returns the index of its argument in the array. It returns O if

the argument is not present.
l ast () Returns the last element of the array.
si ze () Returns the number of elements of the array.

The observant reader has already noted that none of the above types have
operations that perform a comparison, such as greater (,) , equal (,) and so
on. This is due to the fact that functions in a logical language never return a truth
value as result. The evaluation of (primitive) objects is done by built-in predicate
symbols. This mechanism will be discussed in Chapter 6.

5.2.2 Composite objects

The second kind of objects is a composite object. The previous section stated that
primitive objects are recognized by their value. Composite objects are identified by
a unique name, viz. a symbol. A composite object may have next to a number of
operations a number of attributes. They represent properties of the object. The
attribute names are symbols and their values are restricted to primitive objects. This
restriction stems from the requirement on flexible object representations (see
Chapter4 DM 22) that the structuring of the artifact must be represented in the fact
base and not in the object-base. The part-whole hierarchy of composite objects is
therefore composed by a built-in predicate (see § 5.3.5). For a discussion on the
representation of a part-whole hierarchy in an object-oriented system, I refer to
[Blake and Cook, 1987].

During the design process, a composite object is instantiated by taking a copy
from a prototype that serves as a template. The definition of a prototype consists of
five fields: prototype, name, parent, attributes, objects, and operations. The
definition looks like:

type ob ject - type
name object-name
parent parent-type
attributes ' attribute-namel at t ribute-name2 '
objects''
operations ' selectorl selector2 '

The first field represents the prototype's type. The prototype's field name is filled
in upon instantiation of the object. Another hierarchy is represented in the object
base, viz. the is-a hierarchy. All prototypes are organized in a hierarchy of
specialization. At the root of the tree is the prototype composite. A prototype is a

68 Chapter 5. Representation of Objects in ADDL

direct descendant of the prototype mentioned in the field parent . A prototype
inherits the attributes and operations of its parents, grand-parents, and so on.

The field attributes stores the attribute names of the composite object.
When an object is instantiated from a prototype, its attributes can be accessed by
an operation whose selector is a colon followed by the name of the attribute. For
example, when a prototype has an attribute length, then it has an operation
length () as well. I am very much aware that this mechanism somehow violates
the principle of encapsulation. This is due to the fact that this mechanism allows
for access of an object's private state. For convenience, I adopted this strategy,
however, for a future version of the language I consider making a distinction
between public and private attributes. The former have implicit access operations
while for the latter access operations must be created explicitly. In the current
version, the implicit definition of an operation accessing an attribute is overridden
when such an operation is explicitly defined. For instance, when a prototype has
both the attribute foo and the operation foo () in its definition, the latter is used
to access the attribute value.

The field objects is initially empty in the prototype definition. It is used
during the lifetime of an instantiated object to store object names being part of the
object. This structuring is defined in the fact-base by the binary built-in predicate
has Part denoting that the second argument is a part of the first one, but it can also
be useful for an object to know about its parts. Therefore, when a built-in
predicate has Part is asserted to the fact-base, the name of the second argument is
added to the field objects of the object denoted by the first argument. This
mechanism is used when an object wants to propagate a message to its parts. For
instance, when a geometrical object gets the instruction to draw itself, it may
propagate this instruction to its components as well.

The field operations contains the selectors of the operations being
applicable to the prototype. How and when the body of an operation is defined
will be discussed in Chapter8 on the implementation. Owing to the inheritance
mechanism, an ADDL object can be accessed by the operations defined by its
prototype and all of its parents. When an inherited operation does not have the
desired functionality, it can be redefined by a child's prototype. Hence, when
multiple operations with the same selector are defined along a path in the
hierarchy, the one appearing nearest in the hierarchy is chosen.

At the root of the prototype hierarchy is the prototype composite. All other
prototypes are descendants of composite. Its definition is as follows:

type composite
name nil
parent nil
attributes
objects ''

5.2 The object-base 69

operations 'name() parent() add.Attribute(,) addOperation(,)
removeAttribute(,) removeOperation(,) '

It is evident that the prototype composite does not have a parent. It has no
attributes either. The operations defined on composite are those which are valid
for all composite objects. They describe a general interface for all objects. Each of
the operators is explained below:

Selector

name()
parent ()
addAttribute(,)
addOperation(,)
removeAttribute(,)
removeOperation(,)

Comment

Returns the name of the object.
Returns the object's parent.
Adds the argument to the list of attributes.
Adds the argument to the list of operations.
Removes the argument from the list of attributes.
Removes the argument from the list of
operations.

The last four operations may need some explanation. They stem from the design
maxim on dynamic modification (see Chapter4 DM 26). Modifying an object's
internal properties is their purpose. Note, however, that adding a selector to the list
of operation does not always suffice. When a proper body for the operation is not
yet present in the system, an interface to the designer is opened. It allows him to
edit the operation's body. This issue will further be explained in the Chapter8 on
the implementation.

Since ADDL is an empty shell in which intelligent CAD systems can be
implemented, composite is actually the only prototype present in the language.
The ADDL programmer has to build up a hierarchy of prototype definitions next to
his programming task. An example of such a system is presented in Chapter 9. For
instance, the prototype point is frequently used for describing an object's
geometry. Its definition is:

prototype point
name nil
parent composite
attributes 'x y '
objects ''
operations 'di stance(,) '

The definition is rather trivial to comprehend. The attributes represent the point's
coordinates, and the operation computes the distance between the point self and
the point which is given as an argument. The complete prototype library for the
example design system in Chapter9 is given in Appendix 3.

70 Chapter 5. Representation of Objects in ADDL

5.3 The fact-base
The fact-base is used for representing relationships among objects. The next
chapter gives a formal specification of the fact-base. However, since the fact-base
defines the decomposition of the objects appearing in the object-base, a short
introduction may enlighten the reader. The fact-base acts as a (deductive)
database [Minker, 1988), and it is built of literal facts. A literal fact is either a unit
clause as defined in [Lloyd, 1987; Clocksin and Mellish, 1981] or the negation of a
unit clause. In order to define literal facts I first introduce predicate symbols. A
predicate symbol is a symbol, e .g.

isLever,
hasPart,
material.

A literal fact is either a positive fact or a negative fact. A positive fact is a predicate
symbol followed by list of primitive objects separated by commas and enclosed by
parentheses, e.g.

isLever (leverl),
hasPart(leverl,slotl),
material(leverl, 'metal').

A negative fact is as might come up to expectation a negation of a positive fact. It is
a means to express negative information about the artifact. The next chapter
discusses issues concerning the consistency of the fact-base. Examples of negative
facts are:

-canFly(penguin).
-adjacent(leverl,pinl)

Note that the terms of a literal fact are primitive objects. The symbols amongst
them are names of composite objects. Hence, they are references to descriptions of
composite objects in the object-base. Exceptions are names of types, such as
penguin which is a sub-type of bird (see the discussion § 5.4). In the example both
leverl and slotl are (unique) composite object names. The type of the
primitive objects 'metal' is a string.

5.4 Discussion

Both the fact-base and the object-base are initially empty, the contain respectively
no literal facts and objects. During the execution of an ADDL program their contents
gradually grows. Which amounts in adding literal facts and objects. However, the
growth of the fact-base dictates that of the object-base. In other words, the only
means to add an object to the object-base is to assert a corresponding literal fact to
the fact-base . They query and assertion mechanism of both the fact-base and the
object-base will be the topic of the next chapter.

5.4 Discussion 71

The object-base is embedded in the fact-base. For each composite object
occurring in the object-base there must be at least one positive fact in the fact-base.
For example, suppose the object fool of type foo occurs in the object-base.
Then, the positive fact isFoo (fool) must be present in the fact-base, because the
built-in predicate symbol isFoo is used for instantiating the object fool. A
unique object name is created by the built-in predicate symbol typeFor. For
example, the following expression generates a new name for an object of type
foo: typeFor (X, foo). The first argument xis bound to a new name that has the
form foo# where # is a number. The way to instantiate an object is by the
expression: isFoo (X) where x has been bound to a new name.

object

-------- --------composite primitive

---/-~ --,
. I ~~

symbol

I
guide lever I

/\ I

string integer array

slot shaft I type

Fig. 5.2 Type hierarchy employed by ADDL.

In ADDL, the type hierarchy shown in Fig. 5.2 is employed. The types object,
composite, primitive and the sub-types of primitive are hard-wired in ADDL.

They are part of each ADDL application. An application programmer must add the
appropriate sub-types of composite. They depend on the field of design and the
kind of application. Fig. 5.2 shows four of them: the type guide, its sub-types
slot and shaft and the type lever. An object of type slot inherits the
attributes and operations of the prototype guide. In other words, slot is a
specialization of guide. Chapter6 introduces the notion of generalization which
uses the type hierarchy in an opposite manner. The type hierarchy is used to query
whether an object of a certain type or a sub-type of that type is present in the fact
base. For example, suppose the fact-base contains the literal fact:

isSlot(slotl)

and the query:

isGuide(X)

is posed to the fact-base. The query will match against the literal fact, since guide
is a generalization of slot.

6
Object Knowledge Representation

in ADDL

6.1 Introduction

The ADDL constructs dealing with the description of an artifact have been specified
in Chapter 5. The representation of the knowledge about how to model such a
description is the subject of this chapter. Design as a stepwise refinement process
is represented by a number of IF-THEN rules which are applied one after the other.
The rules contain information about the artifact description. The application of
rules result in an extended description. The number of rules is already enormous
for a rather straightforward design problem. Hence, there is a strong need for
grouping the rules. Scenarios consist of a collection of rules which together
represent the knowledge for performing a design step.

The logical part of ADDL consists of two separate first-order languages, an
object-level language and a meta-level language. For the interested reader, [Lloyd,
1987; Apt, 1990] give the fundamentals of logic programming. Expressions in the
object-level language make statements about an artifact, while expressions in the
meta-level language say something about (the status oD these statements. Indeed,
a meta-level language is a language about a language. The architecture of a
system, which is based on both languages is called a meta-level architecture. This
chapter presents the object-level language. The meta-level language is discussed in
Chapter 7.

74 Chapter 6. Object Knowledge Representation in ADDL

6.2 Object-level languages
The object-level language consists of literal facts and rules. The literal facts
represent a state of the artifact. The rules represent propositions expressing logical
relations among these literal facts. A rule is a piece of design knowledge that
essentially has a declarative meaning. This section discusses the syntax of a first
order language. It is employed for the description of the rules in an object-level
scenario. Chapter7 presents a meta-language for representing rules appearing in a
meta-level scenario. The syntax is very similar to that of standard logic. The only
exceptions are the definition of single-level terms, antecedents and consequents.
An alphabet, single-level terms, formulae, antecedents and consequents are
subsequently introduced for the definition of rules.

6.2.1 DEFINITION: An alphabet consists of six classes of symbols:

1. variables,

2. constant symbols,

3. Junction symbols,

4. predicate symbols,

5. connectives,

6. punctuation symbols.

The symbols of the language are order-sorted typed, each ranging over a certain
domain. Types are denoted (by convention) by the Greek letter 't. Variables are
symbols beginning with an upper case letter (e.g. x, Y, Slot). A special instance
of a variable is the pseudo variable 'ro'. It is used when the programmer does not
care to which object a variable will be bound. Note that 'co' is equivalent to Prolog's
'don't care' symbol ('_'). For each type 't, there is a pseudo variable m,. Constant
symbols are the primitive objects introduced in § 5.2. Thus, 12, slotl,
'size of slot' and # (1, 2) are constant symbols of type number, symbol,
string and array respectively. A constant symbol of type symbol is either the
name of a composite object or the name of a type. Names of composite objects
end with a number. E.g. the symbol slotl refers to a composite object and the
symbol slot refers to a type. A constant symbol's type is either defined by the
primitive object that it represents, or it is (in case of a symbol) the type of the
composite object to which it refers.

Function symbols are symbols starting with a lower-case letter4. By
convention, I use the letters f, g and h for function symbols. Functions of arity n

4 This chapter and the next adhere to this notation. Chapters and Chapter9 on the
implementation use a notation with a less declarative reading that was more convenient to
implement. A function f <a. b. cl is there denoted by a , f I b. c 1 , which has a more object
oriented reading.

6.2 Object-level languages 75

have types such as t 1 x · · · x 'tn➔ 't. Predicate symbols are also symbols starting
with a lower-case letter. By convention, the letters p, q , and r denote predicate
symbols. A predicate symbol with a zero arity is called a proposition symbol. Some
predicate symbols have a predefined meaning, they are called built-in predicates.
The full set of built-in predicates is given in §6.4.5 . These include: equa l , i sNi l,
va l ue, etc. A predicate symbol of arity n (n > O) has a type such as t 1 x · · · x 'tn. A
proposition symbol has type ni 1.

The connectives are limited to &, I, -, and ➔ meaning logical and, or, not,
and implication respectively. For the latter, I adapted the well-known notation
I F · · · THEN · · · in order to improve readability. The punctuation symbols are ' (',
')', and ' , '.

Over this alphabet terms and formulae can be defined. The definition of a
term progresses in two steps:

6.2.2 DEFINITION: A simple term of type t is a variable or a constant symbol of
type t.

6.2.3 DEFINITION: A single-level term oftypet is defined as follows:

1. A simple term of type 't is a single-level term of type t.

2. If f is an n-ary function symbol (n > 0) of type t 1 x · · · x 'tn ➔ t and each
ti is a simple term of type t i, then f (t 1 , . . . , t n) is a single-level term of
typet.

In the sequel, I simply say term instead of single-level term. Thus, x, 123 and
'astring' are simple terms and f (X) and g (X, 123 , 'ast r i ng') are non-simple
terms. They are all single-level terms. If the type of the function symbol f is t 1 ➔ t
then the type of the variable x must be t 1 . Note that the arguments of single-level
terms are simple terms, i.e. , there is no nesting of terms.

Using the definition of terms, literal formulae can be defined:

6.2.4 DEFINITION: A typed atomic formula, or in short an atom, is defined as
follows:

1. If p is a proposition symbol, then p is an atom of type ni 1.

2. If p is an n-ary predicate symbol (n > O) of type t 1 X · · · x 'tn and each ti
is a term of type t i, then p (t 1 , . . . , t n) is an atom of type t 1 x · · · x 'tn.

6. 2.5 DEFINITION: If <I> is an atom, then both <I> and - <I> are literal formulae.

By convention, I use Greek letters such as <I> and 'I' for formulae. The definition of
a literal fact and a fact-base given in Chapter 5 can now be formalized in the
following definitions.

6.2.6 DEFINITION: If p is an n-ary predicate symbol (n > O) of type t 1 x · · · x 'tn and
each c i is a constant symbol of type t i, then p (c1 , . . . , en) is a positive fact,
and -p (c 1 , .. . , en) is a negative fact.

76 Chapter 6. Object Knowledge Representation in ADDL

6.2.7 DEFINITION: A literal fact is e ither a positive or a negative fact.

6.2.8 DEFINITION: A fact-base is a finite set of literal facts.

Examples of literal formulae are p (X) and -q (X, f (123), 'astring'), which can
be transformed into literal facts by mapping the terms to constant symbols (§6.4),
e.g. p (al) , and -q (al , 2 4 6 , 'aStr ing') are literal facts . The definition of a typed
formula is:

6.2.9 DEFINITION: A typed formula is inductively defined as follows:

1. A literal formula is a typed formula.

2. If q, and \jf are typed formulae, then q, & 'V, and q, I \jf are typed
formulae.

3. If q, is a typed formula, then (q,) is a typed formula .

6.2.10 DEFINITION: A ground formula is a typed formula with only constant
symbols as terms.

The expression p (X) & q (x , f (x)) I -q (Y) is an example of a typed formula .

The definition of rules is the next issue. Rules consist of an antecedent and a
consequent. The antecedent is the condition of a rule and the consequent is the
conclusion. The definition of an antecedent is equivalent to that of a typed
formula while the definition of a consequent allows only conjunctions and no
disjunctions. Thus, the binary connective or is absent in the definition of a
consequent. A consequent and an antecedent are defined as:

6.2.11 DEFINITION: An antecedent is a typed formula .

6.2.12 DEFINITION: The definition of a consequent is equal to DEFINITION 6.2.9 with
the restriction that the second induction rule is replaced by:

2'. If q, and 'V are typed formulae, then q, & 'Vis a typed formula .

Recall that variables can occur in both the antecedent and the consequent. When
an antecedent is evaluated with respect to some fact-base, its variables are replaced
by constant symbols. The variables occurring in the consequent receive the same
bindings. However, if a variable of the consequent does not occur in the
antecedent, it can not receive a binding. Hence, the following definitions:

6.2.13 DEFINITION: Let q, and 'V be formulae and let X$ and x'I' be the set of
variables occurring in respectively 'V and q, . Then the formula 'V is called
restricted to q,, iff x'I' !;;; X$.

6.2.14 DEFINITION: If q, is an antecedent and 'Vis a consequent and 'Vis restricted
to q,, then q, ➔ 'V is a rule.

Because rules play such an important role in the language, it will be convenient to
adopt a more readable notation for rules . Therefore, the keywords IF and THEN

are used instead of the connective ➔. In the sequel a rule looks like:

6.3 Declarative aspects of object-level languages 77

IF antecedent THEN consequent

6.2.15 DEFINITION: The object-level language given by an alphabet consists of the
set of rules and literal facts constructed from the symbols of the alphabet.

6.2.16 DEFINITION: An object-level scenario <name , rule-set > is a finite set of
rules that has a unique name.

Examples of rules are:

IF p(X) & q(a,f(b)) THEN r(X) & s(X,a ,b)
IF p (f (X' a)) I p (f (X' b)) & q (h (X' C)) THEN r (X)

The informal semantics of a rule is "if for the assignment to a constant symbol of
each variable occurring in the rule the antecedent holds, then the consequent
holds as well" . The next section will say more about the semantics of rules and
scenarios.

6.3 Declarative aspects of object-level languages

6.3.1 Declarative semantics

This section discusses the truth or falsity of rules. The declarative semantics of the
rules in the object-level language gives the meaning of a scenario. A scenario is
defined as a set of rules . It has a domain associated with it, to which the rules are
interpreted. Variables range over this domain and are assigned to a constant
symbol. The terms are mapped to elements of the domain returning a constant
symbol. The predicate symbols are assigned to relationships in the same domain.
Thus, an interpretation gives a meaning to each symbol of a rule .

The semantics of a rule can inductively be defined by defining the semantics
of formulae , antecedents, and consequents. The truth values of literal formulae can
be determined, and consecutively the truth value of composed formulae. Since a
design situation essentially deals with incomplete information, the classical pair
true and false does not suffice. Therefore, to describe this completeness a third
truth value unknown is introduced [Treur, 1989]. For the definition of truth values,
the Strong Kleene Truth Definition is employed. For a discussion on three-valued
logic, I refer to [Turner, 1984; Blarney, 1986]. The definition of an interpretation of
the object-level language is:

6.3. 1 DEFINITION: An interpretation I of an object-level language L consists of:

1. For each type 1: , a non-empty set D, called the domain of type 't of the
interpretation.

2. For each constant symbol c of type 'tin L, the assignment of an element
c 1 in D, .

78 Chapter 6. Object Knowledge Representation in ADDL

3. For each n-ary function symbol f of type t 1x · · · x tn➔ t in L, the

assignment f 1 of a mapping from D,
1
x · · · x D," to D, .

4a. For each n-ary predicate symbol p of type t 1 x · · · x t n in L, the
assignment of a subset p 1 of D,

1
x · · · x D," .

4b. For each n-ary predicate symbol p of type t 1 x · · · x t n in L, the
assignment of a subset ~Pr of D,

1
x · · · x D,".

4c. For each n-ary predicate symbol p of type t 1 x · · · x t n in L, the subset
P 1 n - Pr of D,l X . .. X D,n is empty.

Notice that in the declarative semantics, I restrict the partiality to predicate
symbols; partial functions are not being used here. In other words, for each
function there is a known assignment in the domain.

Using the defined interpretation, a mapping of terms onto elements of the
domain can be defined. For that purpose, the definitions of a variable assignment
and a term interpretation are given.

6.3.2 DEFINITION: Let / be an interpretation with domains {D,} of an object-level
language L. A variable assignment V (with respect to (wrt) I) is the assignment
to each variable x of type t in L of an element V. (x) in D,.

6.3.3 DEFINITION: Let / be an interpretation with domains {D,} of an object-level
language Land let Vbe a variable assignment. The term interpretation (wrt I
and V) of a term of type t in L is inductively defined as follows:

1. Each constant symbol c of type t is given its interpretation in accordance
with /to c 1 .

2. Each variable x of type t is given its assignment V. (x) .

3. If V., (t i) is the term interpretation of each t i of type t i and f 1 is the

interpretation of the n-ary function symbol f of type t, then

f 1 (V.
1

(t 1), ... , V." (t n)) is the term interpretation of f (t 1, . .. , tn).

The expression 'T~ cp ' means that the formula cp is trne in an interpretation / using
the variable assignment V By the same token, the expression 'F~ cp' means that the
formula cp is false, and •u~ q>' means that the formula is unknown.

6.3.4 DEFINITION: Let / be an interpretation with domains {D,} of an object-level
language L and let V be a variable assignment. Then a formula in L can be
given a trnth value, trne, false, or unknown, (wrt I and V) as follows:

1. If p (t 1, . .. , tn) is an atom of type t 1x · · · x t n then

T~ P (t1, .. , , t n } iff (V.
1

(t 1 }, . .. , V.n (tn} } E P 1

i.e., the sequence of elements associated with t 1 · · · t n belongs to p 1 .

F~p(t1 , . . . , t n } iff (V.
1
(t1}, .. . , V.n (tn }} E -pI

i.e., the sequence of elements associated with t 1 · · · t n belongs to -p1.

6.3 Declarative aspects of object-level languages 79

2.

U~p(t1,···,tnl iff neither T~p(t1,···,tn) nor F~p(t1,···,tnl

i.e., the sequence of elements associated with t 1 · · · tn belongs neither

to P r nor to -Pr .

If cp and \jl are typed formulae , then the truth values of the typed

formulae -cp, cp & 'V, and cp I 'l', are given in the following table:

cp \jl -cp cp & \jl cp I \jl cp ➔ \jl

true true false true true true

true false false false true false

true unknown false unknown true unknown

false true true false true true

false false true false false true

false unknown true false unknown true

unknown true unknown unknown true true

unknown false unknown false unknown unknown

unknown unknown unknown unknown unknown unknown

The truth values of an antecedent, and a consequent follow directly from the
definition of the truth value of typed formulae . Finally, the definition of the truth
value of a rule comes into being.

6.3.5 DEFINITION: Let I be an interpretation with domains ID,} of an object-level
language Land let Vbe a variable assignment. Suppose cp is an antecedent
and 'l' is a consequent. Then a rule in L can be given a truth value, truth,
false, or unknown, (wrt I and v') in accordance with the above truth table.

Finally, an inte_rpretation is a model for a scenario and a fact-base if the evaluation
of every rule to the fact-base is true in the interpretation. They are consistent when
they have a model.

6.3.6 DEFINITION: A formula cp is trne in the interpretation I under a variable
assignments V, if T~ $; it is written as / I= v cp . If a formula cp holds for all
variable assignments (or if cp is a ground formula), it is written as / I= cp.

6.3.7 DEFINITION: Let A be an object-level scenario with only ground formulae and
let r be a fact-base . An interpretation I is a model for Au r if/ I= cp for every
ground formula cp e Au r.

6.3.8 DEFINlTION: A ground formula cp is a logical consequence of A u r , denoted
by Au r I= cp , if cp holds in each model of Au r.

6.3.9 DEFINlTION: Let A be an object-level scenario with only ground formulae and
let r be a fact-base . A set Au r is called consistent when it has a model.

Let me demonstrate the above definitions with an example. Suppose I examine the
following rule:

80 Chapter 6. Object Knowledge Representation in ADDL

IF p(X) & q (a , f (b)) THEN r(X,a,b)

When the rule is interpreted to some domain, the variable x is mapped to an
element that occurs in the domain. The same happens to the constant symbols a
and b. The function symbol f is mapped to an operation. The mapping of the
terms is accomplished by the defined term interpretation. If for some variable
assignment the antecedent of the rule is true, the rule as a whole is true and the
mapping for x is c, then the literal fact r (c, a, b) is also true in the domain.

6.3.2 The object-level derivation relation

Recall DEFINITION 6.2.16 stating that a object-level scenario is a finite set of rules and
literal facts. I call the rules a knowledge-base and the set of literal facts a fact-base.
The knowledge-base is used to derive conclusions from the literal facts in the fact
base. A similar approach is taken by [Tan and Treur, 1991]. The basic derivation
relation used in the object-level language is "from <I> and <I> ➔ 'I' conclude 'I'"
written as5:

ModusPonens: <I>, <!> ➔ 'I' f- 'I'

The symbol f- denotes a derivation relation. The formulae before the relation
symbol are the premises, and the one after the relation is the conclusion. The
above derivation applied an object-level rule <I> ➔ 'If. The used inference
mechanism (chaining, see § 6.4.3) amounts to drawing conclusions from the
premises in the fact-base and the knowledge-base. Only literal facts or
conjunctions of them are derived as conclusions.

Since the antecedent of a rule consists of both conjunctions and disjunctions
of literal formulae, the following derivation relations which introduce the
connectives & and I are needed:

And Introduction: <l>,'1' f- <!>&'If
Or Introduction: <I> f- <I> I 'I'
Or Introduction: 'I' f- <I> I 'I'

The derivation relations that introduce a connective are used to deduce the validity
of the antecedent of a rule. The consequent of a rule consists of only conjunctions
of literal formulae. Therefore, only the following two derivation relations that
eliminate the connective & are necessary:

And Elimination:
And Elimination:

In logical languages it is extremely important that derived literal facts are actually
valid, i.e., that the conclusions made by the deduction process are indeed a logical

5 Notice that the implication ➔ denotes the same as an IF-THEN rule in the object-level
language.

6.3 Declarative aspects of object-level languages 81

consequence of the knowledge-base and the fact-base. A language that has such a
property is called sound. The definition of soundness is that everything which can
be derived from a scenario and a fact-base is a logical consequence, in other
words:

Aur1-4> ⇒ Aur1=4>

Tan and Treur show ([Tan and Treur, 1991] and [Tan, 1992] pp. 28-29) that any
standard derivation relation is sound with respect to the strong Kleene semantics if
only literal facts are allowed as final conclusions. If the conclusion of a disjunction,
such as I- -<P I <P, is allowed the inference relation is not sound since -<P I <P is not
always true with respect to the strong Kleene semantics while it is true in classical
logic [van Dalen, 1985]. The counterpart of soundness is completeness. everything
that is a logical consequence can be derived:

Aur1=4> ⇒ Aur1-4>

Proving the completeness of a derivation relation is much more demanding than
proving the soundness. Below, I give an example showing that the object-level
derivation relation is incomplete though I also argue that in practice such
incompleteness does not really matter.

It is now time to give a definition of the derivation relation. The used chaining
is a subrelation of natural deduction. The formulae used in the definition do not
have variables or function symbols. The terms are restricted to constant symbols.
An atomic formula can therefore be regarded as a propositional constant and the
object-level language can be treated as propositional logic rather than predicate
logic.

6.3.10 DEFINITION: Let A and A' be sets of ground formulae and let <P and 'l' be
formulae. The derivation relation I- is inductively defined as follows :

1. A I- <j> if <j> E A. (<j>I)

2. If A I- <j> and A' I- 'l' , then Au A' I- <I> & 'JI . (&I)

3. If A I- <I> or A I- 'l', then A I- <j> I 'JI. (I I)

4. If A I- <j> & 'l', then A I- <!> and A I- 'l'· (&E)

5. If A I- <j> and A' I- <j> ➔ 'l', then Au A' I- 'JI . (➔E)

Consider an object-level scenario consisting of literal facts and rules. A step taken
by the reasoning process consists of the application of a rule from the knowledge
base to the fact-base using DEFINITION 6.3.10. A formula is constructed form the
fact-base by using the introduction derivation relations &I and I I , which is
matched with the antecedent of the rule. If the match succeeds, literal facts are
derived from the consequent using the elimination derivation relation &E. These
literal facts are added to the fact-base as derived literal facts. In this way, the rule is
applied using the Modus Ponens derivation relation ➔E.

82 Chapter 6. Object Knowledge Representation in ADDL

As said before, the above derivation relation is sound with respect to the
strong Kleene semantics. However, this does not guarantee that all derived
conclusions are consistent with the fact-base. It might be the case that the
knowledge engineer has created conflicting rules in a scenario. Let me
demonstrate this with an example of the following fact-base and scenario:

r = { p(a), q(a) }

A = { p (a) ➔ r (a) , q (a) ➔ -r (a) }

The first rule derives r (a) and the second one derives -r (a) , either of which is a
valid conclusion. However, both conclusions together create an undesirable
situation, since the conclusions contradict each other when both rules are applied.
Such an inconsistency can occur due to the application of incorrect knowledge
supplied by the user (i.e., p (a) and q (a) as supplied by the user are not
consistent with A). When such a situation occurs the reasoning process must halt
and the scenario needs to be repaired. It is therefore important that the derived
literal facts are consistent with the fact-base, i.e, they do not contradict the current
information state. The notion of consistency is further discussed in § 6.4.3

The incompleteness of the object-level inference relation is fairly easy to
show. Consider the following fact-base and scenario:

r -r(a) }

A = { p (a) ➔ r (a) }

then the literal -p (a) is a logical consequence. However, since the derivation
relation is based on chaining such a conclusion can not be drawn and thus the
derivation relation is not (always) complete. It is the duty of the knowledge
engineers to represent the knowledge in the scenarios in such way that everything
that is a logical consequence can indeed be derived. In [Langevelde and Treur,
1991), it is shown that this can actually be achieved.

6.4 Procedural aspects of object-level languages
As shown in §6.3.1 , the declarative semantics of an object-level language gives a
meaning to the symbols and syntactic structure of the language. In § 6.3.2, the
derivation relation has been discussed. However, it does not reveal anything
about how such a language computes, i.e., what are the consequences of the
execution of an object-level scenario? The procedural mechanism -or operational
semantics- of an object-level language deals with the methods how an object-level
scenario is executed. In other words, a procedural interpretation computes what
has been specified by the declarative specification. The declarative specification
gives a meaning independent of a computer implementation.

The purpose of an object-level scenario is to perform reasoning about the
information state of a (partial) design object description. This reasoning is a
deduction process that derives new literal facts from an object information state.

6.4 Procedural aspects of object-level languages 83

The next section gives an example how this process takes place, and the following
sections discuss the methods that compute this process.

6.4.1 An example

I can imagine that after quite a few definitions the reader may need some
explanation how things work in practice . The application of an object-level
scenario is discussed in order to illustrate the concepts presented in this chapter.
Each scenario has a signature that describes the domain of an interpretation of the
object-level language. It contains the names of the types, the names and types of
the constant symbols, the names and types of predicate symbols and the names
and types of function symbols. Suppose solve- limitPositions is the name of
an object-level scenario whose goal is to determine the limit positions of a linear
motion mechanism. The scenario is a part of the example design system
implemented in ADDL discussed in Chapter9. Its signature and rules are denoted
by I:(solve- limitPositions) as follows:

:E (solve-l i mitPosi t ions)
Type

composite
face
guide
number
object inMotion
point

Function

angle

Predicate

contact
equal
hasPart
isFace , isPin , isSlot
limitArrangement
linearMotion
startPosition , endPosition
limitPositions

Notation

C

FA
GU
NU

OM
PT

Type

FA ➔ NU

Type

FAX FAX PT
NUXNU

CXC

C

OMXGUXPT
OMXPTXPT
PT
nil

84 Chapter 6. Object Knowledge Representation in ADDL

Rules

1 IF limitArrangement(O , G, PT) & linearMotion(O,PT ,ro)

& isFace(Fl) & hasPart(G , Fl) & equal(angle(Fl) , 270)

& isFace(F2) & hasPart(O,F2)

THEN startPosition(PT) & contact(F2,Fl,PT)

2 IF limitArrangement(O,G,PT) & linearMotion(O,ro,PT)

& isFace(Fl} & hasPart(G , Fl) & equal(angle(Fl) , 90)

& isFace(F2) & hasPart(O,F2)

THEN endPosition(PT} & contact(F2 , Fl,PT)

3 IF startPosition(ro) & endPosition(ro)

THEN limitPositions

The scenario consists of a knowledge-base with three rules . In the next chapter
-on the meta-level language- the world-mechanism is discussed. Here it suffices
to mention that when the scenario is activated, it receives a world that it is viewing.
A world is a sub-set of the fact-base. Suppose limitPositions is activated
viewing the following world (note that attribute values, which appear in the
object-base, are kept out of consideration; thus information about the angles of
faces is not shown):

isFace(facel)

isFace(face2)

isFace(face3}

isFace(face4)

isFace(faceS)

isPin(pinl}

isPoint(pointl)

isPoint(point2)

isSlot(slotl}

hasPart(pinl , faceS}

hasPart(slotl , facel)

hasPart(slotl,face2)

hasPart(slotl,face3}

hasPart(slotl , face4}

limitArrangement(pinl,slotl,pointl}

limitArrangement(pinl,slotl,point2}

linearMotion(pinl , pointl , point2}

Viewed globally, the inference mechanism deduces the following conclusions
from the first rule and the world. These conclusions are registered in a set of
hypotheses.

startPosition(pointl}
contact(face5,face4 ,pointl}

The second rule produces:

endPosition (point2)
contact(f ace5,face2,point2}

The third rule confirms that the required goal has been satisfied:

limitPositions

Now, I examine the application of the first rule in more detail. The computation of

6.4 Procedural aspects of object-level languages 85

the truth value of the antecedent is illustrated in Fig. 6.1. I adopted the notation
used in [Clocksin and Mellish, 1981). The derivation procedure searches the world
in a top-down manner. It tries to unify a literal formula with the first matching
literal fact. Therefore, the third literal formula in the antecedent is unified with
i sFace (facel), which is correct with respect to the fourth literal formula; facel

is indeed a part of slot 1. However, according to the fifth literal formula, which is
a built-in predicate, the value of the attribute angle of the face must be 270

degrees, which is not the case for facel. The truth value of the fifth atom is thus
false and the derivation procedure will backtrack to the previously visited atoms.

\
limitArrangement(pinl,slotl,pointl)

\ eq"al(angle(facel) , 2701

linearMotion(slotl,pointl, ro) / isFace(F2)

\ hasPart(slotl,facel)

isFace(fac~
\

hasPart(pinl,F2)

\
Fig. 6. 1 Application of the derivation procedure up to the unification of the literal
formula equal (angle (Fl), 270), which fails.

ADDL will try to find an alternative fact by backtracking over the previous
literal formulae. Backtracking is unsuccessful over the fourth literal formula, but
succeeds with the third literal formula. The derivation procedure will be retried
with Fl bound to face2. This process is continued until finally the fifth literal
formula holds for face4, since the value of its angle is equal to 270 degrees. This
information is stored in an attribute of face4 and can be obtained by the
evaluable term angle (Fl) . The derivation procedure binds F2 to faces after
four times backtracking over the sixth literal formula. In Fig. 6.2 the result is
depicted.

Obviously, the efficiency of the derivation procedure relies heavily on the way
the rules are implemented. Suppose the first rule was written down as follows:

1 IF isFace(Fl) & isFace(F2)
& limitArrangement(O,G,PT) & linearMotion(O , PT, ffi)
& hasPart(O,F2) & hasPart(G,Fl) & e~ual(angle(Fl) ,270)

THEN startPosition(PT) & contact(F2 , Fl,PT)

Only at the last literal formula the derivation procedure can notice that the binding
of Fl is wrong. The backtracking mechanism will unnecessarily try to resatisfy the

86 Chapter 6. Object Knowledge Representation in ADDL

\
limitArrangement(pinl,slotl,pointl)

\ eq"al(angle(face4),2701

linearMotion(slotl,pointl,00) / isFace(faceS)

\ hasPart(slotl,face4)

is>acelfacv
\

hasPart(pinl,faceS)

\
Fig. 6.2 Successful resolution after backtracking.

second till the sixth literal formula. Though the ultimate result of the procedure is

the same for both versions of the first rule, the amount of effort to satisfy the
antecedent is much greater in the second case.

The literal facts derived from the three rules of solve-limitPositions are

consistent with the world. The state transition after application of the three rules
thus contains the conclusions derived from the rules and the world. Therefore, the

contents of the new fact-base is (supposing that the original fact-base had the same
contents as the world):

isFace(facel)
isFace(face2)

isFace(face3)
isFace(face4)
isFace(faceS)
isPoint(pointl)
isPoint(point2)

isPin(pinl)

isSlot(slotl)
hasPart(pinl,faceS)

hasPart(slotl,facel)

hasPart(slotl,face2)
hasPart(slotl,face3)

hasPart(slotl,face4)
startPosition(pointl)
contact(face5,face4,pointl)

endPosition(point2)
contact(face5 , face2 ,point2)

limitArrangement(pinl,slotl,pointl)
limitArrangement(pinl,slotl,point2)
linearMotion(pinl,pointl,point2)

limitPositions

The conclusion limitPositions is not literally included in the fact-base. It is
information used by the meta-level interpreter stating that the goal

limitPositions has been satisfied. The next chapter discusses the meta-level

language. The switching between the object-level interpreter and the meta-level
interpreter will there be presented.

6.4 Procedural aspects of object-level languages 87

6.4.2 Term evaluation and unification

The purpose of a unification algorithm is to compute bindings. When a literal
formula is matched against the fact-base, the terms appearing in the literal formula
are substituted by constant symbols. Unification is an important mechanism to
generate ground formulae. Recall that the derivation relation presented in § 6.3.2
required formulae to be ground. This section presents the unification algorithm
employed to ensure the groundness of formulae. This algorithm differs quite a lot
from the unification algorithms described in literature [Lloyd, 1987; Martelli and
Montanari, 1982], because the terms in the object-level language are evaluable. An
evaluable term is a non-simple single-level term as defined by the second entry of
the definition of a single-level term. It has a certain procedure attached to it that
returns a value upon evaluation. An example of such a procedure is an operation
as defined in § 5.2. An evaluable term can be evaluated in accordance with the
following definition.

6.4.1 DEFINITION: An evaluation mapping is a function Eval : evaluable term
➔ constant symbol that maps an evaluable term t of type t to a constant c
of type t as follows: Eval (t) = c.

The Eval function can be compared with a set of rewrite rules. The evaluable
term is rewritten as a constant symbol. With respect to the definition of the
evaluation of an evaluable term, the following claim to an interpretation holds:

STIPULATION: Let Eval be an evaluation mapping let t be an evaluable term of
type t . Then for any interpretation I with variable assignment V:

11, (Eval (t)) = 11, (t).

The above stipulation of interpretations guarantees that each evaluable term is
mapped onto an operation in the domain.

Another reason for using a different algorithm stems from the nature of the
fact-base. Since the literal facts appearing in the fact-base only have constant
symbols as their terms, the terms of the literal formula being unified can only be
unified with constant symbols. This simplifies the unification algorithm drastically.
Another advantage is the ability to treat the object-level language as propositional
logic since every term is replaced by a constant. The algorithm makes a distinction
between two kinds of variables.

6.4.2 DEFINITION: Let q, be an m-ary literal formula with the terms t 1 · · · t m and let
X1 · · · Xn be the variables appearing in the literal formula. Then the variables
xi for which t i = xi for some i are called first-order variables. All other
variables are called second-ordervariables.

From DEFINITION 6.4.2, it follows unequivocally that second-order variables are
those variables being part of an evaluable term that are not first-order variables.
Now the definition of variable substitutions can be given:

88 Chapter 6. Object Knowledge Representation in ADDL

6.4 .3 DEFINITION: A substitution e is a finite set of the form { X1 / C1 , ... , Xn / C n}

where each x i is a distinct variable of type ' i and each c i is a constant
symbol of type t i . Each element x i/ c i is called a binding for x i .

6.4.4 DEFINITION: Let 0 be a substitution and t be a simple term, then t 0 stands for
the result of applying 0 to t. If t is a variable, then it is replaced by its
corresponding constant symbol. If t is a constant symbol, then nothing is
done.

6.4 .5 DEFINITION: Let 0 be a substitution and t be a evaluable term, then t 0 stands
for the result of applying 0 to t. This is obtained by replacing each
occurrence of a variable of t by its corresponding constant symbol and
further by rewriting the term as a constant symbol by Eval (t).

6.4.6 DEFINITION: Let <P be a literal formula of type t 1 x · · · x ' n and p be a literal
fact of type t 1 x · · · x t 0 • A substitution 0 such that for each term t i of <P and
each constant Ci of P, t 1 e = C1, . .. ' t n0 = Cn is called a unifier.

Thus for obtaining a unifier of a literal formula and a literal fact it suffices to find
bindings for all the variables of the literal formula and to evaluate all evaluable
terms. Each resulting constant symbol at position i of the literal formula must the n
be equal to the constant symbol at position i of the literal fact.

The unification algorithm employs a strategy called immediate evaluation,
i.e., first the first-order variables are bound, and then the evaluable terms are
processed. If an evaluable term contains second-order variables, it evaluates to the
constant symbol ni 1.

The following algorithm finds a unifier if possible:

UNIFICATION ALGORITHM: Let <P be an n-ary literal formula of type t 1 x · · · x ' n and
let p be an n-ary literal fact of type t 1 x · · · x 'n. The unification algorithm
consists of three steps:

1.i. Choose from the set of first-order variables a variable x of <P on position
i. Bind x to the constant symbol c on position i of p and replace all
occurrences of x of <P by c .

ii. Repeat step i. until all first-order variables are bound.

2.i. Choose from the set of evaluable terms a term t on position i. The
term is replaced by Eval (t).

ii. Repeat step i. until all terms are evaluated.

3. Compare <P and p. If they are equal, then 0, the set of bindings for the
first-order variables, is a unifier of <P and p. Otherwise, <P and pare not
unifyable and 0 becomes 0.

Some examples may clarify the above unification algorithm. Suppose there is a
successor function symbol succ of type number➔ number. Its attached
procedure returns the increment by one of the argument when it is evaluated.

6.4 Procedural aspects of object-level languages 89

Now suppose I want to unify the following literal formula (i) of type
symbol x number x number

(i) p(X , Y, succ(l))

with a fact-base that contains the following literal facts (ii) and (iii) of type
symbol x number x number:

(ii)
(iii)

p(a , 2 , 2)
p(a, 2, 3)

The literal fact (i) contains the first-order variables x and Y. The unification
algorithm is used to find a unifier for (i) and (ii) . At first, the bindings x / a and
YI 2 are found by application of step 1. The evaluable term succ (1) is replaced
by the constant symbol 2 by means of step 2. The algorithm succeeds with the
unifier { x /a , Y / 2 } . However, the application of the algorithm to (i) and (iii) fails
because of succ (1) * 3.

Now suppose that the literal formula (iv) is to be applied with the same fact
base.

(iv) p(X,Y,succ(Y))

A unifier for (iv) and (ii) cannot be found. After application of step (1) the bindings
x I a and Y / 2 are obtained like in the previous example. But now the occurrence
of Y in the evaluable term is also replaced. Its evaluation returns the number 3

which is obviously not equal to the third term of (ii). A unifier can be found for
(iv) and (iii), viz. { x / a, Y / 2 } .

6.4.1 UNIFICATION THEOREM: Let <I> be an n-ary literal formula of type , 1 x · · · x ' n
and p be an n-ary literal fact of type , 1 x · · · x 'n. If <I> and p are unifiable ,
then the unification algorithm terminates and returns a unifier of q, and p. If
q, and p are not unifiable, then the unification algorithm terminates and
returns 0.

PROOF: The unification algorithm terminates because q, has only a finite number
of first-order variables and evaluable terms. Each application of step 1 replaces
a first-order variable by a constant symbol and each application of step 2
replaces an evaluable term by a constant symbol.

Application of step 1 of the algorithm binds a first-order variable of q, to a
constant symbol of p occurring on the same position. Multiple occurrences of
the same variable are replaced by the same constant symbol. Step 1 is
repeated until all first-order variables are bound. It is evident that after step 1,
q, only consists of constant symbols, second-order variables, and evaluable
terms.

Obviously, repeated application of step 2 replaces the evaluable terms of q, by
constant symbols. Now, q, consists of only constant symbols since second-

90 Chapter 6. Object Knowledge Representation in ADDL

order variables only occur in evaluable terms. The literal fact p also consists
of only constant symbols. Let b 1 · · · b n be the constant symbols of $ and let
c 1 · · · en be the constant symbols of p. If for each { i I 1 ~ i ~ n} holds that
b i = c i, then the set of bindings for the first-order variables of <j> is indeed a
unifier of <j> and p. D

The next two sections discuss the computational mechanism used for the
evaluation of rules. It shows how the unification algorithm is employed in order to
evaluate a rule. Such an evaluation is called a derivation procedure. The
applicability of a rule is checked with the fact-base . The derivation procedure
computes the truth of the antecedent and it finds bindings for the variables
occurring in the antecedent. This procedure actually uses the derivation relations
&I and I I to compute the truth value of the antecedent of a rule. These bindings
replace the variables occurring in the consequent. Recall that since the consequent
is restricted to the antecedent, each variable occurring in the consequent can be
replaced this way.

6.4.3 Derivation procedures for the antecedent

The derivation procedure for the antecedent computes the derivation relation
presented in § 6.3.2 and it uses the derivation rules that introduce connectives.
Thus conceptually, this section does not provide any new information. Giving
insight in the procedural methods used to implement the object-level interpreter is
its purpose. In the Chapter 8 about the implementation of ADDL, these methods are
further worked out at the implementational level. A reader who is not interested in
these rather technical issues may want to skip§ 6.4.3.

Using the unification algorithm, a procedure to compute the truth value of the
antecedent of a rule can be defined. Some supporting definitions are given first.

6.4.7 DEFINITION: A node is a tuple <field, left, right>, where field is a string
and left and right are pointers to other nodes.

6.4.8 DEFINITION: Let n0 , n 1 , and n r be nodes. If n 0 has pointers to both n 1 and
n r , then n 0 is called a predecessor of n 1 and n r. The nodes n 1 and n r are
called successors of n0 •

6.4.9 DEFINITION: A leaf is a node with no successors, i.e., a tuple
<field , nil, nil>.

6.4.10 DEFINITION: A tree is a finite set of nodes which has the following properties:

1. There is one node, called the root, that has no predecessors.

2. Each node other than the root has exactly one predecessor.

For each formula of the object-level language a tree representing the formula can
be constructed. Such a tree is called a parse tree. I define tokens and parse trees as
follows:

6.4 Procedural aspects of object-level languages 91

6.4.11 DEFINITION: A token is either a literal formula , the connective '&' or' I ', or a
punctuation symbol ' (' or ') '.

6.4.12 DEFINITION: A parse tree is a tree which has a binary connective stored in the
field of each node except for leaves whose leaf contains a literal formula.

Nodes have exactly two successors that represent the arguments of its binary
connective. Some procedures to construct parts of the trees are now defined.
These procedures are described in a pseudo-language which has some
resemblance to the programming language C [Kernighan and Ritchie, 1978].
Before the procedures to construct a parse tree are given, I give an example.
Suppose there is the following antecedent:

a & -b I (c & (d I e I f)) & g

The corresponding parse tree is shown in Fig. 6.3. A formula between parentheses
is a nested formula. The above formula contains two nested formulae , and its parse
tree has therefore two sub-trees. The reader can easily grasp the construction of
the tree by parsing the antecedent from left to right making use of the construction
procedures presented below.

&

/\ &
I g /\ \ /\ I g

\ I
& & /\ /\ /\ /\ &

= & + /\ +
a -b c I . /\ I f

/\ a -b
C /\

I f d e

/\
d e

Fig.6.3 Parsetreeandsub-treesoftheformula a & -b I (c & (d I e I ·f)) & g .

The following procedure creates a node and adds it as a leaf to a tree. The
token being a literal formula is stored in the field. If the tree is empty it returns the
root node of a new tree, else the right pointer of the current node will be directed
towards the new node:

PROCEDURE: Let t be a literal formula and let n be the current node. Then a leaf
nn with field t is added to the tree of nodes n as follows:

92

addLeaf (n , t) {
nn = newNode ();
on.field= t;

Chapter 6. Object Knowledge Representation in ADDL

if (n != nil) n.right nn;
return nn; }

The following procedure adds a node to the tree, which stands for a (binary)
connective. The previous procedure dealt with the situation that a successor was
added to the tree, the following procedure creates a node and adds it as a
predecessor of the current node. The left pointer of the new node will point to the
current node:

PROCEDURE: Let t be a token and let n be a node. Then a node nn with field t is
added to the tree of nodes n as follows:

addNode (n,t) {
nn = newNode ();
nn.field = t;
nn.left = n;
return nn; }

DEFINITION 6.2.9 of a typed formula consisted of three induction rules. The first two
induction rules have been handled by the last two procedures. The last rule
defined a formula as being a formula between parentheses. Such a formula is
implemented as a sub-tree inside a parse tree. The following procedure adds a
sub-tree to a tree. Note that such a sub-tree might be a single node (i.e., a leaf).

PROCEDURE: Let n and s be nodes. Then the sub-tree of nodes s is added to the
tree of nodes n as follows:

addTreeLeaf (n , s) {
if (n != nil) n.right s ;
return s; }

Now using the above definitions the main procedure for constructing a parse tree
can finally be given. As mentioned before the procedure stems from the definition
of a typed formula. It distinguishes three cases which have a direct
correspondence with the three induction rules of that definition. The definition
uses some procedures that have not explicitly been defined. The procedure
nextToken returns the next token of a sequence of tokens and the procedure
root returns the root of a tree.

PROCEDURE: Let s be an antecedent represented by a sequence of tokens, let t be
a token, and let n and st be nodes. Then a parse tree being the tree of nodes
n is built up as follows:

6.4 Procedural aspects of object-level languages

makeTree (s) {
n = nil;
t = nextToken (s);
do

switch (t)
case 'literal formula ':

n = addLeaf (n,t) ; break;
case '&':
case 'I':

n = root (n);
n = addNode (n,t); break ;

case ' (':
st= makeTree (s);
n = addTreeLeaf (n,st); break ; }

t = nextToken (s); }
while (t != nil && t != ') ');
return root (n) ; }

93

Now a strategy for traversing a parse tree is discussed. Through traversal of the tree
variables are bound and a truth value for each node is determined. The truth value
of a node can be computed if the truth value of both its successors is known. The
truth value of the root of the tree is equivalent to the truth value of the entire
antecedent. For traversing a parse tree a left-first depth-first strategy is adopted,
which technically amounts to a left to right evaluation of formulae. During the
search of the tree, a path is created which consists of a sequence of 'true' nodes.
Whenever a node becomes 'false', the search will backtrack to previous nodes
along the path trying to establish new variable bindings. This process is continued
as long as new variable bindings can be found.

During traversal of a parse tree, the variable bindings need to be registered.
The registration is done by means of an instantiation set:

6.4 .1 3 DEFINITION: Let <P be an antecedent and let X1 , ... , Xn be the variables
occurring in qi. The substitution { X1 / c 1 , ... , Xn / c n } is called the
instantiation set of qi.

It is evident that if the antecedent qi is a literal formula, the instantiation set of qi is
equivalent to the unifier of qi . Upon constructing a parse tree for an antecedent qi

an instantiation set of qi can easily be initialized. Each time a literal formula is
encountered its variables which are not present in the instantiation set are added to
the set. The bindings are set to nil.

For convenience the following terminology is adopted. An and-node is a
node whose token is the connective &. The same applies for an or-node and the
connective I. A leaf is a node with a literal formula. The direction of search is
forward when the tree is traversed in a left-first depth-first order. In case of
backtracking, the direction of search is backward following the path which has
previously been chosen in opposite direction. The truth value of a node n with

94 Chapter 6. Object Knowledge Representation in ADDL

respect to an instantiation set I is called v~. The truth value of a leaf can then be
defined as follows (see Fig. 6.4):

d = back- n
ward

previously
variables

replace known
variables of p

add bindings;
remember i;

v; =true

stop

y
V 1

1 =unknown

stop

Fig. 6.4 The algorithm to find the truth value of a leaf. The symbol 0 stands for the
application of the unification algorithm.

6.4.14 DEFINITION: Let 1 be a leaf with the literal formula <j>, let I be an
instantiation set and let d be the direction of search. An array a of size n
contains literal facts with the same predicate symbol, arity and type as <j> . If <I>

is an atom, then the first m elements of a are positive facts, the remaining m-n
elements are negative facts. If <I> is a negation of an atom, then the negative
facts come first and the positive facts last. Let i be an index of a. The truth
value Vi of 1 with respect to I is obtained by performing the following
steps:
1. If d = backward then remove those variables bindings from I which

have been bound during the last visit of 1.

Otherwise put i = o.
ii. Replace those variables of <j>, which have a binding in I, by their

corresponding constant symbols.
iii. If i ~ m then go to v. Otherwise increment i.

iv. If 0 is a unifier of <I> and a [i J, then add the bindings of 0 to I,

remember i, put d = forward, put Vi = true and stop.
Otherwise go to iii.

v. If i ~ n then put Vi = unknown and stop. Otherwise increment i.

vi. If 0 is a unifier of <I> and a [i l, then put Vi = false and stop.
Otherwise goto v.

6.4 Procedural aspects of object-level languages 95

Fig. 6.4 shows the six steps in a block diagram. As stated before, a parse tree can
be traversed in two directions. Hence, a leaf can be encountered either during
forward search or during backward search. Let me discuss both situations
separately:

Forward: If the search is forwardly directed, a leaf is encountered in a so
called empty state. The leaf has not yet been reached with the current state of the
instantiation set. For example, if taking a look at Fig. 6.5, I notice a leaf 1 with the
atom <j>. The array a contains four elements: three positive facts and a single
negative fact. Hence, n = 4 and m = 3. I now follow the algorithm during its first
visit. Since the direction is forward, the index i will be set to zero. The variable x
in <I> will be bound to a and i will be incremented. The unification of <j> and
a [l J does not succeed and i is incremented again. The unifier { Y / a} of <j> and
a [2 J is found and added to the instantiation set. The truth value of the node is
true.

Leaf 1 : First visit: Second visit:

<I> = p(X , Y) d forward d backward

I {X/a , Y/nil , Z/c) i = 0 I {X/a ,Y /a,Z/c}

n 4 <1> p(a , Y) i 2

m 3 i 1 I {X/a, Y /nil, Z/c}

a p(b,a) e nil <I> p(a , Y)

p(a,a) i 2 i 3

p(a,b) e {Y / a} e {Y/b}

-p(b , b) I {X/a , Y/a,Z/c} I {X/a,Y/b,Z/c}

v,' = true v,' = true

Fig. 6.5 Example of the application of the leaf algorithm to the atom p (x, Y) .

Backward: Now the search continues along the remainder of the parse tree.
When a next node becomes false or unknown the search will backtrack over 1.

The index having the value two is remembered from the previous visit. The
binding {Y / a} is removed from the instantiation set. The variable x of <I> is
bound to a and the index is incremented. It now points to the fact p (a, b) whose
unification with <I> results in the unifier { Y / b} . The unifier is added to the
instantiation set and the leaf succeeds (see Fig. 6.5). When the search will try to
backtrack over 1 once again the algorithm will return unknown since -p (b, b)

and <I> are not unifiable6 and no other facts remain in a.

6 If they were unifiable , the leaf would have become false .

96 Chapter 6. Object Knowledge Representation in ADDL

The above definitions are concerned with the truth values of leaves. I will
now focus on the truth value of and- and or-nodes. The truth value of an and-node
is defined as follows (see Fig. 6.6):

6.4.15 DEFINITION: Let n be an and-node and let n1 and nr be its left successor
and its right successor, respectively, let r be an instantiation set and let d be
the direction of search. The truth value of n with respect to I is obtained by
performing the following steps:
i. If d = backward, then go to step iv.
ii. Compute Vi, the truth value of the left successor of n.
iii. If Vi= false or Vi= unknown then put v~ = Vi & v; and stop.
iv. Compute v; the truth value of the right successor of n.
v. If v: = false or v: = unknown, then put d = backward and go to step ii.

Otherwise put v~ = true and stop.

compute

v:

d=backward

stop

v: =u or n

v: = F

y

V~=true

stop

Fig.6.6 The algorithm to find the truth value of an and-node. Here. F stands for false
and u stands for unknown.

Note that the expression "put v~ = Vi & v;" means: "assign to v~ the truth
value of the expression Vi & v: using the truth table of & defined in § 6.4." The
presented algorithms are biased towards finding the truth of a node rather than
unknown or falsity. Thus, it might occur that for a formula <P & 'I' the formula 'I'
will not be evaluated because <P evaluated to unknown or false . In such a case I
assume for 'I' the value unknown. As a result, it may happen that a formula <P & 'I'
evaluates to unknown while <Pis unknown and 'I' is false. In this case I consider
performance more important than an incorrect evaluation to unknown instead of
false.

The truth value of an or-node is defined as follows (see Fig. 6.7}

6.4.16 DEFINITION: Let n be an or-node and let n1 and nr be its left successor and
its right successor, respectively, and let r be an instantiation set. The state of
n is called cr. The truth value of n with respect to I is obtained by performing

6.4 Procedural aspects of object-level languages

the following steps:
i. If d = backward and o = right, then go to step iv.
ii. Compute Vi, the truth value of the left successor of n.
iii. If Vi = true, then put o = left, put v~ = true, and stop.
iv. Compute v; the truth value of the right successor of n.
v. If v; = true, then put o = right, put v~ = true, and stop.

Otherwise put v ~ = Vi I v ; and stop.

y

n compute
d & cr v,'

d & cr stands for:

d=backward and CJ=right

compute
v;

stop

V/ =T

y

cr=right;
v; =true

stop

n

stop

Fig.6.7 The algorithm to find the truth value of an or-node. Here, T stands for true.

97

The expression vf I v; is evaluated in accordance with the truth table for I

given in § 6.4. The algorithm for the or-node is sound with respect to the falsity and
unknownness of the node. It always finds the proper truth value.

Using the above definitions, the truth value of a parse tree can easily be
defined:

6.4.17 DEFINITION: Let T be a parse tree and let n be the root of the tree and let d

be the direction of search. The truth value of T is obtained by computing the
truth value of n with d = forward.

6.4.4 Derivation procedures for the consequent

With the methods presented above the truth value of the antecedent of a rule is
derived from a fact-base. If the consequent of the rule is consistent with the fact
base, then it is assumed to be a valid conclusion. The inference rule E& is used to
derive a set of literal facts from the consequent. The methods which are used to
derive these literal facts and to check their consistency are given in the remainder
of this section.

A set of literal facts can be derived from the consequent. The set constructor is
called ~ and the expression ~ <j> denotes the set of literal facts derived from a
formula <j>. The definition of the derivation of a set of literal facts is as follows:

98 Chapter 6. Object Knowledge Representation in ADDL

6.4.18 DEFINITION: Let <I> be a consequent and let I be an instantiation set. A

ground consequent x is obtained by replacing each variable in <I> by its
binding in r and by evaluating each evaluable term.

6.4.19 DEFINITION: Let x be a ground consequent. The set of derived literal facts d X

is inductively constructed as follows:

1. If x is an literal formula, then return { x } .

2. If x is of the form <I> & 'I', then return d <I> u d 'If.

3. If x is of the form (x) , then return d X·

Note that a proposition symbol is not being treated by the above definition. It is
done in the following section on built-in predicates. Due to an inconsistency
between a fact-base and a scenario the set of derived literal facts may contain
literal facts whose negation occurs in the fact-base . Such a situation is undesirable.
The set of derived literal facts may also contain literal facts that are already present
in the fact-base . The state transition avoids the generation of duplicates by adding
time stamps to duplicates. It is constructed as follows:

6.4.20 DEFINITION: Let <I> be a set of derived literal facts and let r be a fact-base.
Then a state transition r ⇒ r where r = r u <I> is obtained by the following
sequence of steps:
i. Put r = r .
ii . Take a literal fact <I> from <I>.

iii. If <I> is a positive fact and -<I> E r', then user error.

iv. If <I> is a negative fact of the form -'I' and 'I' E r', then user error.

v. If there is a 'I' e r such that 'I'= <I>, then add a time-stamp to ljl.

Otherwise add <I> to r' .
vi. If <I>= 0 , then stop. Otherwise, go to step ii.

If during a state transition a u ser error is raised, it implies that an inconsistency
is detected. The following theorem proves that such a situation cannot occur if a
scenario and a fact-base are consistent before the state transition and if the
derivation does not use user knowledge. When user knowledge is being used a
state transition maintains only consistency if the information provide by the user is
consistent with the model. Thus in case of user supplied information the system
cannot guarantee consistency. Therefore, the extra check in term iii) and iv) is
necessary when user knowledge is being applied.

6.4.2 CONSISTENCY THEOREM: Let <I> be a set of derived literal facts, let r be a fact
base and let A be a scenario. Suppose Au r is consistent, A, r I- <I> and r' is the
fact-base obtained by a state transition of r and <I>, then A u r is consistent.

PROOF: Because of the soundness of the object-level derivation relation, only
valid conclusions are derived. Since A u r is consistent and the set of derived
literals <I> contains only valid conclusions, the set A u r is also consistent. □

6.4 Procedural aspects of object-level languages 99

If an error of the user is encountered, the reasoning will halt and the cause of the
inconsistency is removed in dialogue with the user. This mechanism is discussed
in Chapter8 (see§ 8.3.4).

Recall that § 6.2 defined an object-level scenario as a finite set of rules and
literal facts . Execution of a scenario amounts to evaluating the rules against the
literal facts one by one till the goal of the scenario has been reached. Each time a
rule has been applied, the fact-base of the scenario is subject to a state transition.
This issue has informally been discussed by the example in § 6.4.1.

6.4.5 Built-in predicates

So far, the truth value of literal formulae has been computed by matching its
predicate symbol with that of literal facts appearing in the fact-base . Some
predicate symbols however have a predefined meaning. Such a predicate symbol
is called a built-in predicate. A certain procedure is attached to these symbols.
When a built-in predicate is encountered by the inference mechanism, the
procedure is executed. Negations of built-in predicates are not allowed. The
procedure of built-in predicates occurring in the antecedent, computes its truth
value rather than that it attempts unification. The procedure of a built-in predicate
that occurs in the consequent, computes additional information about the asserted
literal fact. This section presents the built-in predicates of the object-level language
and it defines their meanings.

In the object-level language I distinguish two sorts of built-in predicates: those
appearing in the antecedent and those appearing in the consequent of a rule. The
former are the predicate symbols equal , no tNil, isNil, and typeFor predicate
symbols which are object definitions, predicate symbols which stand for relational
symbols, and predicate symbols which address the user-interface. The latter are
value, hasPar t, predicate symbols which look like isType and predicate
symbols which solve a goal. They are presented in that order.

Built-in predicates occurring in an antecedent. The procedures of built-in
predicates used in the antecedent compute a truth value.

equal: For the computation of the truth value of the binary built-in predicate
equal its two terms are compared. The value will be true if they are equal. It will
be false if they are not. If one of the two terms is an unbound variable, it will
receive the value of the other term and the value will be true. The truth value will
be unknown if more than one unbound variable is present. The following
procedure computes the truth value of equa l:

PROCEDURE: Let p be an atom of type object x object of the form
equal (t 1 , t 2) and let I be an instantiation set. The truth value v~ of p with
respect to I is computed by the following sequence of steps:

100 Chapter 6. Object Knowledge Representation in ADDL

i. Replace all variables in p which have a binding in I.

ii. Evaluate the evaluable terms in p.

iii. If t 1 and t 2 are variables, then put v ~ = unknown and stop.
iv If one of the terms t i is a variable, e.g. X, and the other term is a

constant symbol, e.g. c, then add the binding {X / c} to I, and put
v~ = true. Otherwise put v~ = t 1 = t 2 .

notNil and isNil: The unary predicate symbols notNil and isNil are also
used to test the values of their terms. The truth value of the built-in predicate
notNil is true if its term is not equal to nil. It is false otherwise. The built-in
predicate isNil has an opposite meaning. Its truth value is false if its term is
not equal to nil. It is true otherwise. The following procedures perform the
computation:

PROCEDURE: Let p be an atom of type symbol of the form notNi 1 (t) and let I

be an instantiation set. The truth value v~ of p with respect to I is computed
by the following sequence of steps:
i. Replace all variables in p which have a binding in I.

ii. If t is an evaluable term, then evaluate it.
iii. If t is a variable or t = nil, then put v~ = false.

Otherwise put v~ = true.

PROCEDURE: Let p be an atom of type symbol of the form isNil (t) and let I be
an instantiation set. The truth value v~ of p with respect to I is computed by
the following sequence of steps:
i. Replace all variables in p which have a binding in I.

ii . If t is an evaluable term, then evaluate it.
iii. If t is a variable or t = nil, then put v~ = true.

Otherwise put v~ = false.

typeFor: The binary predicate symbols typeFor reserves a name for an object
of the type given by the second argument. Its truth value is true if the first
argument is an unbound variable which will be bound to the new name.
Otherwise the truth value is false. The following procedure computes the new
name:

PROCEDURE: Let p be an atom of type symbol x symbol of the form
typeFor (t 1 , t 2) and let I be an instantiation set. The truth value v~ of p

with respect to I is computed by the following sequence of steps:
i. Replace all variables in p which have a binding in I.

ii. Evaluate the evaluable terms in p.

iii. If t 1 is not an unbound variable or t 2 does not represent a type then put
v ~ = false. Otherwise, create a new name c bind it to the variable t 1

and add the binding to I.

6.4 Procedural aspects of object-level languages 101

object definitions: A unary built-in predicate of the form isFoo defines an
object of type foo. This category of built-in predicates has two procedures
attached to it. One procedure which is executed when the built-in predicate occurs
in the antecedent, and another which is executed when it occurs in the consequent
of a rule. The second case is presented in the section about built-in predicates
occurring in the consequent. Recall that the types employed by ADDL are organized
in a type hierarchy. This type hierarchy has its impact on the computation of the
truth value of object definition literal formulae occurring in the antecedent of a
rule .

The truth value of an object definition literal formula p is computed using the
definition of the truth value of a leaf Note that, I do allow negations of object
definition predicates as opposed to other built-in predicates. If that value is
unknown, the predicate symbol of p is replaced by a sub-type of p and the truth
value is computed again. This process is continued till the number of sub-types is
exhausted:

PROCEDURE: Let p be an object definition literal formula of type, of the form isT,
let I be an instantiation set and let u be a collection of sub-types of,. Then
the truth value v~ of p with respect to I is computed by the following
sequence of steps:
i. Compute v~ the truth value of a leaf
ii . If either v~ = true or v~ = false, then stop.
iii . If u is exhausted, then stop (v~ = unknown).

Otherwise, take the next sub-type u from u and replace the predicate
symbol of p by isY. Go to step i.

relational symbols: The relational symbols are the following binary built-in
predicates: greater, greaterEqual, smaller, smallerEqual and notEqual.
Their truth value is obtained by comparing the two terms in accordance with the
relation symbol in question. They are defined as follows:

PROCEDURE: Let p be an atom type number x number of the form p (t 1 , t 2) where
p is one of greater, greaterEqual, smaller, smallerEqual and
notEqual and let I be an instantiation set. The truth value v~ of p with
respect to I is computed by the following sequence of steps:
1. Replace all variables in p which have a binding in I.

ii. Evaluate the evaluable terms in p.

iii. If t 1 or t 2 is an unbound variable then put v~ = unknown.
Otherwise put v~ = t 1 p t 2 .

user-interface symbols: The user-interface symbols are built-in predicates,
which address questions to the designer. Their truth values depend on the answer
given. The user-interface symbols provide only a very limited means of dialogue
between the user and the system. It boils down to a matter of question and answer.

102 Chapter 6. Object Knowledge Representation in ADDL

The user-interface symbols will be substituted by a more sophisticated mechanism
in the near future. For the time being, they are the only way to address the user.

The user-interface symbols start with 'ui' followed by a symbol starting with a
capital. The currently implemented user-interface symbols are: uiMessage,

uiNumber, uiString, ui YesOrNo, and uiNoOrYes. The built-in predicate
uiMessage exists in unary and binary form. They are defined in the following
ways:

PROCEDURE: Let p be an atom of type string of the form uiMessage (t) and let
I be an instantiation set. The truth value v~ of p with respect to I is
computed by the following sequence of steps:
i. Replace all variables in p which have a binding in I.

ii. If t is an evaluable term, then evaluate it.
iii. If t is an unbound variable then put v~ = unknown.

Otherwise show the contents of t to the user and put v~ = true.

The procedure for the atom uiMe ssage (t 1 , t 2) of type string x string is
analogous to the above procedure except that the contents of both t 1 and t 2 is
shown to the user.

The truth value of the binary built-in predicate uiNumber is computed as
follows:

PROCEDURE: Let p be an atom of type string x number of the form
uiNumber (t 1 , t 2) and let I be an instantiation set. The truth value v~ of p

with respect to I is computed by the following sequence of steps:
i. Replace all variables in p which have a binding in I.

ii. Evalu_ate the evaluable terms in p.

iii . If t 1 is an unbound variable, then put v~ = unknown and stop.
Otherwise pose the contents of t 1 as a question to the user and let c be
the answer.

iv. If t 2 is a variable, e.g. x, then add the binding { x / c} to I and put

v~ = true. Otherwise put v~ = t 2 = c

There is an other version of uiNumber which is a quadrary built-in predicate of
type string x number x number x number. Its truth value is computed along the
same line as the binary version. The difference lies in the third step which goes as
follows:

iii. If t 1 , t 3 or t 4 is an unbound variable, then put v~ = unknown and stop.
Otherwise pose the contents of t 1 as a question to the user and let c be
the answer. If c < t 3 or c > t 4 , then put v~ = false and stop.

The procedure for computing the truth value of the binary built-in predicate
uiString is the same as for the binary predicate symbol uiNumber. The type of
the second term is a string instead of a number.

6.4 Procedural aspects of object-level languages 103

The last user-interface symbol, being treated here, is the unary built-in
predicate ui YesOrNo7. It asks the user a question to which he can respond 'yes'
or 'no'. The definition is as follows:

PROCEDURE: Let p be an atom of type string of the form ui YesOrNo (t) and let
I be an instantiation set. The truth value v~ of p with respect to I is
computed by the following sequence of steps:
i. Replace all variables in p which have a binding in I.

ii. If t is an evaluable term, then evaluate it.
iii. If t is an unbound variable, then put v~ = unknown and stop.

Otherwise pose the contents of t as a question to the user and let c be
the answer.

iv. If c ='yes', then put V~ = true. Otherwise put V~ = false

The built-in predicates presented above are those which are currently
implemented in the system. This set can easily be extended by adding the
appropriate procedure into the language specifications.

Built-in predicates occurring in a consequent. The section presents the
built-in predicates that can be used in the consequent of a rule . The number is less
than those used in the antecedent. They are: value, hasPart, predicate symbols
which look like isType and predicate symbols which indicate a satisfaction of
goals. The procedures of built-in predicates appearing in the consequent are less
complex those appearing in the antecedent owing to the absence of the need to
compute variable bindings. They may succeed or raise an error.

value: The binary built-in predicate value is used to access the internal
structure of composite objects. It assigns values to attributes. Its first argument is a
unary function that represents an object's attribute. Its second argument represents
the value assigned to the attributes. Its procedure is defined as follows:

PROCEDURE: Let p be an atom of type object x object of the form
value (t 1 , t 2) and let I be an instantiation set. The following sequence of
steps is performed:
i. Replace all variables in p by their bindings in I.

ii. If t 2 is an evaluable term, then evaluate it.
iii. If t 1 does not represent an object's attribute, then error.

Otherwise assign the value of t 2 to the attribute represented by t 1 and
return 0.

hasPart: The binary built-in predicate hasPart builds up the artifact structure.
Its intuitive meaning is that the second argument is a part of the first argument. The

7 Actually there is yet another built-in predicate named uiNoOrYes . It is equivalent to
ui YesorNo, but the default answer is 'no' instead of 'yes'.

104 Chapter 6. Object Knowledge Representation in ADDL

type of hasPart is therefore composite x composite. In contrast with the built
in predicate value, which is not asserted to the fact-base, the built-in predicate
hasPart is a derived (positive) fact. However, next to the 'normal' derivation
procedure, an additional procedure is executed. It is defined as follows:

PROCEDURE: Let p be an atom of type composite x composite of the form
has Part (t 1 , t 2), let I be an instantiation set and let r be a fact-base. The
following sequence of steps is performed:
i. Replace each variable in p by its binding in I obtaining the positive fact

f.

ii. If f E r, then add a time-stamp to f and stop.
iii. If t 1 and t 2 are object names, then add t 2 to the list of objects of t 1

and return { f } .

goal names: A number of proposition symbols is reserved for goal names.
These symbols indicate that the goal, which was supposed to be satisfied by the
current scenario, is indeed satisfied. They therefore halt the evaluation of the
object-level scenario satisfying the goal. Control is given back to its parent (meta
level) scenario. They do not result in a derived fact:

PROCEDURE: Let p be a proposition symbol representing a goal name and let I be
an instantiation set. If the set of hypotheses r h is consistent with r, then the
new state of the fact-base r = r u r h is obtained by the state transition of r and
r h. Then the goal p has been satisfied and the execution of the current
scenario is stopped. Return 0

The next built-in predicate actually represents a whole class of predicate symbols.
Their function is to instantiate composite objects.

object instantiation: The unary built-in predicate of the form isFoo
instantiates an object of type foo. Such an atom is called a object definition atom.
Its argument denotes the object's name. If the name already refers to an object of a
different type in the object-base, that object will become a multi-type object. It will
be extended with the attributes, operations and constraints of the prototype foo.

Its attached procedure goes as follows:

PROCEDURE: Let p be an object definition atom of type composite of the form
i sCompos i te (t) and let I be an instantiation set. Object instantiation is
achieved by the following sequence of steps:
i. Replace each variable in p by its binding in I obtaining the positive fact

f.

ii. If f E r, then add a time-stamp to f and stop.
iii. If composite is an existing type and t represents a new name, then

create an object of type composite and name t, return { f} and stop.
iv If composite is an existing type and t is the name of an object, then the

description of t is extended with the description of the prototype

6.5 Discussion 105

composite and the type of t becomes multiple, return { f} and stop.
Otherwise return error.

The last built-in predicate, being presented here, is given without explanation. Its
purpose is to change the rule selection strategy being in use. It is extensively
discussed in Chapter 8.

directive: The unary built-in predicate di rec ti ve changes the current rule
selection strategy to the one referred to by its argument. It is defined as follows:

PROCEDURE: Let direct ive(t) be an atom of type symbol. If tis a proper
selector of a rule selection method, then the current rule selection method is
set to t and return true. Otherwise return fa lse.

6.5 Discussion
It seems reasonable to compare the object-level language with Prolog [Clocksin
and Mellish, 1981], the most commonly used logic programming language. There
are at least three fundamental differences between Prolog and the object-level
language.

i. Prolog has implicit control of the reasoning process while ADDL offers the
meta-level language to control the behaviour of the object-level language.
Besides, the inference mechanism in Prolog is backward chaining with an
automatic backtracking facility. ADDL's inference mechanism is forward
chaining with a backtracking mechanism (over rules) that is explicitly
controlled at the meta-level (see next chapter).

ii. Prolog only offers primitive objects as modeling entities. The prototype library
in ADDL allows for modeling complex objects in a decomposed description of
an artifact. ADDL objects have attributes and operations for representing
internal properties. It uses functions to interface to an object's internal
properties. Such a mechanism does not exist in standard Prolog.

iii. All clauses in a Prolog program are grouped in a single knowledge-base.
Scenarios offer a facility to group rules together in separate functional units.
The scenario mechanism improves performance because the search space is
drastically reduced. The grouping also facilitates control.

Another difference between Prolog and the object-level language regards the
implementation of local operations. The evaluable terms in the object-level
language are kept only a single level deep. This restriction stems from my decision
to keep the unification algorithm as simple as possible, but still sound. I certainly
did not want to omit the occur check like is done in the most Prolog
implementations causing the language to be unsound (see [Lloyd, 1987] pp. 43-
45). Having evaluable terms with an unrestricted depth easily leads to a unification
algorithm which is very expensive. I avoided this pitfall by allowing for evaluable

106 Chapter 6. Object Knowledge Representation in ADDL

terms that may only have simple terms as their arguments.

An undesired property of the restriction to single-level terms is that it easily
leads to a long sequence of 'equal' atoms. Let me explain this phenomenon by an
example. Suppose I want the use the expression

plus(X,times(2,plus(Y,times(3,Z)))),

(equivalent to the infix expression X+2 *Y+3 *Z) in the antecedent of a rule (the
variables x, Y, and z are already bound). The expression cannot be written down
in a single term and has to be split into the following formula:

equal(Tl,times(3,Z)) & equal(T2 ,times(2,Y))
& equal(T3,plus(Tl,T2)) & equal(T4,times(X,T3))

There are two ways to overcome this problem. The first solution is to define the
expression as an operation belonging to one of the objects referred to by either x,
Y, or z. The expression itself is then replaced by a function call. This solution is
undesirable if the operation does not reflect some general property of the object in
question. The operation may only be used once or twice. Local operations defined
in the scenario header offer a second solution to the problem. Their definition is as
follows:

selector(optional parameters)) = { operation body}

The syntax of an operation body is given in Appendix 2. The following local
operation computes the expression given above:

foo(X , Y, Z) = { 3 * Z + Y * 2 + X}

The operation can be applied by the function of type

number x number x number ➔ number: foo(_,_,_).

For the well known arithmetic operators an infix notation is used. The expressions
are evaluated left to right. Local operations do not add to the functionality of ADDL.

They are only an implementational issue introduced to aid the knowledge
engineer. Chapters on the implementation discusses local operations in more
detail.

7
Process Knowledge Representation

in ADDL

7.1 Introduction
The object-level language provides a means to represent knowledge about an
artifact description. The reasoning involved is a forwardly directed activity. Initially
the artifact model consists of a minimal description that is gradually extended as
the design proceeds. The rules presented so far evaluate the model and based on
this evaluation-extend its contents. In order to direct this evaluation process, ADDL

offers a meta-level language that is able to evaluate expressions from the object
level language. The meta-level language is the subject of this chapter.

Meta-level architectures can be classified into several types of architectures
[Weyhrauch, 1980; Perlis, 1988; Rosenbloom, Laird, and Newell, 1988; Aiello and
Levi, 1988; Sterling, 1988; Jackson, Reichgelt, and van Harmelen, 1989; Treur,
1989]. The last paper presents an architecture that exclusively deals with reasoning
about design problems . A common property of meta-level architectures is that
they consist of two levels. The object-level at which reasoning is performed about
the application domain and the meta-level at which the object-level reasoning is
monitored and controlled. The main advantage of such architectures is the
separation between what the system knows (the object-level) and how this
knowledge is applied (the meta-level). When I exercise this notion to the design
process model, it becomes apparent that the designer's knowledge about design
objects is represented at the object-level, and the designer's expertise how to apply
this knowledge is found at the meta-level. Therefore, at the meta-level the
knowledge about the design process is represented. This knowledge is used to

108 Chapter 7. Process Knowledge Representation in ADDL

apply the knowledge about the design object, which is represented at the object
level.

7.2 Meta-level languages
A meta-level language consists both of names of atoms from the object-level
language, literal meta-formulae and meta-rules. The meta-rules evaluate the
information state of the design process (in short process information state) and
assert design goals. The process information state consists on the one hand of
information about the truth values of object-level atoms which is obtained from the
object information state by a so called reflection principle or reflective
transformation [Weyhrauch, 1980; Treur, 1991b]. On the other hand, the process
information state consists of other process parameters whose values depend on the
state of the design process. These parameters provide additional information about
the process state of the design object description, and the design goals being
satisfied so far. In Fig. 7.1, an example of a process information state is depicted.

,tflll& process information state

positive(a') : true
negative(b') : true
unknown(c') : true

J l

abstract(a') : true
concrete(a'): true
exact(a') : true

upward reflection

object information state
I

a: true
b: false
c : unknown

goal(g') : true
success(g') : true

Fig. 7.1 Process information state and related object information state.

The design goals, that are asserted by the meta-rules, are solved by either
object-level or meta-level scenarios. In this section the syntax of the meta-level
language is presented. Since the construction of a meta-level language proceeds
in accordance with the construction of an object-level language I try to be as brief
as possible without omitting essential facts . For the definition of meta-rules, I
introduce an alphabet, meta-terms, meta-atoms, and meta-formulae.

7.2.1 DEFINITION: An alphabet of a meta-level language consists of six classes of
symbols:

7.2 Meta-level languages 109

1. meta-variables,

2. meta-constant symbols,

3. meta-function symbols,

4. meta-predicate symbols,

5. connectives,

6. punctuation symbols.

The first three classes are specific to a certain meta-level language. The last three
classes are generic, i.e., they are the same for each meta-level language. The
symbols obey the same lexical conventions as for object-level languages. The
symbols of a meta-level language are also order-sorted typed. Meta-constant
symbols are either names that refer to proposition symbols of an object-level
language or they refer to object-level constant symbols. Meta-function symbols are
either names that refer to n-ary (n > O) predicate symbols of an object-level
language or they refer to object-level function symbols.

There is a fixed set of eight generic meta-predicate symbols being used here.
They are the following symbols starting with a lower-case letter. The second
column gives an informal meaning of the meta-predicate symbol:

positive the argument is an atom that is true
in the object information state

negative the argument is an atom that is false
in the object information state

unknown the argument is an atom that is unknown
in the object information state

abstract the description of the argument as given
by the object information state is abstract

concrete the description of the argument as given
by the object information state is concrete

exact the description of the argument as given
by the object information state is exact

goal the argument needs to be satisfied
success the argument has been satisfied

The first three meta-predicate symbols are only used in the antecedent of a meta
rule . The meta-predicate symbol goal is only used in the consequent. All meta
predicate symbols are unary. The connectives are limited to &, I , -, and ➔,

meaning logical and, or, not, and implication respectively. The punctuation
symbols are' (', ') ', and', '.

As stated before, the terms of meta-atoms refer to object-level atoms. In case
of a nullary atom a meta-term is a meta-constant symbol and in case of an n-ary
atom a meta-term is constructed by means of a meta-function symbol. The symbols
of an object-level language are mapped to symbols of a meta-level language as will
be shown in the next section. The result of this mapping is indicated by primed

110 Chapter 7. Process Knowledge Representation in ADDL

symbols. For example, the object-level atom p (X) occurs as a meta-term in a
meta-atom as positive (p' (x')) . The following definitions specify a two-level
meta-term.

7.2.2 DEFINITION: A simple meta-term oftypet' is defined as follows:

1. Any meta-variable or meta-constant symbol of type t' is a simple meta
term of type t'.

2. If f is a n-ary meta-function symbol of type t'i x · · · x t'n ➔ t' and t i is
either a meta-variable or a meta-constant symbol of type t' i , then
f (t 1 , .. . , tn) is a simple meta-term of type t'.

7.2.3 DEFINITION: A two-level meta-term of typet' is defined as follows:

1. If c is a meta-constant of type t', then c is a two-level meta-term of type
t' .

2. If f is a n-ary meta-function symbol of type t 'i x · · · x t'n ➔ t' and t i is
a simple meta-term of type t'i, then f (t 1 , ... , tn) is a two-level meta
term of type t'.

In an object-level language, the nesting of single-level terms is not allowed. As
shown by the DEFINITION 7.2.3, a two level nesting of meta-terms is allowed in a
meta-level language. Besides, simple meta-terms only occur as arguments to
meta-function symbols. These symbols refer to object-level predicate symbols and
meta-variables (which only occur in simple meta-terms) can thus only refer to
object-level constant symbols. The following expressions are examples of two
level meta-terms: a', p' (X', b'), p' (f' (X', Y'), c '). For convenience, if no
confusion is expected, I use the same symbols for object-level predicate symbols
on the one hand and meta-constant symbols and meta-functions on the other
hand, but they are definitely different. In the sequel, I simply say meta-term instead
of two-level meta-term.

Using the above definitions, one can define meta-atoms and typed meta
formulae . Since each meta-predicate symbol is unary, a meta-atom contains only a
single meta-term. All meta-predicate symbols have the same type, viz.
objectAtom.

7.2.4 DEFINITION: Let p be a meta-predicate symbol of type t' and let t be a two
level meta-term of type t'. Then p (t) is a meta-atom.

7.2.5 DEFINITION: If cp is a meta-atom, then both cp and -cp are literal meta-
formulae.

The name of the type t' in the DEFINITION 7.2.4 is obj ectAtom. The definitions of
typed meta-formulae, meta-antecedents and meta-consequents are:

7.2.6 DEFINITION: A typed meta-formula is inductively defined as follows:

7.2 Meta-level languages 111

1. A literal meta-formula is a typed meta-formula.

2. If cp and 'I' are typed meta-formulae, then cp & 'I', and cp I 'I' are typed
meta-formulae.

3. If cp is a typed meta-formula, then { cp) is a typed meta-formula.

7.2.7 DEFINITION: A meta-antecedent is a typed meta-formula restricted to the
meta-predicate symbols positive, negative, unknown, abstract,
concrete, exact, and success.

7.2.8 DEFINITION: A meta-consequent is a typed meta-formula restricted to the
meta-predicate symbols success, goal, abstract, concrete, and exact.
Disjunctions and negations are not permitted. The second induction rule is
therefore omitted and the third one is replaced by:

2'. If cp and 1Jf are typed meta-formulae, then cp & 1Jf is a typed meta-formula.

Apparently, the syntax of the meta-level language is little more complex than the
syntax of the object-level language. Having defined meta-antecedents, and meta
consequents I can now define meta-rules:

7.2.9 DEFINITION: If cp is a meta-antecedent and 'I' is a meta-consequent, then
cp ➔ 'I' is a meta-rnle.

For the meta-rules I also adopted the IF-THEN notation instead of the connective ➔.

A meta-level language is defined as follows:

7.2.10 DEFINITION: A meta-level language given by a (meta-level) alphabet consists
of the set of meta-rules constructed from the symbols of the alphabet.

7.2. 11 DEFINITION: A meta-level scenario <name , meta-rule-set> is a finite set of
meta-rules that has a unique name.

Examples of meta-rules are:

1 IF positive{p' {X')) & unknown{q' {X', f' {X')))

THEN goal(r' {X'))
2 IF negative{p' {X '))

THEN success { s')
negative{q' {Y')) & abstract{r' {Z'))

The primed symbols are names of expressions in the object-level language that
have a meaning with respect to the process information state. In the sequel, I omit
the priming provided that it does not cause confusion. The meta-rules reason
about these expressions. The declarative semantics of the meta-level language will
be given in the next section. The procedural semantics is presented in § 7.4.
Finally, in §7.5 I discuss the global interaction between the two languages.

112 Chapter 7. Process Knowledge Representation in ADDL

7.3 Declarative aspects of meta-level languages

7 .3.1 Declarative semantics

In this section, the truth value of meta-formulae and meta-rules is discussed. As
pointed out before, an object-level language allows for expressing what (negative
or positive) facts are to be considered true. A meta-level language allows for
reasoning about the implications and consequences of these facts [Weyhrauch,
1980). The domain of a meta-level language is a process information state which
consists of two parts. First of all, it consists of a meta-level description of an object
information state, i.e., the epistemic information on the (object-level) facts about
the design object model that are currently known or unknown. Secondly, it
consists of a set of parameters that describe other aspects of the current state of the
design process. They include a set of goals that need to be satisfied and a set of
goals that have been satisfied. Furthermore, the parameters represent the process
state of object-level facts. E.g., the anatomical description of a part of the design
object model is abstract.

The reflection principle describes a transformation between an object
information state and its meta-level interpretation in a process information state.

7.3.1 DEFINITION: Let r be an object information state, let n be a set of process
parameters, and ~ describes a reflection principle, then a process information
state S is obtained as follows.

scr.n) = ~Cr) u n

Here the union symbol is used to denote gluing of information states. The
reflection principle provides a meaning for the meta-terms occurring in the meta
language. Therefore, I assume a fixed mapping from each meta-constant and
meta-function in the domain of the meta-level language to an object-level
proposition symbol. It is defined as follows by making use of the interpretation
ma pping:

7.3.2 DEFINITION: Let L be an object-level language, let M be the meta-level
language related to L, let t' e Mbe a simple meta-term of type 't' and let t e L
be an object-level term of type 't . Then the definition of a interpretation
mapping from t' to t is:

1. If t' is a meta-constant symbol, then it is mapped to a constant symbol
t.

2. If t' is a meta-variable, then it is mapped to a variable t.

3. If t' is a meta-term of the form f' (s' 1 , · · · , s' n) , then it is mapped to a
meta-term t of the form f (s 1 , · · · , sn) .

7.3 Declarative aspects of meta-level languages 113

7.3.3 DEFINI110N: Let L be an object-level language, let M be the meta-level
language related to M. A naming link is then defined by the mapping
nl : M ➔ L as follows:

1. If c is a meta-constant symbol being a meta-term of type objectAtom,
then there exists a (object-level) proposition symbol Pc ·

2. If f is a n-ary meta-function symbol of type 't' 1 x · · · x 't' n ➔
obj ectAtom, then there exists an n-ary (object-level) predicate symbol
Pt of type -r1 x · · · x 'tn, where each simple meta-term t'; of type 't'i
being an argument of f is mapped to an (object-level) term t i of type 'ti
using the interpretation-mapping.

Notice that, although an interpretation of a meta-language may vary with respect to
the domain specific meta-variables, meta-constant symbols, and meta-functions, it
consists of a fixed set of generic meta-predicate symbols.

Before the definition of an interpretation of the meta-level language is given, I
clarify some notational aspects. The set r represents an object information state,
that can be divided into three subsets. The expression r+ ~ r denotes the set of
literal formulae that are true in the object information state. Similarly, the
expression L ~ r denotes the set of literal formulae that are false and r 7 ~ r
denotes the set of literal formulae that are unknown in the object information state.
Therefore, the expression q, E L means that q, occurs as a negative fact in r . The
following definition gives an interpretation of a meta-level language which is
related to an object-level language by a reflection principle. The definition consists
of three parts. In the first part (A), I give the domain of the interpretation. In the
second part (B), the meta-predicate symbols are given, that have a fixed meaning
with respect to the object information state, and the third part (C) gives the meta
predicate symbols whose meaning depends on the process information state.

7.3.4 DEFINITION: Let L be an object-level language and let n/ (c) = 4>c be a naming
link from M to L. Then, an interpretation .:3 of a meta-level language M with
respect to L and nl is defined as follows:

Al. It consists of a set (possibly empty) of literal facts r , which describes an
object information state of L.

A2. It consists of a tuple n = <TTa , ng, TT 5 >, that contains the process
parameters of the interpretation where TTa is a set of process state
descriptors of object-level literal facts , ng is a set of asserted goal names,
and ns is a set of satisfied goal names.

B3. For the meta-predicate symbols positive, negative and unknown in
Man assignment to { trne, fa/sci is given as follows:

114 Chapter 7. Process Knowledge Representation in ADDL

positive(c)

negative(c)

unknown(c)

true

false

false

false

true

false

false

false

true

C4. Let q be one of the meta-predicate symbols abstract, concrete and
exact. Then the truth value of q (c) is true if $c e r+ and q (c) e n ct;

otherwise, its truth value is false.

CS. The truth value of goal (c) is true, if $c e r 7 and c e TT9 ;

otherwise, its truth value is false.

c6. The truth value of success (c) is true if $c er+ and c ens;
otherwise, its truth value is false.

The entries (Al) and (A2) define the domain of an interpretation, namely a process
information state denoted by g (r, TT). The truth values of the meta-predicate
symbols defined by (B3) are independent of the (other) process parameters. They
can directly be obtained from the object information state. The truth values of the
meta-predicate symbols that describe other aspects of the process state of a design
object are given by (C4-C6). They depend both on an object information state and
a process parameter. The knowledge of the existence of a positive fact may
sometimes be insufficient to proceed the design process. It is therefore convenient
to add extra information to such a fact in the form of a process parameter. It

expresses in more detail the design process state of a fact. Therefore, the meta
atom abstract (p) holds true in an interpretation if p is a positive fact and if
there is a process parameter that tells that the description of p is abstract.

Finally, the meta-predicate symbols of (CS) and (C6) actually control the
design process by asserting the names of design goals, that need to be satisfied,
and by declaring the names of goals that have been satisfied. When the set of
asserted goal names and the set of satisfied goal names are the same, then there
are no further goals to be satisfied and the design process is finished. Before that
happens, the design process proceeds by transitions of one process information
state to another as shown below (here g i stands for 5(ri , n i)):

The interpretations 5 1 · · · gn-i describe partial models r i of a design, but finally
in the state gn the design r n has been completed. This process is presented in
detail in §7.4.1 about meta-level inference.

The truth value of a meta-formula can now be defined in a straightforward
manner. The truth values for meta-atoms have been given, thus only the
connectives need to be introduced.

7.3 Declarative aspects of meta-level languages 115

7.3.5 DEFINITION: Let 3 be an interpretation of a meta-level language M. If <I> and
'I' are meta-formulae in M, then the meta-formulae -<!>, <I> & 'I' and <I> I 'I' and
the meta-rule IF <I> THEN ljf in M, can be given a truth value, trne or false, (wrt
3) as shown in the following table:

true
true
false
false

ljf

true
false
true
false

false
false
true
true

<I> & 1j1 <I> I 1j1 IF <I> THEN 1jf

true true true
false true false
false true true
false false true

An example of the implication of the given definitions may enlighten the reader.
Recall the previous example of meta-rules in § 7.2. I now give the same meta-rules
but this time without priming:

1 IF positive(p(X)) & unknown(q(X,f(X)))
THEN goal(r(X))

2 IF negative(p(X))
THEN success(s)

negative(q(Y)) & abstract(r(Z))

The first rule reads as follows: if the mapping of p (X) is true in an object
information state and if the mapping of q (x, f (x)) is unknown in the same state,
then the goal r (x) is added to the set of goal names that need to be satisfied. The
second rule reads: if the mapping of p (x) is false in an object information state or
the mapping of q(Y) is falseinthesamestateandthemappingof r(Z) is both
true and its process parameter is abstract in an process information state, then
the goal s has been satisfied. More about meta-rule interpretation will be said in
the next section on the procedural semantics of the meta-level language.

7.3.2 Meta-level inference

After giving the declarative semantics of the meta-level language, the reasoning
mechanism needs to be explained and I need to declare how meta-rules are
executed. Similar to the previous chapter, the procedural interpretation of a meta
level language consists of a control mechanism that derives conclusions from a set
of meta-rules and a set of procedures that compute the variable bindings of these
rules. In this section, meta-level inference is discussed. The next section gives the
computational mechanisms. The inference mechanism applied at the meta-level
uses the same derivation rules as at the object-level. They are not repeated here.
The soundness of the meta-level language follows directly from its definition, since
it is based on a subset of classical logic. The conclusions drawn by meta-level rules
are completely different from object-level rules. The purpose of object-level
inference is to extend the known facts about the design object description. Meta
level inference aims at extending the set of process parameters of the process
information state. The conclusions drawn by meta-level rules are i) assertions of

116 Chapter 7. Process Knowledge Representation in ADDL

goals that need to be satisfied in order to solve the design problem, ii) statements
about the design process state of object-level facts, or iii) conclusions that a goal
has been satisfied. These three categories are separately discussed below.

The assertion of goal I g) causes the activation of a scenario with the name
sol ve-g (the definition below gives a more precise definition of the mechanism). I
first explain the mechanism informally. Suppose I have the following meta-rule:

IF positive(p(a)) THEN goal(refinement(a))

and p (a) is a positive fact in the object information state. Now the conclusion is
that in order to proceed the design the goal r efinement (a) needs to be satisfied.
This is achieved by transferring control to either a meta-level scenario or an
object-level scenario whose name is s olve-refinement8. As soon as the goal
has been satisfied control is given back to the current scenario. Knowing that the
previous goal has been satisfied, the meta-level interpreter can choose a next goal
using other meta-rules.

Recall the definitions of meta-level and object-level scenarios. Both kinds of
scenario receive -upon activation- either an object information state or a process
information state. In the sequel, an object information state is called a world. A
world is constructed by selecting a subset of literal facts from a fact-base that
contains all object-level literal facts being asserted during the design process.
Furthermore, it contains the object description that are mentioned in the subset.
Hence, a world is a subset of the fact-base and the object-base. In the sequel, I
leave the object-base out of consideration. A scenario is activated through the
assertion of a goal meta-predicate symbol by a meta-rule. The argument of a
goal statement is an object-level atom whose predicate symbol is a goal name and
whose arguments are names of constant symbols in the object-level language.
These constant names are used to build the world of the activated scenario. If no
arguments are given the scenario's world focuses on the entire object-information
state. The following definition gives the mechanism for stating a goal that must be
satisfied with respect to some world.

7.3.6 DEFINITION: Let r be a fact-base and let TT be a tuple of process parameters.
Then, the meta-atom g oa l (g (c' 1 , .. . , c' n)) being derived from a meta-rule is
asserted through the application of the following sequence of steps:
i. A world n is created as follows: for each literal fact p E r, if one or more

of C 1 ' ' ' C n occurs in P, then p E n.
ii. A scenario Ag with the name sol ve-g is activated focusing on the world

n.

8 If a goal causes the activation of ar. object-level scenario, the involved reasoning process
strictly speaking concerns object-level inference rather than meta-level. For sake ,,r
simplicity, I treat 'object-level goals' and 'meta-level goals' on even terms.

7.3 Declarative aspects of meta-level languages 117

iii. The goal name g is added to the set Ilg of asserted goal names of n that
need to be satisfied. This causes a state transition of n to a next process
information state n'.

In other words, the assertion of a goal statement causes deactivation of the current
scenario and activation of a new scenario. The aim of the new scenario is to satisfy
the asserted goal. The construction of a world that is a subset of the fact-base is
called the world mechanism. This mechanism is best illustrated by an example.
Suppose a fact-base consists of the following literal facts:

p(a)

p(b)

p(c)

q(a,b)
q(b,c)
q(a,c)

r(a ,b,cl
r(a,c,c)
r(c,c,c)

and the meta-atom goal (g (a)) is asserted. Upon activation of a scenario named
solve-a, the following world is constructed from the above fact-base:

p(a) q(a,b)

q(a,c)

r(a,b,c)
r(a,c,c)

The world contains only literal facts that have a as an argument. Object names
other than a are imported to the world, if they occur in an atom where a occurs
as well, e.g. q (a, c) . As a consequence, there can be no unary literal fact whose
term is unequal to a . The purpose of the world mechanism is to make the
derivation of an antecedent more efficient since fewer literal facts have to be
examined.

It may be useful to implement an enhanced version of the world mechanism
that focuses on a specific part of the design object model. In that case, the world
ought to contain literal facts that have a or a component of a as an argument.
The components of an object are described by the built-in predicate symbol
has Part (see § 6.5.3). So far, such an extended world mechanism has not yet been
implemented.

When a newly activated scenario is a meta-level scenario, its world is part of
its process information state, i.e., it is the object information state to which the
process information state refers. When a newly activated scenario is an object-level
scenario, then the world is simply the object information state of that scenario.
Fig. 7.2 depicts the world mechanism. A world is strictly 'read-only'. It can not be
modified by a scenario; it can only be viewed.

The derivation of a meta-atom success (g) expresses the satisfaction of a
goal that has been asserted earlier in the design process. The name of the goal is
indicated by the argument g. The derivation procedure proceeds as follows:

118

object-level scenario

11111
viewing

orld--1111111..

® ®
® ®

Chapter 7. Process Knowledge Representation in ADDL

meta-level scenario

viewing

process information state

process parameters

reflection principle

orld

® I

world mechanism world mechanism

fact-base

® ® ®
®

® ® ® ®

Fig. 7.2 The world mechanism creates a view on a fact-base on which a scenario
focuses. The symbol ® denotes a literal fact.

7.3.7 DEFINITION: Let Ag be the active scenario and let n be a tuple of process
parameters. Then, the meta-atom success (g} being derived from a meta
rule of A9 is asserted through the application of the following sequence of
steps:
i. The goal name g is added to the set ns of goal names of n that have

been satisfied. This transforms n into a next process information state fl' .
ii The scenario Ag is deactivated and control is given to the 'source' of the

goal.

The word 'source' may sound a little cryptic. The use of this word is due to the fact
that the goal that has been satisfied may either be asserted by another meta-level
scenario, or it may be the top-level goal of the design process. In the former case,
the scenario that asserted the goal statement is reactivated. In the latter case, the
design problem has been solved and the fact-base contains a complete description
of the design object model.

7 .4 Procedural aspects of meta-level languages 119

The second category of conclusions inferred by meta-level rules are
statements about the process state of a positive fact. They assert that the
anatomical description of (a part of) the design object is abstract, concrete or exact.
These conclusions are stored as process parameters in the process information
state. It proceeds as follows:

7.3.8 DEFINITION: Let s be one of the meta-predicate symbols abstract,

concrete, or exact and let 11 be a tuple of process parameters. Then the
meta-atom s (c) being derived from a meta-rule is added to the set Ila of
process state descriptors of 11. This transforms 11 into a next process
information state 11'.

As an example, I give a meta-rule that illustrates the above presented concepts. It
reads as follows: if p' (a') maps to a literal fact p (a) in an object-level information
state and its process parameter is abstract in a process information state and the
goal basicGeometry has been satisfied, then the process parameter of p (a) is
also concrete. Notice that for convenience the symbols are not primed:

IF abstract(p(a)) & success(basicGeometry(a))
THEN concrete(p(a))

Notice that the process parameters are mutually independent. Therefore, a fact
may have -as shown by the example- more than one parameter being set.
Although it may seem natural that when a concrete description of an artifact has
been established, its description is also abstract, this is not necessarily the case in
ADDL unless stated explicitly.

7.4 Procedural aspects of meta-level languages
The computational mechanism underlying a meta-level language is similar to the
mechanism presented in § 6.4.3 and § 6.4.4. A meta-resolution tree is constructed
and traversed in an analogous manner. The mechanism is simplified because, (i) it
only has to deal with the classical truth values true and false and (ii) the unification
algorithm is solely applied at the object-level. During traversal , meta-variables are
bound to meta-constant symbols as follows . Meta-constant symbols have a
mapping to object-level constant symbols by means of the naming link. The
application of the unification algorithm at the object-level results in a binding of
object-level variables to constant symbols. These constant symbols are on their
turn linked by a mapping from meta-constant symbols. These are thus the bindings
of the corresponding meta-variables. This mechanism is illustrated in Fig. 7.3
where a meta-variable x' is bound to a meta-constant c'.

The derivation procedure, that infers the antecedent of a meta-rule, traverses a
meta-resolution tree until it has found a truth value for the root of the tree. The
procedure is biased towards true. Therefore, it only concludes that the truth value
of the tree is false when it has been searched exhaustively by a backtracking

120 Chapter 7. Process Knowledge Representation in ADDL

meta-level: x' ➔ c'

object-level: X ➔ c

Fig. 7.3 The bindings of the meta-variables are computed at the object-level. A double
arrow indicates a naming link and a single arrow stands for the binding of a variable.

algorithm. A meta-resolution tree is constructed very similar to an object-level tree.
Nearly the same procedures as given in § 6.5 are used. However, a few
modifications are needed.

In the first place, the second parameter, t of the procedure for adding a leaf,
addLea f (n, t) , is a literal meta-formula rather than a literal formula. Secondly,
the procedure makeTree (s) given in § 6.5 for constructing a resolution tree for a
meta-antecedent is modified by replacing in the first case-statement
literal formula by literal meta-formula. The procedure described by the
following pseudo code is used to construct a meta-resolution tree.

PROCEDURE: Let s be a meta-antecedent represented by a sequence of tokens s,
let t be a token, and let n and st be nodes. Then a meta-resolution tree
being the tree of nodes n is built up as follows:

makeTree (s)
n = nil;
t = nextTokeL (s);
do

switch (t)
case 'literal meta-formula ':

n = addLeaf (n,t) ; break ;
case ' & ':
case 'I':

n = root (n);
n = add.Node (n,t) ; break ;

case '(':
st= makeTree (s);
n = addTreeLeaf (n,st); break; }

t = nextToken (s) ; }
while (t != nil && t ! = ') ');

return root (~); }

Traversal of a meta-resolution tree progresses analogous to traversal of a resolution
tree. When a node becomes false the algorithm will backtrack over previous
nodes.

7 .4 Procedural aspects of meta-level languages 121

The leaves of the tree contain literal meta-formulae. Their truth value is
obtained as follows. The meta-term of a (unary) literal meta-formula is mapped to
an object-level predicate symbol by the resolution principle. If the meta-term is a
meta-function, then the simple meta-terms are likewise mapped to object-level
terms. The outcome is an object-level atom whose truth value can be computed
using the method for a positive leaf as is presented in§ 6.5.2. The behaviour of this
method depends on the direction of search. It applies the unification algorithms
and it fills in an instantiation set. The truth value of the literal meta-formula can
then easily be determined. It depends on the truth value of the (object-level) atom
and the process parameters of the process information state. It is defined as
follows:

7.4 .1 DEFINITION: Let 1 be a leaf with the literal meta-formula rn (c) , let I be an
instantiation set let d be the direction of search, and let TT be a process
information state. Then, the truth value of 1 is obtained by performing the
following sequence of steps.
i. Map c to an object-level atom Pc·

ii. Compute v~; a, the truth value of Pc with respect to the world of TT.

Step (ii) uses the definition of an interpretation of a meta-language to compute the
truth value of a literal meta-formula. This approach is successful because a meta
language has a fixed set of meta-predicate symbols. Each individual meta-predicate
symbol has its private method for computing the truth value.

The truth values of an and-node and an or-node occurring in a meta
resolution tree are acquired as follows :

7.4.2 DEFINITION: Let n be an and-node and let n 1 and n r be its left successor and
its right successor, respectively, let I be an instantiation set and let d be the
direction of search. The truth value of n with respect to I is obtained by
performing the following steps:
i. If d = backward, then go to step iv.
ii. Compute vf, the truth value of the left successor of n.
iii. If vf = f alse then v~ = false and stop.
iv. Compute v; the truth value of the right successor of n.
v. If v; = false, then d = backward and go to step ii.

Otherwise v~ = true.

7.4.3 DEFINITION: Let n be an or-node and let n 1 and nr be its left successor and
its right successor, respectively, and let I be an instantiation set. I call cr the
state of n. The truth value of n with respect to I is obtained by performing
the following steps:
i. If d = backward and cr = r i ght, then go to step iv.
ii. Compute vf , the truth value of the left successor of n.
iii . If vf = true, then cr = left, v~ = true, and stop .

122 Chapter 7. Process Knowledge Representation in ADDL

iv. Compute v; the truth value of the right successor of n.
v. If v ; = true, then cr = right, V~ = true.

Otherwise v ~ = false .

The meta-level only deals with the two classical truth values true and false. The
computational methods are therefore slightly simpler. Computations that involve
variable bindings are strictly performed at the object-level. The truth value of a
meta-resolution tree can be computed as follows:

7.4.4 DEFINITION: Let T be a meta-resolution tree and let n be the root of the tree
and let d be the direction of search. The truth value of T is obtained by
computing the truth value of n with a= forward.

The behaviour of the computational mechanism regarding the derivation
procedures of a consequent are fully described by the declarative description of
meta-level inference. They need no further explanation here.

7.5 Global interaction between the two levels
An ADDL program consists of a number of meta-level and object-level scenarios,
and a prototype library. The selection of scenarios is controlled by a top-level
meta-level scenario that is invoked by the designer. The top-level scenarios states
design goals that are to be satisfied by either meta-level or object-level scenarios.
The meta-level scenarios extend and transform the set of process parameters of a
process information state. The object-level scenarios extend a fact-base that
describes the design object status. The fact-base and the set of process parameters
are initially empty9.

Fig. 7.4 shows the application of two meta-level scenarios (top and sub) and
three object-level scenarios (obl, ob2 and ob3). For simplicity I omit the world
mechanism from the figure. The process information state g (r, IT) described by
the fact-baser and the set of process parameters IT, is initially associated with top.

During the design process the process information state is subject to a number of
state transitions leading from 3 (r O , n0) to 3 (r 4 , n 3) • Since a process
information state is defined as a function of rand n, viz. g(r, IT)= ~(r) u n, the
registration of the individual modifications to r and n is sufficient to obtain a new
process information state.

The first meta-rule of top asserts a goal that causes the activation of obl. The
application of the rules of obl results in a new state of the fact-base (r1). The rules
are applied until the goal has been satisfied. Then, control is given back to top,

which causes a state transition from IT0 to IT1 . The next goal causes the activation

9 This does not imply that there is no information in the process information state.
Obviously, the process information state contains the information that literal facts are
unknown.

7.5 Global interaction between the two levels

meta-level reasoning

top------------------------no o___..n1

n : process information state

D meta-level scenario

Fig. 7.4 Multi-level reasoning in ADDL.

TT 3___..TT 4

object-level reasoning

r : fact-base

D object-level scenario

123

of the meta-level scenario sub, which subsequently activates the object-level
scenarios obj 2 and obj 3. After the application of the rules of the first, the state of
the fact-base becomes r 2 . This reasoning process continues along the same line
and the final states of the set of process parameters and the fact-base are TT4 and

r3.
So far, the interface and interaction between the meta-level and the object

level has been discussed. Now, I give some example-scenarios which implement
the behaviour as described by Fig. 7.4. These scenarios have a slightly different
name, the string solve- is 'prepended' to the names given in the figure. Thus, a
scenario named solve-top satisfies a goal named top. Notice that the
knowledge represented by the scenarios is not particularly relevant to a certain
problem. Their purpose is to clarify the flow of control between scenarios. Prior
to the presentation of a scenario its signature :E is given.

The following is the signature of a meta-level scenario with the name
solve-top. The symbols of the signature that refer to symbols of the related
object-level language appear with an accent. In the sequel, I omit the priming of
symbols in signatures of meta-level scenarios. A short-hand notation for types is
useful to reduce the otherwise lengthy types of (meta-) functions and (meta-)
predicate symbols. Thus, the abbreviation SY stands for the type symbol. In
:E (solve-top) , I introduce (among others) the meta-constant symbols obl' and
top'. They are both goal names. The second goal name is currently being satisfied

124 Chapter 7. Process Knowledge Representation in ADDL

by the meta-level scenario solve-top, that asserts the first goal name as a new
(sub) goal. Furthermore, the signature introduces the meta-function symbols p'
and sub'. The first refers to a predicate symbol of an object-level language. The
second is a goal name asserted by solve-top.

:E(solve-top)
Type

objectAtom
symbol'

Meta-constant

obl', top'

Meta-function

p ', sub'

Meta-predicate

Notation Parent

A object'
SY' primitive'

Type Comments

A refer to an object-level proposition symbol

Type Comments

SY' ➔ A refer to an object-level predicate symbol

Type

abstract, exact, goal, success,
positive, unknown A

Meta-rules

1 IF unknown(p(ro)) THEN goal(obl)
2 IF positive(p(X)) THEN abstract(p(X)) & goal(sub(X))
3 IF exact(p(X)) THEN success(top)

It is the top-level scenario that corresponds to the meta-level scenario top in
Fig. 7.4. It controls the overall problem solving process. Its first rule asserts the
meta-atom goal (obl) which causes the activation of an object-level scenario
named sol ve-obl. Since obl has no arguments, it does not specify a particular
world. The default action is that the world encompasses the entire fact-base (being
empty).

After the application of solve-top's first rule, the meta-level interpreter
transfers control to sol ve-obl and solve-top becomes inactive. Note that there
is a difference between a scenario that is becoming inactive and a scenario that is
terminating. In the former case, the interpreter maintains a scenario's state, while in
the latter case it merges a scenario's set of hypotheses with the fact-base or the set
of process parameters depending on the kind of inference (object or meta) . The
signature of sol ve-obl looks as follows:

:E (sol ve-obl)
Type

symbol

Notation

SY

Parent

primitive

7 .5 Global interaction between the two levels 125

Constant Type

symbol s

Predicate Type

typeFor SYXSY

p SY

obl

Rules

1 IF typeFor(X,symbol) THEN p(X) & obl

The binary built-in predicate typeFor instantiates an object. It instantiates its first
argument to an object of a type denoted by its second argument. argument and by
appending a number to this symbol it creates a unique new symbol. In this case, it
generates the symbol 'symboll', because it is the first application of the function to
the symbol 'a'. The scenario's rule simply asserts two facts to the set of hypotheses,
viz. p (symboll) and obl. The scenario causes a state transition of the fact-base
from r O to r 1 consisting of the singleton { p (symbo 11) } .

After application of solve-obj 1, the set of process parameters transforms
from I10 to I1 1 containing success (obl) since it is n8w known that goal (obl)
has been satisfied. Now, solve- top becomes active again. It applies its second
rule, which concludes that the description of p (symboll) is abstract and which
asserts a new goal goal (sub (symboll)). It causes the activation of the meta
level scenario solve-sub:

I: (solve-sub)
Type Notation Parent

objectAtom A object
symbol SY primitive

Meta-function Type Comments

p , ob2, ob3, sub SY ➔ A refers to a predicate symbol

Meta-predicate Type

abstract, concrete, exact
goal , success A

Meta-rules

1 IF abstract(p(X)) THEN goal(ob2(X))
2 IF success(ob2(X)) THEN concrete(p(X)) & goal(ob3(X))
3 IF success(ob3(X)) THEN exact(p(X)) & success(sub(X))

The world of so 1 ve-s ub consist of the literal fact p (symbo 11) . It is created by
selecting the literal facts that are concerned with the object symboll. The

126 Chapter 7. Process Knowledge Representation in ADDL

scenario's first rule asserts the goal goal (ob2 (symboll)) . If this goal has been
satisfied (by the scenario sol ve-ob2 below), the condition of the second rule
succeeds. The second rule states that the anatomical description of p (symboll)
is concrete. Obviously, the implicit notion is that this has been achieved by the
scenario sol ve-ob2 when solving the goal goal (ob2 (symboll)) . Furthermore,
it asserts a new goal goal (ob3 (symboll)) . When this goal has been satisfied (by
the scenario sol ve-ob3 below), the third rule concludes that i) the anatomical
description of p (symbol l) has been made and ii) that the aimed goal of the
scenario has been reached.

The first and the second rule of solve-sub cause the activation of the
object-level scenarios sol ve-ob2 and sol ve-ob3. The first has the following
signature:

I:(solve-ob2)
Type Notation Parent

symbol SY primitive

Constant Type

symbol SY

Predicate Type

p, ob2 SY
typeFor, q SYXSY

Rules

1 IF p(X) & typeFor(Y,symbol)
THEN p(Y) & q(X,Y) & ob2(X)

The world of sol ve-ob2 (symboll) consists of p (symboll) and the built-in
predicate typeFor (Y, symbol) instantiates an object of type symbol, viz.
symbol 2. Therefore, the set of hypotheses of sol ve-ob2 becomes

{ p{symbol2), q(symboll,symbol2), obs(symboll) }.

The set is merged with the fact-base after termination of solve-ob2. The set of
process parameters is extended with success (ob2 (symboll)).

The signature of sol ve-ob3 is as follows:

I: (sol ve-ob3)
Type

symbol

Constant

symbol

Notation

SY

Type

SY

Parent

primitive

7.5 Global interaction between the two levels 127

Predicate Type

p, ob3 SY

typeFor, q SY X SY

r SYX SYX SY

Rules

1 IF q(X,Y) & typeFor(Z,symbol)

THEN p(Z) & r(X,Y,Z) & ob3(X)

The application of sol ve-ob2 results in the extended fact-base r 2 which in turn is
extended by sol ve-ob3 obtaining r3 . The last one consists of the following facts
(enlisted in the order of assertion and amplified with the fact-base that was
obtained at that time):

p (symboll)
p(symbol2)
q(symboll,symbol2)
p (symbol3)
r(symboll,symbol2,symbol3)

Notice that the predicate symbols that refer to a satisfied goal name are actually a
kind of built-in predicate symbols that 'promote' themselves to process parameters.
For example, the conclusion ob3 (symboll) in the rule above appears as the
meta-level atom success (ob3 (symboll)) in the set of process parameters.

After the application of the last rule of solve-sub, the interpreter gives
control back to solve-top. An exact anatomical description of p (symboll) has
been made and the top-level goal has been satisfied. The set of process
parameters cumulates as the design process proceeds. The obtained set TI4 consists
of the following items (again in order and with the set of process parameters being
reached):

goal(obl)
success(obl)
abstract(p(symboll))
goal(sub(symboll))
goal(ob2(symboll))
success(ob2(symboll))
concrete(ob2(symboll))
goal(ob3(symboll))
success(ob3(symboll))
exact(p(symboll))
success(sub(symboll))
success(obl)

Notice that the history of the set of process parameters of the process information
state TI 4 corresponds to the flow of multi-level reasoning depicted in Fig. 7.4.

128 Chapter 7. Process Knowledge Representation in ADDL

7.6 Discussion
In [van Harmelen, 1989] a classification of meta-level architectures is given. The
author distinguishes among three types of architectures, viz. object-level inference
systems, mixed-level inference systems and pure meta-level inference systems.
Systems that belong to the first category have their main activity at the object-level.
The reasoning takes place at the object-level. The meta-predicates are only used to
define a fixed order in which the object-level rules are searched. The other
extreme are pure meta-level inference systems where the reasoning mainly takes
place at the meta-level. The object-level search space is minimized. The selection
of an object-level rule is fully determined at the meta-level.

A combination of the previous two are mixed-level inference systems.
Reasoning takes equally place at both levels. The ADDL architecture is an example
of a mixed-level architecture. The strategic decisions are taken at the meta-level.
These decisions are then carried out at the object-level. A system that is based on
such an architecture is also called a subtask management system. The meta
knowledge is used to subdivide the design task in a number of subtasks. Each of
the subtasks is then either subdivided into other subtasks or solved by an object
level scenario. After completion of an object-level scenario control is given to the
meta-level scenario that either states a new subtask or gives control to a higher
level meta-level scenario.

The meta-level language has only a fixed number of meta-predicate symbols.
However, this set is easily extendible by the system programmer. The current set is
sufficient for the kind of design systems that have been implemented so far. These
systems have in common that they operate on a rather small design problem with a
limited number of solutions. As a consequence the number of scenarios solving
these problems is quite small as well (approximately twenty) . I have the strong
impression that if a larger more complicated design problem is tackled, the
number of scenarios will grow significantly. Hence, the control becomes more
complex and the meta-level scenarios play a more important role. The
implementation of a system for designing a testing device for tyres confirmed this
opinion [Maurice, 1991; Veerkamp and ten Hagen, 1991].

8
Implementation

8.1 Introduction

The current implementation of ADDL consists of a compiler, an interpreter, and a
run-time environment. The compiler embodies a lexical analyzer, a parser and a
code generator. The interpreter consists of a meta-level interpreter and an object
level interpreter. The development of the compiler started in 1987 by Monique
Megens who worked as a Master's student at CWI. She implemented a lexical
analyzer and a parser for ADDL (at that time called IDDL) [Megens, 1987]. Since then
the syntax of the language has changed drastically. The major parts of the lexical
analyzer and the parser are still in use, though adapted to the modified
specifications.

The implementation of ADDL evolved over four years and is still in progress. It

is written in Smalltalk-SO [Goldberg and Robson, 1983; Goldberg, 1984] and the
ADDL code is compiled to Smalltalk code. The Smalltalk programming environment
is used not only because it is an object-oriented language allowing for easily
modelling of ADDL objects. Smalltalk's major advantage is its suitability for rapid
prototyping. During the last few years, several versions of ADDL have been
operational. The easy modification and reuse of Smalltalk code allows for
designing the language while an experimental version of the current state of
design is operational.

Another advantage of Smalltalk is its extremely useful debugging facility. On
the one hand it simplifies the detection of programming errors while implementing
the ADDL environment. On the other hand it greatly benefits to the debugging of
ADDL code itself, since the ADDL code runs within the Smalltalk environment. The
ADDL programmer can make full use of the Smalltalk debugger without knowing

130 Chapter 8. Implementation

too much about Smalltalk itself. Throughout the chapter, I give some sample
Smalltalk methods that explain parts of the implementation. Therefore, the next
section provides a sho1t introduction to Smalltalk. The remainder of this chapter
aims at giving some insight into the implementational aspects of ADDL. First of all,
the ADDL compiler is described in §8.3. Then, in §8.4 the interpreter is presented. A
prototype of an experimental CAD system is given in § 8.5. Finally, § 8.6 concludes
this chapter with a discussion about the implementation.

8.2 Introduction to Smalltalk

Smalltalk-80 has an extremely simple syntax. Basically, it amounts to sending a
message to an object as follows:

an0bject doSomething.

The object an0bj ect, called the receiver, performs some action and exits with a
return value. Messages can have one or more arguments when the method selector
ends with a colon. The following two messages have one and two arguments
respectively:

an0bject doSomethingWith: another0bject.
an0bject doSomethingWith: objectl and: object2.

Note that smalltalk expressions are terminated by a period. It is not uncommon
that messages are nested. The token : = denotes an assignment and the token t
exits with the succeeding object as return value. Local variables are declared
between bars (I) and comment appears between double quotes ("). Lastly, code
between square brackets is called a block. When a block is passed as an argument
to a message, -the evaluation of the block is postponed. It is executed by the
receiver of the message as soon as the block is used. The following Smalltalk
method l ex2 contains all of the concepts introduced above:

l ex2 "instance method of LexicalAnalyzer"
"[I] [F]= > either VARIABLE or IF"

I char I
char := self nextChar.
(AlphaNumeric includes: char)

ifTrue: [tself lex9].
tself lex3

The keyword self refers to the object that executes the above method. The
object AlphaNumeric is a global instance of class set that contains all
alphanumeric characters. The above method asks for the next character and stores
it in the local variable char. If this character is included in the set of alphanumeric
characters, then the result of sending the message lex9 to itself is returned.
Otherwise, the method returns the result of the message lex3.

8.3 The ADDL compiler 131

8.3 The ADDL compiler
Fig. 8.1 depicts the organization of the ADDL compiler in a block diagram. The
lexical analyzer scans the stream of ADDL source code and separates it into tokens.
The tokens are keywords such as IF, THEN, predicate symbols and so on. The
token stream is the input of the next module, the parser.

lexical
analyzer

smalltalk
object code

Fig. 8. 1 Organization of the ADDL compiler.

parser

smalltalk
compiler

code
generator

smalltalk
source code

The parser groups tokens together in accordance with their syntax into a parse
tree. For instance, an atom is a syntactic structure consisting of the tokens:
predicate symbol, left parenthesis, list of terms, and right parenthesis. The leaves of
the tree are the tokens. Fig. 8.2 shows the part of a parse tree concerning an atom.
During the phase of code generation the parse tree is traversed and the syntactic
structures are translated into Smalltalk source code. The Smalltalk source code is
compiled by the Smalltalk compiler into Smalltalk object code.

atom

~~
ID term-list

/I"' VAR VAR

Fig. 8.2 Part of a parse tree concerning the atom p (x, Y) .

The ADDL source code consists of meta-level scenarios, object-level scenarios,
local operations and prototype definitions. The prototype library has its own
interface to Smalltalk without the need of a compiler. The interface to the
prototype library is presented in§ 8.4. The three modules of the ADDL compiler are
discussed in the following three sections. The Smalltalk compiler will not be
discussed.

132 Chapter 8. Implementation

8.3.1 The lexical analyzer

While there are three separate parsers and code generators for meta-level
scenarios, object-level scenarios, and local operations, there is only a single lexical
analyzer. The lexical analysis of ADDL code is done by picking up tokens from the
stream of characters representing a scenario or a function . A strategy similar to Lex

-a lexical analyzer generator- is employed [Lesk and Schmidt, 1986]. As soon as a
token is recognized by the lexical analyzer, it is added to a stream of tokens. A
token is represented by a name such as OPERATOR and a value which stores the
token string such as '+'. The lexical analyzer recognizes tokens by means of rules.
Each rule contains a regular expression that matches the string belonging to a
token. The rules and token names are given in Table 8.1. I assume that the reader
is familiar with regular expressions first studied by Kleene [Kleene, 1956].

The lexical analyzer is implemented with the aid of transition diagrams,
which are derived from the regular expressions. A transition diagram consists of an
initial state, normal states, and accepting states. Transition from one state to
another is done on a certain input character or a certain set of input characters.
E.g. Fig. 8.3 shows the transition diagram derived from the specification of a
variable, the specification of IF and the specification of THEN. From the initial
state o there is a transition to state 1 on the letter I . There is a transition to state
4 on the letter T and there is a transition to state 9 on all other letters. A transition
labeled £ denotes that the concerned token is recognized. E.g. if from state 2 the
input is not a letter or a digit the token IF is matched. Otherwise state 9 will be
reached.

Transition diagrams can easily be translated to Smalltalk code. A Smalltalk
class LexicalAnalyzer contains for each state in the diagram, a corresponding
instance method. For example, the state 2 is translated to the following code:

lex2 "instance method of LexicalAnalyzer"
"[I) [F)= > either VARIABLE or IF"

I char I
char : = self nextChar.
(AlphaNumeric includes: char)

ifTrue: [tself lex9).
tself lex3

which examines the next character from the character stream. If this character is an
alphanumeric character -a letter or a digit- then there is a state transition to state
9. Otherwise, there is a state transition to state 3, which is an accepting state. An
accepting state is implemented as follows.

lex3 "instance method of LexicalAnalyzer"
"[I)[F][]=> IF"

self addToken: # I F.
tself char

8.3 The ADDL compiler

Rule

\" (["I"]? [A" l?) *\"

''+''l''-"l"/''l"*"I ''**''

"IF"

"THEN"

[A-Z) [a-zA-Z0-9)*

: (a-z) [a-zA-Z0-9) *

[a-z) [a-zA-Z0-9) *

(0-9)+(. [0-9)+(e[+-)?[0-9)+)?)?

'(['/']?(A')?)*'

$ [A l
II# II

"&"

II I"

11 (II

II) II

II [II

II] II

II II

'

II { 11

" } "
II O II

[\n\t]

Token name

skipped comment

OPERATOR

IF

THEN

VARIABLE

ASSIGN

FNAME

ID

NUMCONSTANT

STRINGCONSTANT

CHARCONSTANT

HASH

AND

OR

NOT

LPS

RPS

L.3B

R.3B

COMMA

IS

LCB

R2B

SEMI

white space

133

Table8.1 The names of the tokens that are recognized by the lexical scanner are shown
in the second column of the table. The first column shows the corresponding regular
expression.

The recognized token is added to the token stream and the current character is
returned. This character is the first character of a new token. White space -i.e.
spaces, tabs and new lines- is skipped. The complete transition diagram of the
lexical analyzer is depicted in Appendix 1.

8.3.2 The parser

The parser reads the token stream generated by the lexical analyzer. The stream is
converted to a parse tree using grammar rules if the stream obeys the grammar

134 Chapter 8. Implementation

#9#10 #9#10 #9#10

(AJK-S~ 0 E ~ VARIABLE E = all other characters

l O = transition to 10 on e

#9 = transition to 9 on other alphanumeric (a-zA-Z0-9)

Fig. 8.3 Transition diagram for tokens starting with a capital letter. The double circles
denote terminal states. The single circles denote normal states. The states marked #N
have transitions to state N on the given condition. The transition marked E is on all
remaining characters.

rules, i.e. if the stream is syntactically correct. Otherwise, the parser generates an
error message. The grammars of object-level scenarios, meta-level scenarios and
local operations are given in Appendix 2. The parser is written with the use of
Yacc (Yet Another Compiler Compiler) Uohnson, 1986]. The grammar rules used
by Yacc consist of terminals and non-terminals. Terminals are the token names
written in capital letter. Non-terminals refer to rules . An example of a grammar rule
used by Yacc is:

antecedent / * 7* / atom
/ * 8* / NOT atom
/ * 9*/ antecedent AND antecedent
/ *10* / antecedent OR antecedent
/ *11* / LPS antecedent RPS

which is a direct translation of the definition of an antecedent given in Chapter 6.
The other syntax definitions were equally easy translatable to Yacc grammar rules.

A Yacc generated parser is a LALR(l) parser [Aho and Ullman, 1977], which
stands for Look Ahead, Left-to-right scanning, and Rightmost derivation
construction. It constructs the parse tree using a shift-reduce parsing technique.
The parse tree is constructed in a bottom-up style. This all means that the parser
reads the tokens from the token stream one by one (i.e it shifts the tokens) until it
recognizes -with one token look-ahead- a grammar rule which it can reduce.
When Yacc is invoked with the '-v' option, it produces a human-readable
description of the parser. It consists of all the states of the parser with a description
of their involved actions. The complete sets of states of the three ADDL parsers are
also given in Appendix 2. For example, the descriptions of state 6 and state 13

are as follows:

8.3 The ADDL compiler

state 6

state 13

rule IF_antecedent THEN consequent

NOT
LPS
ID

shift 11

shift 12
shift 13

error

antecedent goto 9
atom goto 10

atom
atom

ID_LPS termlist RPS
ID_ (17)

LPS shift 20
reduce 17

135

The line(s) following the state number indicate the grammar rules being processed
when the state is encountered. They have no influence on the performed actions.
The '_' character is an indication of which tokens has been parsed so far.

I implemented a translator that automatically converts a set of states into
Smalltalk code. It turned out very convenient since the ADDL grammar changed
several times during its development. The Smalltalk code produced from the above
two states looks as follows:

state6 "instance method of ObjectScenarioParser"
"rule : IF_antecedent THEN consequent "

I node I
node : = self getNextNode .
node nodeName = #NOT

ifTrue: [iself shift: node forState: 11].
node nodeName = #LPS

ifTrue: [iself shift : node forState: 12] .
node nodeName = #ID

ifTrue: [iself shift: node forState: 13].
iself error : 'antecedent expected'

goFrom6 "instance method of ObjectScenarioParser"
I node
node := self syrnbolAt: parsePointer.
node isNil

ifTrue : [iself error : 'antecedent expected '].
node nodeName = #antecedent

ifTrue : [self pushState : 9. iself state9].
node nodeName = #atom

ifTrue: [self pushState: 10. iself statel0] .
iself error : 'antecedent expected '.

136 Chapter 8. Implementation

state13 "instance method of ObjectScenarioParser"
"atom : ID_LPS ter:nlist RPS"
"atom: ID_

I node I
(17)"

node := self makeNewNode.
node nodeName = #LPS

ifTrue: [iself shift: node forState: 20).
self reduce: Rule17.
iself goFromCurrentState

A brief explanation of the Smalltalk code is now given. The method makeNewNode

reads the lookahead token from the token stream and returns a new node of the
parse tree. The name of the node is equal to the name of the token. The method
shift: forState: adds its first argument as a node to the parse tree and it pushes
the second argument -being the new state- on the stack. Furthermore, it performs
the method to activate the new state.

The method reduce: creates a node with the name of the left hand side of
the rule and inserts it in the parse tree. The handled states are popped from the
stack. The children of the new node are the nodes which are created while the
right hand side of the rule is being parsed. The method goFromCurrentState

sends the goFrom# message where # stands for the state on top of the stack. The
method symbolAt : returns the node which represents the left hand side of the
previously reduced rule.

The following example may illustrate the construction of a parse tree.
Suppose the parser is applied to the following fragment of ADDL code which is part
of an object-level scenario:

IF p(X) & q(a,b) THEN

then the (partial) parse tree shown in Fig. 8.4 is produced. Recall that the tree is
built in a left-first depth-first manner. On the edges of the tree the corresponding
actions are shown. By performing the shift actions, a leaf with the recognized
token is added to the tree. A node is inserted to the tree, when a rule is reduced.
The recognized nodes which appear at the right hand side of the rule are replaced
by the new node and become its children.

The creation of the corresponding Smalltalk code is the next step which is
taken by the compiler. The parse tree is traversed and meanwhile the code is
generated. Note that this could have been done simultaneously with the
construction of the parse tree which would have made the ADDL compiler faster.
However, it would also have made it more complex and therefore less easy to
modify. The code generation is the subject of the next section.

8.3 The ADDL compiler

rule

~ ~
IF antecedent THEN

rl ~},6 rl
/g9 I g26........_

antecedent AND antecedent
I

r16
g10

I
atom

s1~}~s42
/ / g29' '
ID LPS termlist RPS

I

I
r16
g10

I
atom

s1~~~s42
/ / g29\ '

ID LPS termlist RPS

r20
gt°

r19 1 "'-...,r20
/g29 513 g49

term
I

r27
gr'

simpleterm
I

s33
I

VARIABLE

term list COMMA term
di
g30

I
term

I
r28
g31

I
simpleterm

I
s34
I
ID

I
r28
g31
I

simple term
I

s34
I
ID

137

Fig.8.4 The parse tree of a fragment of ADDL code. The italic entries refer to the actions
which built the tree. An entry s1 means a shift to state I on the token at the leaf. An entry
,1 means reduce rule number I and gl means go to state 1.

8.3.3 The code generator

During the last phase of the ADDL compiler Smalltalk code is generated which is
equivalent to the ADDL code. Both meta-level scenarios and object-level scenarios
are compiled to instances of the class ADDLScenario. Operations are compiled to
instance methods of the class ADDLObj ect. When a scenario is compiled, an
instance of either the class MetaScenario or the class ObjectScenario is made
depending on the kind of scenario. Both classes are sub-classes of
CornpiledScenario which is a sub-class of ADDLScenario. Their class hierarchy
is as follows:

138

Object ()
ADDLScenario ()

Chapter 8. Implementation

CompiledScenario ('name' 'rules' 'operations' 'factBase '
'world' 'derivations' 'ruleSelectionMethod')

MetaScenario ()
ObjectScenario ()

A compiled scenario has a name, a collection of rnles and operations, a / act-base
which contains all literal facts describing the design object model, a world which is
a sub-set of the fact-base, a set of derivations which contains the literal facts
derived from the scenario's rules and a rnle selection method which indicates the
order in which the rules are chosen. Each rule of a scenario is translated to an
instance method of ADDLScenario. Suppose a scenario with the name foo
contains four rules. The selectors of the methods generated from the rules are
addlfooNOl till addlfooN04 . The body of the method consists of code which
represents the rule. The methods are performed by the ADDL interpreter. I say a few
words about the ADDL interpreter now. It is discussed in detail in the next section.

The execution of a scenario is accomplished by a number of methods defined
in the class CompiledScenario. There is a clear distinction between the methods
which define the behaviour of the interpreter and the methods which are compiled
rules. Therefore, to avoid confusion CompiledScenario is made a sub-class of
ADDLScenario. The compiled rules are collected in ADDLScenario and all other
methods are found in its sub-classes.

The code generation is done by traversing the parse tree in left-first depth-first
manner. For each node with name nodeName in the parse tree there is a method
whose selector basically looks like wri teNodeName: on: having two arguments.
The first argument is a node in the parse tree, the second argument is a string of
code which has been produced so far. The method appends code which is specific
for that node to the string. E.g. the node rule has following method associated
with it:

writeRule: aNode on: aString "CodeGenerator"
"rule IF antecedent THEN consequent

; "
aString addAll: '

root aSet value I
root : = ('.

aChild := aNode children at: 2.
variables := OrderedCollection new.
aChild isSimpleFormula

ifTrue:
[self writeSimpleAntecedent: aChild on: aString]

ifFalse:
[self writeAntecedent: aChild on: aString].

aString addAll: ').

8.3 The ADDL compiler

aSet := InstantiationSet for: '.
self writeVariableListOn: aString .
aString add.All: 'value .- root computeTruthFor: aSet
lookingAt: self world.

value
ifTrue: [value := '.

aChild := aNode children at : 4.
aChild isSimpleFormula

ifTrue:
[self writeSimpleConsequent: aChild on: aString]

ifFalse:
[self writeConsequent: aChild on: aString].

iaString add.All: '].
tvalue'

139

The relevance of describing in detail how the code is actually generated is

questionable. Therefore, I just give the result of the code generation. The actual
interpretation of the rules is of more importance and is discussed in the next

section. A compiled rule of either an object-level or a meta-level scenario named
sol veFoo fits within the following frame:

addlsolveFooNO# "instance method of CodeGenerator"
I root aSet value I
root : = compiled antecedent.
aSet := InstantiationSet for: #(array of variables) .
value := root computeTruthFor: aSet lookingAt: self world.
value

ifTrue: [value := compiled consequent].
tvalue

The compiled antecedent amounts to a series of messages which recursively builds

up the resolution tree in accordance with the algorithms presented in Chapter6

and Chapter 7. When using these algorithms, the antecedent:

p(X) & q(a,b)

compiles to the following code:

(Node
andNodeLeft:

(Atom positive: 'p' arguments: #('VX'))
andNodeRight:

(Atom positive: 'q' arguments: #('Ia' 'lb'))

The resolution tree of the above antecedent contains a single and-node and two
positive leaves. To create an or-node the message orNodeLeft: orNodeRight: is

sent. A negative leaf is created by the message negative: arguments:.

During the construction of the resolution tree, each newly encountered
variable is registered in an array of variables. These variables are used for the

instantiation of an instantiation set. Next, the truth value of the root is computed

140 Chapter 8. Implementation

and the variable bindings are added to the instantiation set. The local variable
value becomes true, false or unknown in case of an object-level rule . It

becomes either true or false in case of a meta-level rule .

The compiled consequent is constructed from the two messages:

then : instantSet:
then :and : instantSet:

The first message is used when there appears only a single atom in the
consequent. The second one is used when the consequent is a conjunction of two
or more atoms. Both messages infer the desired results from their arguments. A
consequent consisting of a conjunction of more than two atoms results in a nesting
of these messages as is illustrated by the following examples. The consequent

p(X)

compiles to

self
then: (Atom name: 'p' arguments : #('VX'))
instantSet : aSet

while the consequent

p(X) & q(Y) & r(Z)

compiles to

(self
then: (self

then : (Atom name: ' p' arguments : #(' VX '))
and : (Atom nane: ' q ' arguments : #('VY '))
instantSet : aSet)

and : (Atom name : 'r' arguments: #('VZ'))
instantSet : aSet)

The compiled rules, which are discussed so far, occur in an object-level scenario.
Compiled meta-level rules are very similar to compiled object-level rules. The
major difference lies in the way the way the rules are interpreted, which is
discussed in the next section. As a matter of fact, compiled meta-level rules fit
within the same frame as compiled object-level rules. Differences are i) that the
resolution tree is built up by instances of the class MetaNode, which is a sub-class
of Node and ii) that the leaves of the tree are constructed from meta-atoms instead
of atoms.

Suppose the following rule is the first rule of a meta-level scenario called
solveMeta:

IF positive(p(X)) & unknown(q(X))
THEN goal(foo)

8.3 The ADDL compiler 141

which compiles to the following Smalltalk method (the code has been pretty

printed to improve readability):

addlsolveMetaNOl "i n stance method of ADDLScena r io "
I root aSet value I
root : = (MetaNode

orNodeLeft: (MetaAtom
name : #posit i ve
argument: (Atom posit i ve : #p a r guments : # (#VX)))

orNodeRight: (MetaAtom
name : #unknown
argument : (Atom positive : #q arguments : #(#VX)))) .

aSet : = InstantiationSet for: # (#X).
value : = root computeTruthFor: aSet lookingAt : sel f wor l d .
value

ifTrue:

ivalue

[value : = se l f
then : (MetaAtom

name : #goal
argument : (Atom constant : #foo))

instantSet: aSet].

The methods which generate the compiled rules are distributed over two classes.
One being a sub-class of the o the r. The protocol small talk writing of the class

0bjectscenarioCodeGenerator contains the methods which produce compiled
object-leve l rules. These methods are:

writeAntecedent :on:
writeAtom : on :
writeConsequent : on :
writeElements : on:
writeFunction:on :
writeNegativeAtom:on :
writePredconstant:on :
writeRule:on:
writeRules : on :
writeScenario : collectin :
writeSimpleAntecedent:on :
writeSimpleConsequent:on :
writeSimpleterm:on:
writeTerm:on :
writeTermlist : on :

while the protocol smalltalk writing

MetaScenarioCodeGenerator contains the methods
meta-level rules. The only methods of this protocol are

writeAntecedent:on:
writeConsequent:on:

of its sub-class

w hich gene rate compile d

142

writeConstant : on :
writeMetaAtom:on:
wr iteSimpleAntecedent:on:
writeSimpleConsequent:on:

Chapter 8. Implementation

The remaining methods are inherited from ObjectScenarioCodeGenera tor
being its super-class.

The code generation of local operations is straightforward. Each operation
compiles to a Smalltalk method. The compiled method is a literal translation of the
ADDL code. It is stored as a method in the class ADDLObj ect.

8.4 The ADDL interpreter
The execution of an ADDL program is invoked by a design goal which is stated by a
designer. The ADDL interpreter activates a scenario which tries to solve the goal.
Ultimately, the goal is satisfied by a sequence of active scenarios. The application
of the design knowledge represented by the rules of these scenarios, result in a
design object description which satisfies the initial goal. The execution of both
object-level and meta-level scenarios is done by the interpreter which is written in
Smalltalk-80. A (compiled) scenario is activated by sending it the message
execut eYourSelf. It selects one of the rules of the active scenario and evaluates
it. The inferred results are administered and unless its goal has been satisfied, the
next rule is selected. The rule selection is done by using a rule selection method.

The interpreter is equipped with a belief revision system. Whenever, an
inconsistency is detected with regard to the design object description, the
interpreter tries to recover. A false assumption and all its dependencies are
removed from · the system and the interpreter continues its process. The multi
world mechanism allows for the activation of two or more scenarios concurrently.
For this mechanism only the frame-work has been implemented. It is not yet fully
operational due to conflicts of priorities. It is considered a topic for further
research. All the above aspects of the ADDL interpreter are discussed in the
following sections.

8.4.1 Scenario execution

An outline of the execution of a scenario is depicted in Fig. 8.5. When a scenario is
activated, the interpreter creates a world which represents the scenario's view on
the fact-base . A world is a sub-set of (or identical to) the fact-base . It is used to
infer the antecedents of the scenario's rules from. Therefore, a world narrows
down the view of a scenario looking at only a portion of the entire fact-base. It is
created by the built-in predicate symbol goal (see Chapter7). Consequently, it
may be impossible to infer an antecedent with respect to a certain world, while it
would have been possible to infer it with respect to the entire fact-base.

8.4 The ADDL interpreter

scenario

rule inferences

antecedent

consequent

inferences

world

'literals

ypotheses

'literals "

sub-set

state
transition

143

act-base

Uterols

Fig. 8.5 Schematic overview of the execution of a scenario. The world is created upon
activation of the scenario. The state transition takes place upon exiting the scenario. An
arrow indicates a flow of information.

The purpose of the world mechanism is to optimize and to control the object
level inference. As an example of this mechanism, suppose a designer is designing
a table with four legs. The knowledge to attach a leg to the table top is represented
by a single object-level scenario. A meta-level scenario can then activate this
scenario four times. Each time, the scenario's world is focussed on a different part
of the table represented by a different sub-set of the fact-base .

The literal facts which are derived from both the rules and the world, are
stored in a temporary place called the set of hypotheses. Each derived literal fact is
checked upon ·consistency with both the fact-base and the set of hypotheses. Note
that a consistency check with the world instead of the fact-base is insufficient,
since a literal fact may be consistent with a world but inconsistent with the fact
base. The price paid for the consistency check is not such a burden, because the
derivation procedures for the antecedent are much more time consuming than
those for the consequent (see Chapter6). Finally, the set of hypotheses is merged
with the fact-base when the execution of the scenario terminates. By means of
such a state transition a new extended fact-base is created.

The execution of a scenario is triggered by sending it the message
executeYourSe l f . Its state becomes active and it starts processing its rules as
long as its state remains active. The rules are processed by selecting one of the
scenario's rules. The selection mechanism is discussed in the next section. The
selected rule is evaluated with respect to the scenario's world. The conclusions
drawn from the rule are registered in the set of hypotheses. The rules are evaluated
by applying the compiled methods as described § 8.2.3. The methods which are
used i) to construct a resolution tree and ii) to traverse it in either a forward or a
backward direction, are a direct translation of the computational mechanisms

144 Chapter 8. Implementation

presented in § 6.5.2, § 6.5.3 and § 7.4.2. Here, the rule interpretation is only
presented at a global level in order to prevent redundant repetition.

A rule returns a value, which can be normal , success, or failure. If the
value is normal, the state of the scenario remains active and the next rule is
selected. If the value is success or the value is failure the state of the scenario
becomes inactive and the execution terminates. In the first case, the goal, that
the scenario aimed at, has been satisfied and control is given back to the parent
scenario after the set hypotheses has been merged with the fact-base. In the
second case, all literal facts derived from the scenario are canceled and the
satisfaction of the goal has failed. Control is given to the user-interface, which
provides an error message and tries to recover in dialogue with the designer10.

The following instance method of the class CompiledScenario embodies the
execution of either an object-level or meta-level scenario:

executeYourself "instance method of CompiledScenario"
I state rule
state : = #active.
[state= #active]

whi 1 eTrue: [
rule : = rules perform: ruleSelectionMethod.
state : = self apply: rule].

state= #failure
ifTrue : [iADDL scenarioFailed : self].

iself stateTransition.

Suppose solve-a is a compiled scenario, which is to be executed. The world of
solve-a has been created by the interpreter, before the above message is sent to
it. The body of the method is self explanatory. When the message
stateTransition is sent to solve-a, the set of hypotheses is merged with the
fact-base and the method returns #success. The parent scenario which caused
the activation of so 1 ve- a becomes the active scenario.

8.4.2 Rule selection and application

This section describes the inner loop of the execution of a scenario. A rule is
chosen using some selection method and it is applied returning a state. Unlike
Prolog which has a single static search strategy for selecting clauses [Clocksin and
Mellish, 1981), ADDL provides a mechanism to allow for multiple rule selection
strategies [Veerkamp, Pieters Kwiers, and ten Hagen, 1991). Furthermore, it allows
for dynamically changing the current rule selection strategy. There are several
ways to control the selection of rules. The most straightforward mechanism is to

IO The interpreter is not yet capable of doing "error recovery" in case of an inconsistencv.
The fact is simply reported to the designer, who can modify the knowledge-base in order
to resolve the inconsistency.

8.4 The ADDL interpreter 145

search the collection of rules in a top-to-bottom manner until an applicable rule
has been found. This process is repeated either until no more rules can be applied
or until the scenario's goal has been satisfied. There are many possible variations
on this mechanism, such as searching the rule in a circular fashion, selecting each
rule only once, or selecting only a single rule, etc. More advanced rule selection
mechanisms base the search on the contents of the rules, such as selecting the rule
with the most complex antecedent, with the least number of variables, or with the
most complex consequent, etc. In this section, I present the framework which
allows for multiple rule selection strategies, and I give some of the implemented
strategies. Furthermore, I show how the system programmer can add a new rule
selection method. Finally, I show how the rule selection mechanism can be
modified run-time.

The rules of a scenario are collected in the instance variable named rules of
the class CompiledScenario. It is an instance of the class Rules which is a sub
class of OrderedCollection. The collection consists of the compiled rules of a
scenario and is has an instance variable index which points to the the last-chosen
rule. Initially the index is zero. Each compiled scenario has an instance variable
ruleSelectionMethod which contains the message selector of a rule selection
method. This message is sent to the collection of rules of the scenario and returns
the next rule . It is embodied by the following line of code of executeYourself

rule := rules perform: ruleSelectionMethod

which performs the method which is indicated by the current rule selection
method. A rule selection method is set in the scenario header of a scenario.
Suppose the following fragment of ADDL code is the header of a scenario with the
name foo :

foo(aRuleSelectionMethod

IF

The key-word aRuleSelectionMethod refers to the rule selection method of
foo. The scenario compiler checks whether it is a valid (i.e. an implemented) rule
selection method and it instantiates the instance variable ruleSelectionMethod
to the appropriate method selector. It gives an error message if it is not a valid
selector. When a rule selection method is omitted from the scenario header, the
instance variable is set to the default rule selection method. The default rule
selection method chooses each rule once in a top-to-bottom fashion. It is outlined
as follows:

146

defaultRuleSelectionMethod
index :=index+ 1.
index> self size

ifTrue: [inil] .
iself at: index

Chapter 8. Implementation

"there are no more rules"

Another rule selection method, which also operates in a top-to-bottom manner,
applies each rule repeatedly until it fails. This method is similar to the clause
selection strategy of Prolog. The name of the rule selection method is
eachUntilFail. It is implemented as follows:

eachUntilFail
(index= 0 or: [(self at: index) failed])

ifTrue: [index:= index+ 1].
index> self size

"take next rule"

ifTrue : [inil).
iself at: index

"there are no more rules"

A third rule selection method which has been implemented, behaves as an
exclusive or over the rules. It applies each rule from top to bottom, until it finds a
rule which succeeds. The scenario terminates after application of that rule. It

consists of the following code:

exclusiveor
((index> O and: [(self at: index) succeeded))

or: [index> self size))
ifTrue : [inil). "only a single rule is applied"

index :=index+ 1.
iself at: index

As shown by those three examples, it is relatively easy to add a new rule selection
method to the existing methods. It amounts (i) to adding a new method selector to
the list of implemented rule selection methods, and (ii) to writing the proper
Smalltalk code belonging to the new method. The easiness of writing new code
depends of course on the complexity of the selection strategy one wants to use.

The current rule selection method of an active scenario can be replaced by
another method. This is done by the object-level built-in predicate symbol
directive as being introduced in §6.5.3. When the expression
directive (aRuleSelecticnMethod) is encountered in a rule of the active
scenario and aRuleSelectionMethod is a valid selector of a rule selection
method, then from that moment on the rules are selected according to this method.
Changing the rule selection method of a scenario only affects the rule selection of
the current life-cycle of the scenario. When the scenario terminates and it is
activated another time the rule selection method will just be the original one that
the scenario has been compiled with.

The actual application of rules takes place by performing the methods of
compiled rules as described in § 8.2.3. It is triggered by the message:

8.4 The ADDL interpreter 147

self apply: rule

which applies the rule and administrates its results. Each rule has an instance
variable state which contains the return state of the rule after it has been
applied. It can be true, false, unknown, success, or failure. Each of them
is explained below.

true : A rule returns true if its antecedent can successfully be derived from the
scenario's world and the conclusions are consistent with the fact-base . The
goal of the scenario has not (yet) been reached.

false: A rule returns false if its antecedent can not be derived from the
scenario's world. The rule is not applicable and hence it fails.

unknown : A rule returns unknown if it is undecidable whether it is possible to
derive its antecedent from the scenario's world. The rule may succeed a next
time, when the object information state is more complete.

success: A rule returns success if its antecedent can be derived and the
scenario's goal can be concluded from the rule's consequent.

failure: A rule returns failure if, though the antecedent can be derived, the
conclusions of the consequent are inconsistent with the fact-base . In fact, this
means that the knowledge-base is in contradiction with the object information
state. This inconsistency needs to be removed in order to proceed the design.

The message apply : returns #active in the first three cases. It returns
#success in the fourth case and #failure in the last case. In the last two cases,
the execution of the scenario halts .

After successful application of a rule the variables bindings which are
registered in an instantiation set are stored in an instance variable of the compiled
scenario, called ruleBindings. It is a dictionary with the selectors of the
compiled rules as keys. Their values contain informa:ion about the application of
rules. The information contains the variable bindings of each successful
application of a rule during the life-time of a scenario. It prevents a rule from being
applied more than once with the same variable bindings. Furthermore it is used to
record the behaviour of scenarios. The ruleBindings are reset each time a
scenario is activated.

8.4.3 Belief revision

In the previous section, it has been stated that a rule returns a failure if the fact
base is inconsistent with a derived conclusion. Such an inconsistency occurs if a
positive fact is being asserted to the fact-base while it already exists as a negative
fact, or vice versa. Another, less fatal , inconsistency can occur when an object's
attribute receives a value. If I recall the built-in predicate symbol value, the
following object-level atom is an example of an assignment of a value 8 onto an

148 Chapter 8. Implementation

attribute x of an object a

value.(a:x,8)

The above is a valid expression if the attribute x was nil prior to the assignment.
However, there is an inconsistency if the attribute has already been set at an earlier
state of the design process and that value is different from the new one. Such an
inconsistency is allowed because I consider the old value an assumption which
has been replaced by the new value. Such a mechanism is called belief revision,
since an attribute value is believed to be true until it has been determined that
another value suits better.

The belief revision mechanism is not simply a matter of replacing an old value
by a new one. Some assumptions may be 'based on' a value that has been or will
be revised. In case of a revision they can be based on a non-existing assumption.
Below I explain the meaning of 'based on' in this context. Such assumptions
depend on the revised assumption. All dependents of a revised assumption need
to be removed when a revision takes place. Those dependents may on their turn
have assumptions that depend on them, and so on. Therefore, the revision
mechanism may result in a chain of assumptions which are removed. Technically,
removal of an assumption amounts to setting the attribute value of a dependent to
nil.

To aid this mechanism, a dependency graph of assumptions is maintained
during the course of the design process. Each time an assumption is made, it is
registered on which assumptions it is based. Suppose the following expression is
encountered

value (a :x, t)

where a is the name of a composite object, x is one of its attributes and t is a
term from an object-level language. Then the value of t may be obtained by
using some attribute values which are assumptions. The value of the attribute x
depends on these assumptions. The dependencies are determined while the
antecedent of a rule is derived. The mechanism is illustrated by the following
example of a local operation and a rule:

:plus[L] = { self : a + L:b}

IF p(X , Y, Z) & equal(N,X :plus[Y])
THEN value(Z:c,N+l)

Suppose the variables x, Y, and z are unified to the composite objects pl, p2,
and p3, then the attribute value z of p3 depends on the attribute values a of pl
and b of p2. If either of the two attributes a or b is revised, then the value of c is
set to nil.

Belief revision as described above takes place entirely at the object-level. It is
concerned with the revision of attribute values of objects. At the meta-level , belief

8.5 The programming environment 149

revision deals with the retraction of literal facts. During the design process, a user
may remove a literal fact from the fact-base because he is not satisfied with the
current state of the design. Such an action causes a total revision of the fact-base
since each literal fact which has been asserted after the removed literal fact must be
removed as well. For example, the following meta-level expression removes the
fact p (a) and all its successors from the fact-base11 .

retract (p (a))

To enable this mechanism each asserted literal fact has a time-stamp attached to it.
A time-stamp is a natural number which increases as the design proceeds. When a
retraction occurs, all literal facts which have a time-stamp greater than the time
stamp of the retracted literal fact are removed from the fact-base. After a retraction
the time is reset to the moment of assertion of the retracted literal fact. The design
proceeds from the next rule after the one which asserted the retracted literal fact.

8.5 The programming environment
Since ADDL has been developed in Smalltalk, its programming environment is
implemented in the same language. It consists of i) a scenario browser, which aids
the ADDL programmer in writing scenarios, ii) a prototype browser in which the
prototype definitions are given, and iii) an experimental !CAD system, in which the
scenarios are executed. The following three sections present the three tools
briefly.

8.5.1 The scenario browser

The scenario browser is very similar to the Smalltalk system browser. It allows for
the ADDL programmer to browse through categories of scenarios. Scenarios can be
created, edited and removed. The scenario browser consists of four views, as
shown in Fig. 8.6. Each scenario is organized in a category for convenience of the
programmer. The top-left view contains a list of scenario categories. The
programmer can select a category by clicking the mouse on one of the items. The
name of a category is highlighted when it is selected. By selecting a category, the
names of the scenarios which belong to that particular category are shown in the
bottom-left view. These are either meta-level scenarios or object-level scenarios
depending on the state of the switch in the middle-left view. In Fig. 8.6 the switch
object is turned on.

In the right view, the code which represents a scenario is viewed. It consists
of two sub-views. The upper view shows the rules of a scenario, while the bottom
view give its (optional) local operations. Fig. 8.6 shows the code which belongs to

11 The meta-predicate symbol retract has not been introduced in Chapter?, since it is
purely used for control and it does not add to the process information state.

150 Chapter 8. Implementation

Scenario Browser
.,, 1.,,

--------- ~ solve Limit PositionsOfSlot ~
leverDesign
lineairMotionDesign I ",tartPo,;ttan(Pt) & confact(#J,Pt) & •Pln(P) slotDesign
geometry THEN value(Pt:x,F:startPoint(P)) & value(Pt:y,0)

features
--------- IF endPosition(Pt) & contact(#,F,Pt) & isPin(P)

THEN value(Pt:x,F:startPoint(P)) & value(Pt:y,0)

ii
~ meta I ► object

IF startPosition(Pl) & endPosition(P2)
& notNil(Pl :x) & notNil(P2:x)

.,, THEN limit PositionsOfSlot

--------- ~
solveGeometryOfSlo

I sciNellmltP<totiliCi.{!
ii solveRefineSlot

solveSpecificationsO
.,, I

:startPoint(PJ = (self:x + P:diameter / 21 ~ ---------
:endPoint(P) = (self:x - P:diameter / 21 ~ 'ii ~

Fig. 8.6 Scenario Browser that shows an object-level scenario of the category slotDesign.

the object-level scenario solveLimitPositionsOfSlot of the category
slotDes ign. In each of the views (except for the switch view), different pop-up
menus are active offering commands which are appropriate to its contents.

The commands for the category view are listed in the order in which they
appear in the menu. In this view (and others), the menu has fewer options when
no category has been selected. The commands marked with • are only active
when a category has been selected. Each command is presented below.

file out* All scenarios which belong to the selected category are stored in a file
whose name is prompted. The file can be read-in by another ADDL

environment or can be used as a back-up.

print out• All scenarios which belong to the selected category are pretty
printed in a file whose name is prompted.

add category A category name is prompted. The new category name is added
immediately above the currently selected category (if one is selected) or at the
bottom of the list.

rename· A new name is prompted. The current selection is replaced by the new
name both in the list and in all scenarios under the selected category.

8.5 The programming environment 151

remove· The selected category name is removed from the list. All scenarios
under the selected category are removed from the system. For safety reasons,
it is first asked whether the scenarios should really be removed.

update The category listing is brought up to date. It may be necessary after filing
in a new category or adding one in another scenario browser.

The commands for the view which shows a list of scenario names (in short
scenario view) are exactly the marked commands of the category view. They are
only active if a scenario name is selected. Obviously, the commands operate on
the selected scenario names instead of the selected category.

The code view allows a programmer to edit scenarios. It shows the rules and
local operations of a selected scenario, if a scenario is selected. Otherwise, it
shows a template scenario. The commands offered by the pop-up menu are the
default commands of a Smalltalk code view. They are again, undo, copy, cut,
paste, accept and cancel. The first five commands aid the programmer in
editing the code. There meanings are obvious. The command accept invokes the
ADDL compiler. If the code is correct, it is stored and the code view presents a
pretty-printed version of the code to the programmer. Otherwise, it prompts an
appropriate error message to the programmer. The command cancel removes all
changes introduced to the code and restores the original contents of the code
view.

8.5.2 The prototype browser

The aim of the prototype browser is to define and edit the prototypes of composite
objects. The outlook is comparable to the scenario browser. It consists of a
category view; a prototype view, a definition view, a operation view, a code view,
an attribute view, and a value view. Fig. 8.7 depicts an example of a prototype
browser. The operation distance : of the prototype point of the category
geometry is highlighted.

The commands of the category view are the same as those of the category
view of the scenario browser. Likewise, the commands of the prototype view are
the marked commands of the category view. The definition view enables a
programmer to create and modify prototype definitions. The possible
modifications are changing the name of the parent and adding, deleting and
modifying the attribute names. The operations of a prototype definition can be
accessed through a separate interface, viz. the operation view and the code view.

The attribute view and value view show the attribute names of a prototype
definition and their respective (default) values. The attribute view has only a single
command and the value view has no commands. The attribute view allows a
designer to modify the value of an attribute. This value is then used as a default
value upon instantiation of an object of the involved type. The operation view lists

152 Chapter 8. Implementation

Prototype Browser
.., , .., ,..,

I Operations I
------- ~- ------ ~ type: 'point' r----- _,J
aspectMode I abstractForrr parent: 'compositeObject'
designObjec cylinder attributes: 'x y '

~f~ features face operations: 'distance: ' ------
geometry point
guide prism
motion Mech -+-----
objectlnMoti

~ ~ '"';' ~
Attributes I Values I"' I

.., , .., I distance: aPoint ~
------- ~------- ~ I dx dy I
X nil
y nil dx := (self attribute: Ix) - (aPoint attribute: #x).
------- ------- dy := (self attribute: #y) - (aPoint attribute: #y).

A(dx • dx + (dy • dy)) sqrt

I~ ':ii :ii

Fig. 8. 7 Prototype Browser focussed on the prototype point of the category geometry.

the operations that are defined for a prototype. The possible commands are the
same as for the prototype view. The source code of the operation can be edited in
the code view, which gives the programmer the same commands as the code view
of the scenario browser.

Currently, the source code of operations is Smalltalk code. An accepted
operation is implemented as an instance method of the class ADDLObject. The
interpreter checks whether an operation is valid to a certain object before it applies
the standard Smalltalk message passing mechanism. The class ADDLObj ect also
defines the instance method attribute : which allows the programmer to access
the attribute values of a composite object. A future implementation will have a
separate operation compiler which allows for operations written in ADDL code
similar to that of operations local to a scenario. For example, the expression
"aPoint attribute : #x" will then look like 'aPoint : x'. So far, the
straightforward implementation of the operations in Smalltalk gives me more
programming liberties.

8.5 The programming environment 153

8.5.3 The experimental ICAD system

The current !CAD system is merely constructed to test the ADDL interpreter than to
act as a designer's tool. It is used to run scenarios and to show intermediate and
final results of the execution. A future version must have a user-interface that
better suits the designer's requirements. Then, the designer can play an active role
in the design process choosing scenarios dynamically. Now, the only role being
played is that of a spectator watching the system doing the design. Fig. 8.8 gives an
overview of the structure of the experimental system. It consists of eleven views
which are schematically depicted.

l 5

2

3

4 11

l . category view
2. scenario view
3. objects view
4. object view
5. facts view

Fig. 8.8 Overview of the experimental system.

6. process view
7. wireframe view
8. dialogue view
9. button view
10+ l l. gauge views

Views #l and #2 are means to select a scenario name and state it as a goal.
Other views show the current state of the design object description. There is a
view on the object-base and on an individual object. There is a view on the fact
base or on a portion of it. Furthermore, there is a view on the process parameters.
Finally, a wireframe view gives a geometric representation of the design object.
These are the view #3 ti! #8 in the picture. The remaining views are interfaces to
the user of the system. One view prompts the user for answer upon queries asked
by built-in predicate symbols. Another view is a button that must be pushed if the
user wants to continue. The last two views are gauges which allow the user
rotating the wireframe model (views #9 till #ll).

The category view of Fig. 8.9 highlights the category l everDesign of which
the scenario so l veLevel0 is selected in the scenario view. This view offers three
commands, viz. goal, update and reset . The first command starts a design
session. It asserts a top-level goal to the process information state, which is then
going to be solved by the system. The update command assures that the list of
scenarios is up-to-date. This may be necessary when the user is simultaneously
editing and executing scenarios. The reset commands sets all view that focus on
the design object model to an empty state.

The objects view presents a list of names of all instantiated objects at a
particular moment of the design process. It represen:s the contents of an object
base. The user may select an object name, as a result of which the object's internal
state is presented in the object view. The object view shows the type of an object,

154 Chapter 8. Implementation

Experimental System
V 1v Iv

leverDesign

·1
------- .,clgoal(solvelimitPositionsOfGuide) .cl
haspart(lever1 ,slot1) goal(solvelimitPositionsOfSlot)

] lineairMotion hasPart(slot1, ace5) success(solvelimitPositionsOfSlot)
slotDesign hasPart(slot1 ,face6) exact(isSlot(slot1))
geometry hasPart(slot1 ,face?) success(solvelimitPositionsOfGuide)
features hasPart(slot1 ,face8) ------- success(solvelineairMotion)

isSlot(slot1) success(solvelevel0) ':if limitArrangement(pin1 ,slot1 ,I ~

V UimitArrangement(pin1 ,slot1 ,I
------ r------ ·~ solvelevel0
------ JWi

xRotate I
- 0

':ii - - 20
- 40

V I - 60 hole1 ,~ - 80
lever1

I ~
- 100

pin1

~
- 120

~o 0~ pin2 - 140

II - 160
point1 - 180
point2 '~~, slot1
------ ':if

V I - 0
type: slot .cl - - 20
attributes:

~
- 40

length: 300 - 60
- 80

width: 50 - 100
position: 50 - 120

operations: - 140
- 160

objects: - 180 •~--c vi

Fig. 8.9 Experimental system focussed on the prototype point of the category geometry.

its attributes and their values, its operation names, and a set of object names being
part of the selected object. The objects view has a single command inspect

which opens a view on the selected object. It enables the user to take a closer look
at the object.

The view on the fact-base has a conditional and an unconditional state. If no
object name has been selected in the objects view, the fact-base view shows the
entire set of literal facts appearing in the fact-base. If an object name is selected,
then it shows only those literal facts which have the selected object name in their

8.6 Discussion 155

argument list. Therefore, it can be regarded as a world which is focussed on a
particular object. The commands of the fact-base view are inspect and sort.

The first is equivalent to the inspect command of the objects view. The second
command sorts the literal facts of the viewed set alphabetically. The process view
shows the asserted process parameters in chronological order. This view is the
only view which is synchronously updated as the design proceeds. Therefore, as
soon as a new process parameter is asserted to the process information state, it is
shown to the user. The other views only update their contents, when an update
signal has been given by the system.

The wireframe view provides a geometric representation of the design object
description by means of a wireframe model. There is a prototype called
geometricModel which has a single attribute model and which responds to six
operations, viz. close, create, dimension:, left:, top:, and update:. The
first five operations deal with opening and closing the view on the model. When
an update message is sent to the object, it displays all objects which are part of it as
defined by the has Part predicate symbol. It only displays those objects for which
a display operation has been defined. The user can rotate the wireframe model
along the x-axis and the y-axis using the gauge views. An update message halts the
design process. By pushing the continue button the user can proceed the design
process.

The dialogue view enables the system to interact with the user in a plain
manner. Each query posed by a user-interface predicate symbols opens a distinct
dialogue box in the dialogue view. The box vanishes after the user has given an
answer.

8.6 Discussion

This chapter presented the implementational aspects of ADDL. If I compare the
amount of time spent on the three major activities , i.e., the compiler, the
interpreter, and the experimental IIICAD system, the implementation of the
interpreter was by far the most time consuming. During the development of ADDL,

its specification changed due to renewed insights obtained by experience and by
discussions with other researchers. Especially, during my stay in Japan and
afterwards because of my discussions with Jan Treur, the implementation went
through a number of major changes. Some of them caused minor adjustments;
others caused major revisions. This section does not discuss the specified but
unimplemented features of ADDL. The reader can find this discussion if§ 10.4.

For instance, the decision to omit a disjunctive conclusion caused only minor
changes to the compiler and the interpreter. However, the move to a meta-level
architecture required the implementation of an entire new compiler and
interpreter. These two changes are obvious to the user, since they lead to a
modified syntax. The switch from unification by instantiation pair lists to

156 Chapter 8. Implementation

unification by backtracking, is less obvious to the ignorant user, although it has
made the unification sound and it increased the efficiency by a factor two.

The use of Smalltalk as implementation language has been a great help for
introducing the improvements to ADDL. Its flexible programming interface made it
possible to alter the code dynamically. Its ability to reuse code greatly aided in
adding functionality, such as meta-level reasoning, to the system. People who are
mainly concerned about the performance of applications, criticize Smalltalk for
being slow. I think that the time that you win during the development of an
application, greatly outweighs a minor loss of run time performance. This is
certainly the case for projects such as the IIICAD project, where the system
specifications are highly contingent and are due to many revisions. In the event
that the system is fully crystallized, it can easily be moved to a language like C++
[Stroustrup, 1986] in order to improve performance. However, it is argued that as
soon as C++ obtains the same functionality as Smalltalk (in terms of class
hierarchy) it will show performance comparable to Smalltalk. It may be the price
you pay for the flexibility of object-oriented programming.

9
An Example Design System in ADDL

9.1 Introduction

This chapter gives an application of ADDL by showing the implementation of an
example design system. Parts of the material presented here have also been used
in [Xue et al. , 1990]. The class of design problems tackled by the system involves
the design of a linear motion mechanism introduced in Chapter 3. I show that it is
feasible in ADDL to build a meta-model, which represents the solution for a certain
category of design problems in a general way. In a recent paper [Veerkamp et al.,
1990], I introduced the meta-model mechanism as a representation of the
qualitative behaviour of a design object. The meta-model mechanism plays a dual
role in the design system.

First of all, to create an aspect model (see Chapter2), a designer must know
physical laws relevant to the aspects being modeling. Since modeling involves the
creation of representations of the design object in terms of specific physical
phenomena, these representations are called aspect models, the system must know
about the behaviour relevant to the aspect. Different aspect models derived from
the same design object description are not independent. In order to make
consistent models of the design object, relationships among aspect models must
be known. Knowledge about physics in the meta-model is indispensable to
maintain the consistency among aspect models.

Secondly, knowledge about available structural components and physical
phenomena is necessary to perform conceptual design. At this stage of the design
process, the functional specification is mapped onto an abstract anatomical
structure. Such a mapping is achieved by means of a behavioural model. The
system breaks down the specifications into behaviours of the design object, and

158 Chapter 9. An Example Design System in ADDL

determines structures which embody the behaviour. Knowledge about structural
components and physical phenomena is used by the system to accomplish the
mapping. The result of the mapping is a meta-model which represents the
qualitative behaviour of the design object.

The meta-model in the example design system describes the qualitative
behaviour of a linear motion mechanism. In order to include new designs, the
addition of specific solution dependent scenarios is the only thing a knowledge
engineer has to do. The names of solution dependent scenarios in the system start
with solveSlot, or solveShaft, e.g. solveSlotLimits. The meta-model
mechanism increases the possibilities to use the system for creative design, since
scenarios for a new type of solution can easily be added. A restriction is that the
type of the design problem stays within a known category for which there exists a
meta-model description.

At least three different approaches can lead to the design of a linear motion
mechanism. A first approach uses a slot and a pin, another uses a shaft and a
slider, and a third approach uses a rail and a table to construct a linear motion
mechanism (see Fig. 9.1). All three approaches employ the same meta-model
description in ADDL. The aspect models which are created on the meta-model
differ, e.g. each type of solution has its own geometric and kinematic models.

slot+ pin shaft + slider rail+ table

Fig. 9.1 Three possible approaches to construct a linear motion mechanism.

To aid the design of a linear motion mechanism, a number of scenarios are
specified and implemented in ADDL. There are two categories of scenarios, viz.
meta-level and object-level scenarios. The former have the knowledge about how
to design, they direct the design process and describe what kind of actions must be
performed concerning the current state of the design object representation. The
latter have the knowledge what to design, they model the design object and add
new information to the design object representation obtaining a more precise
description [Takeda et al., 19901. Meta-level scenarios evaluate the process
information state and assert design goals and other process parameters. Either
(other) meta-level scenarios or object-level scenarios can be activated to satisfy
these goals. The meta-level and object-level interpreters take care of this
mechanism (see Chapter7 for a detailed discussion on this subject). Each stage of
the design process (i.e., conceptual, fundamental , and detailed) has its own sub
set of both categories of scenarios associated with it.

9.2 A linear motion design system 159

This chapter is subdivided into four parts. In § 9.2, I present the example
design system. The scenarios which control the the conceptual, fundamental and
detailed stages of the design process are given in § 9.3 till § 9.5. Finally, § 9.6
concludes this chapter.

9.2 A linear motion design system
To solve the linear motion design problem a simple design system is implemented
in ADDL. It is not intended to be applied to an actual design problem. The system
merely shows a very small part of a large intelligent CAD system. In this respect I
want to stress that in a full system the number of rules in a scenario will be greater.
The overall idea will nevertheless be the same. The system shows how the design
process is directed by means of meta-level scenarios, and it shows how a design
object representation is developed by using object-level scenarios.

The system's runtime environment consists of i) meta-level scenarios that
control the design process, ii) object-level scenarios that manipulate the design
object description, iii) a process information state consisting of design process
information, and iv) an object information state consisting of a fact-base containing
literal facts that describe the design object's structure and an object-base with
attributes that describe the design object's data. The first two represent the static
knowledge of the system, while the last two represent the dynamic information
(see Fig. 9.2). The process information state and the object information state grow
as the design proceeds. Meta-level scenarios augment the process information state
by asserting goals, declaring the success of goals, and adding process parameters.
Object-level scenarios augment the object information state by asserting atomic
statements to the fact-base, by adding objects to the object-base, and by assigning
values to objects' attributes [Takeda et al. , 1990].

state description knowledge

meta process information state meta-level scenarios

object object information state object-level scenarios

Fig. 9.2 Static and dynamic aspects of ADDL

9.2.1 The knowledge base

The system's knowledge base consists of five meta-level scenarios and eight
object-level scenarios. Actually the number of object-level scenarios is greater, but
I omit the scenarios which give a design solution different from the slot and pin
solution. The top-level goal of the system is lin earMotion , which is solved by a

160 Chapter 9. An Example Design System in ADDL

meta-level scenario called solveLinearMotion. This scenario contains four rules
of which the first three assert sub-goals. Each of these sub-goals are solved by
either meta-level or object-level scenarios. A meta-level scenarios may on its tum
generate new sub-goals, and so on. Fig. 9.3 shows the goal structure as specified
by the meta-level scenarios. It is equivalent to the goal structure presented in
Chapter 3 though the goal names here are more concise for reasons of
implementation.

I motionMetaModel I
motionSpecs

guideSpecs
slotSpecs

I slotGeometry I
guideGeometry >-- -t I angleOfFaces I

I motionQualities I
linearMotion >--.. (guidelimits)i-----e~lotlimits

I motionFault I
guide Refinement

slotRefinement

I slotGeometry I
I angleOfFaces

(guidelimits)i-----t~lotlimits

Fig. 9.3 Goal structure as specified by the meta-level scenarios.

A set of asserted goals describes a process information state. The success of a
goal or sub-goal is also registered in that process information state. Thus, the
example design system described in this chapter aims at satisfying the goal:

goal(linearMotion).

The meta-level interpreter always tries to solve the most recently asserted goal or
conjunction of goals first (depth first strategy).

The system employs the type hierarchy shown in Fig. 9.4. There is a meta
level and an object-level type hierarchy. The meta-level hierarchy consists of the
primed types of the object-level hierarchy plus the type obj ectAtom. In the

9.2 A linear motion design system 161

sequel, I omit for convenience the pnmmg of meta-level types unless when it
causes confusion. I use the following short-hand notations for the types:
object:0, composite:C, objectAtom:A, primitive:P, pivot:PV,
guide : GU, point:PT, face:FA, objectinMotion:0M, lever:LE,
sliderDevice : SD, motion:MN, slot:SL, shaft:SH, pin:PI, slider:SR,
symbol : SY, type: TY, string : ST, number: NU, and array : AR. E.g. the type
guide has the super-types composite and object, and it has the sub-types
slot, and shaft. Each constant belongs to one of these types and each function
evaluates to a type. All predicate symbols are defined over these types. For each
scenario in the system, Appendix 3 gives a signature containing the types,
constants, functions and predicate symbols being used in the scenario.

Meta-level types

--------1~
~~ ~p~

HO ' GU ' PT ' OM ' FA' LE ' SD' MM' SY ' ST ' IN ' AR '

/\ /\ I
SL' SH' PI' SR ' SY '

Object-level types --------0--------c p

~~ ~ ~
HO GU PT OM FA LE SD MM SY ST IN AR

/\ /\ I
SL SH PI SR SY

Fig. 9.4 Meta-level and object-level type hierarchy.

The signature of a scenario s is denoted by L (s l . Certain predicates in the
system (e.g. equal, greaterEqual, value, uiNumber, isNil, etc.) are
evaluable predicates. When one of these predicates is encountered in a rule , the
procedure attached to it will be evaluated (see Chapter6 for precise descriptions).
The design problem, that this chapter deals with, is a part of larger design problem.
Only those scenarios, which exclusively deal with the linear motion mechanism
are presented in this chapter. Therefore, the process actually steps into a certain
process information state of the overall design. The signature that describes that
state is L (process-information-state). The column 'Meta-constants'

contains references to object-level proposition symbols. The column 'Process

parameters' contains the process information state being reached so far.

162 Chapter 9. An Example Design System in ADDL

L(process-information-state)

Type Short Meta-constants

objectAtom

Meta-predicate

goal

A

Type

A

levelO, linearMotion

Process parameters

goal(levelO), goal(linearMotion)

The fact-base initially has the signature L (fact-base). The column 'constants'

gives the constants which are present in the fact-base at the initial state of the
system. The column 'Literals' presents the literal facts being present at that state.
Since the process information state and the fact-base grow during the design
process, its signature will grow as well. The extended signatures remain within the
maximum signatures presented in Appendix 3.

L(fact-base)

Type

lever

pivot

face

composite

Predicate

isLever,

isPivot,

isFace

adjacent

hasPart

Short

LE

PV

FA

C

Type

C

FAXFA

cxc

Constants

leverl

pivotl

facel, face2, face3, face4

Literals

isLever(leverl),isPivot(pivotl)

isFace(facel) ,isFace(face2)

isFace(face3) ,isFace(face4)

adjacent(facel,face2) ,adjacent(face2,face3)

adjacent(face3,face4),adjacent(face4,facel)

hasPart(leverl,facel),hasPart(leverl,face2)

hasPart(leverl,face3),hasPart(leverl,face4)

hasPart(leverl,pivotl)

9.2.2 Overall design process

The overall design process is controlled by the meta-level scenario
sol veLinearMotion. The design process is subdivided into three stages,
conceptual, fundamental, and detailed design. During the first stage of design, the
system constructs an abstract anatomical description of the design object. Then,
during fundamental design, it further models the description modeled until a more
concrete description is obtained. If this description is not precise enough, it is
refined during the detailed stage. The following rules and the signature in
Appendix 3 specify the knowledge-base and the language of the scenario
respectively.

9.2 A linear motion design system

Name (solveLinearMotion)
Meta-rules

1 IF unknown(isGuide(W))

THEN goal(motionMetaModel)
& goal(guideSpecs)

2 IF abstract(isGuide(w))
THEN goal(guideGeometry)

& goal(motionQualities)

& goal(guideLimits)

3 IF concrete(isGuide(W))

& -exact(isGuide(W))

THEN goal(motionFault)

& goal(guideRefinement)

& goal(guideLimits)

4 IF exact(isGuide(w))

THEN success(linearMotion)

163

" conceptual design "

" fundamental design "

"detailed design "

The scenario contains four rules , the first three rules denote three consecutive
stages of the design process, i.e. , conceptual, fundamental, and detailed design.
The fourth rule contains the stop condition for a successful completion of the
design of a linear motion mechanism, viz. the object in motion can move
unobstructed inside the guide of the motion, i.e., the design meets the
requirements as imposed by the designer. The process parameter exact denotes
this fact. This meta-predicate symbol is asserted when the description of the
involved object is an exact anatomical description. Therefore, the condition
exact (isGuide (w)) evaluates to true when there exists an exact anatomical
description of a guide. The goal goal (linearMotion) and hence the design of a
linear motion mechanism succeeds, if this condition is met. Below, I treat the first
three rules in more detail.

The first rule of sol veLinearMotion reads as follows: if the definition of an
object of type guide is specified as unknown in the process information state then
assert the conjunction of goals:

goal(motionMetaModel) & goal(guideSpecs).

When these two goals have been satisfied, the system has created an initial abstract
anatomical model of the design object. Furthermore, the specifications for the
linear motion mechanism have been given in dialogue with the designer. The
variable win the function isGuide (w) is an pseudo variable that denotes that the
programmer does not care to which constant the argument of the function is
actually bound. This mechanism is similar to the "don't care" symbol used in
Prolog [Clocksin and Mellish, 1981].

164 Chapter 9. An Example Design System in ADDL

Next, the second rule is applied if there exists an object of type guide in the
fact-base and if an abstract anatomical description of that object has been
constructed. Note that the query abstract (isGuide (co)) succeeds if either a
guide or an object which is defined as a subtype of a guide is found (see the
discussion in Chapter6 on the object definition built-in predicates). For example,
the unification of isGuide (co) and isSlot (slotl) succeeds because slot is a
subtype of guide. The rule asserts the conjunction of goals:

goal(guideGeometry; & goal(motionQualities)
& goal(guideLimits).

The purpose of these goals is to express that a concrete anatomical model of the
design object should be built by defining the objects' geometrical structures and by
defining kinematic properties. Determining the limit positions of the motion
mechanism is the goal of guideLimits. These positions are used to check
whether the object in motion is inside the guide.

The third rule is applied when a concrete anatomical structure of the guide
has been described that does not satisfy the requirements, i.e., the description is
not yet exact (the meta-predicate symbol concrete and exact). The third rule
asserts the conjunction of goals:

goal(motionFault) & goal(guideRefinement)
& goal(guideLimits).

The goal of motionFault is finding inconsistencies between the geometric and
kinematic aspect models . The properties of the guide are adjusted dependent on
the kind of inconsistency and a new geometric model will be obtained. The
second goal (guideRefinement) aims at achieving these two issues. Note that the
last goal is the same as that of the previous rule. If the object has an exact
description (exact), then the design has been completed. Otherwise, the third rule
is applied again trying to find a different solution.

Each of the first three rules of sol veLinearMotion represents a certain stage
of the design process. The first rule expresses when conceptual design should be
done, the second rule does the same with respect to fundamental design, and the
third rule stands for detailed design. The backtrack rule selection method controls
the execution of a rule, i.e. , if the condition of a rule fails, the previous rule is tried
(if its condition still holds). Backtracking over these rules proceeds as follows. In
this scenario a condition of a rule can only be met if the previous rule succeeded.
For example, the first rule is executed as long as isGuide (co) is unknown. In
other words, an object of type guide cannot be found in the meta-model. By the
same token, the third rule is applied as long as the object in motion does not have
an exact anatomical description. In the following three sections I explain each of
these three design stages, and I show the state of the meta-model at the end of
each stage.

9.3 Conceptual design of lever and pin 165

9.3 Conceptual design of lever and pin
In this section, I show how the conceptual design of a linear motion mechanism is
performed. At this stage the process information state contains the following

process parameters (the length of the dashed line indicates the level of control):

goal(linearMotion) ,
---goal(motionMetaModel) & goal(guideSpecs).

The bottom line of the meta-facts contains a conjunctions of two goals. The meta

level interpreter schedules the lastly asserted (conjunction oD goal(s) at highest
priority. The conjunction will successively be solved by the object-level scenario

solveMotionMetaModel and the meta-level scenario solveGuideSpecs. The
former establishes an initial meta-model of the linear motion mechanism, and the

latter gives two new design goals to give the specifications for the motion
mechanism and for the slot and pin.

9.3.1 SolveMotionMetaModel

The object-level scenario sol veMotionMetaModel has the following rules.

Name (solveMotionMetaModel)

Rules

1 IF

THEN

&

isLever(M) & typeFor(S , slot) & ty~eFor(P,pin)
isSlot(S) & hasPart(M,S) & isPin(P)
isMotion(M)

2 IF isSliderDevice(M) & typeFor(S,shaft)
typeFor(Sl,slider)

3

&

THEN

&

IF

&

isShaft(S) & hasPart(M,S) & isSlider(SL)

isMotion(M)
is0bjectinMotion(0) & isGuide(G)

typeFor(Pl,point) & typeFor(P2 , point)
THEN isPoint(Pl) & isPoint(P2) & linearMotion(0,Pl,P2)
& limitArrangement(0,G,Pl) & limitArrangement(0 , G, P2)

& motionMetaModel

The scenario sol veMot ionMetaModel creates an abstract anatomical
representation of the design object. It asserts the e ntities which construct the linear
motion mechanism. The first rule is applied when a guide is not yet known and
when the device which supports the motion mechanism is a lever. The rule asserts
a slot, being part of the lever, and a pin to the fact-base. Furthermore, it defines
the lever as an object of a multiple type by asserting

isMotion(leverl).

By doing so, the lever inhe rits the attributes of both the type lever and mot ion.

166 Chapter 9. An Example Design System in ADDL

In another design, when the mechanism involved is a 'slider-device', the fact
base will contain the literal fact isSliderDevice (}. As a result, the condition of
the second rule will succeed and the second rule will be applied. In that case, a
shaft and a slider are asserted. In this chapter, I discuss the situation in which the
first rule is applied. The third rule of sol veMotionMetaModel stores the general
qualitative properties of a linear motion mechanism in the fact-base. These
properties are independent of a chosen solution and are used to check and
maintain the consistency of the design object model. The rule states that there are
two points:

isPoint(pointl} & i sPoint(point2}

and the object in motion (in this case the pin) makes a linear motion between
these points:

linearMotion(pinl,pointl,point2}

Furthermore, in both points there exists a limit arrangement between the object in
motion and the guide of the motion (in this case the slot):

limitArrangement(pinl,slotl,pointl}
limitArrangement(pinl,slotl,point2}

These limit arrangements are used to determine at a later stage of the design
whether the object in motion is inside the guide of the motion. When these facts
are asserted to the fact-base, the abstract anatomical description is made. It asserts
through the proposition symbol motionMetaModel that the scenario's goal has
been reached. The scenario terminates but the original goal consists of a
conjunction of two goals. Therefore, the meta-level scenario sol veGuideSpecs
will subsequently become active.

9.3.2 SolveGuideSpecs

This meta-level scenario derives that a conjunction of two goals is relevant, the first
goal deals with the specifications for the motion mechanism, the second one deals
with the specifications for either a slot or a shaft dependent on the chosen
solution. The scenario's rules are given below.

Name (solveGuideSpecs}
Meta-rules

1 IF positive(isSlot(ro))
THEN goal(motionSpecs} & goal(slotSpecs}

2 IF positive(isShaft(ro}}
THEN goal(motionSpecs} & goal(shaftSpec s }

3 IF positive(isGuide(G}} & success(motionSpec s }
THEN abstract(isGuide(G}) & success(guideSpecs)

9.3 Conceptual design of lever and pin 167

The scenario has three rules but only one of the first two rules will be applied, in

this case the one that is applicable to the slot and pin solution. When the first rule
is applied the process information state is extended by a conjunction of two goals.
Its contents is now:

goal(linearMotion),
---goal(motionMetaModel) & goal(guideSpecs),
---success(motionMetaModel) ,
------goal(motionSpecs) & goal(slotSpecs).

The last rule of the scenario asserts that the anatomical description of a guide is

abstract if there is a positive fact i sGu i de (G) in the object information state and

the goal named motionSpecs has been satisfied. Note however, that both the
positive fact isSlot (slotl) and isShaft (shaftl) match against the query

i sGuide (G) since they are both subtypes of guide. But first , the scenario
solveMotionSpecs becomes active.

9.3.3 SolveMotionSpecs

In this object-level scenario the specifications for the linear motion mechanism are
given. These specifications are constrained as shown in Table 3.2 of Chapter 3. The
scenario has the following rules and operations.

Name (solveMotionSpecs)

Rules

1 IF isMotion(M) & isNil(M:start)

& uiNumber(' start of motion ' , S , M:halfWidth , M:innerRange)
THEN value(M : start,S)

2 IF isMotion(M) & isNil(M : end)

& uiNumber('end of motion' ,E,M:startWidth,M:motionRange)
THEN value(M : end,E)

3 IF isMotion(M) & notNil(M : start) & notNil(M:end)
THEN motionSpecs

Local operations

: halfWidth = { self :width * 0.5 }
:innerRange = { self : range - self:width * 1.5 }
:startWidth = { self:start + self :width

:motionRange = { self : range - self :width * 0.5 }

This scenario is active until the requirements for both the starting and ending po int

of the motion are specified. The first rule asks the designer to supply a value for

the start of the motion. It must be greater than or equal to half the width of the

lever and it must be smaller than o r equal to the distance of the right face of the
lever minus one and a half times the width of the !eve:-. The second rule does the

168 Chapter 9. An Example Design System in ADDL

same for the end of the motion. This value must be greater than or equal to the

starting point plus the width of the lever and it must be smaller than or equal to the

distance of the right face of the lever minus half the width of the lever.

Finally, the scenario succeeds if the condition of the third rule is satisfied, viz.

both the start and the end of the motion mechanism are known. The meta-level

interpreter gives control to the scenario associated with the next goal namely, the

object-level scenario solveSlotSpecs.

9.3.4 SolveSlotSpecs

In this scenario the designer gives the specifications for the slot and pin. These

specifications are constrained as is shown in Table 3.3 of Chapter 3. The following

rules and operations specify the scenario.

Name (solveSlotSpecs)

Rules

1 IF isSlot(S) & isNil(S:position) & isLever(L)

& uiNurnber('position of slot ' ,X,10,L:maxPosition)

THEN value(S:position , X)

2 IF isSlot(S) & isNil(S:length)

3

4

& notNil(S:position) & isLever(L)

& uiNurnber('l ength of slot ' ,X,L:width,L:maxLength[S))

THEN value(S:length , X)

IF isSlot(S) & isNil(S:width) & isLever(L)

& uiNumber('w~dth of slot ' ,X,10,L:widthMinusTol)

THEN value(S :width,X)

IF

&

isPin(P) & isNil(P:diameter)

isSlot(S) & notNil(S:width)

& uiNumber('diameter of pin' ,X,10,S:width)

THEN value(P:diameter,X)

5 IF isSlot(S) & notNil(S:length) & notNil(S :width)

& isPin(P) & notNil(P :diameter)

THEN slotSpecs

Local operations

:maxPosition = { self:range - self:width - 10 }

:maxLength[S) = { self : range - S:position - 10 }

:widthMinusTol = { self:width - 20}

The rules of sol veSlotSpecs determine in dialogue with the designer the

attribute values of the slot and the pin. These specifications a re constrained to the

effect that the slot is always positioned inside the lever. The constraints do not

check whether the slot is a valid solution to the linear motion mechanism. The

9.4 Fundamental design of lever and pin 169

meta-model mechanism validates the consistency of the design. Therefore, the
attribute values given in this scenario are assumptions which might be revised
during the design process. This happens during the detailed design phase.

The first rule determines the position of the slot which is constrained by the
length of the lever, and the minimum length of the slot itself, which is equal to the
width of the lever. The second rule gives the length of the slot, constrained by its
position, and the range of the lever. The width of the slot is provided by the third
rule, constrained by the width of the lever minus a certain tolerance. The fourth
rule gives the diameter of the pin, which must be smaller or equal to the width of
the slot. When all attributes are set, the last rule will be applied, and the scenario
will terminate.

9.4 Fundamental design of lever and pin
The completion of the first rule of the top-level scenario and the application of the
second rule result in the following set of process parameters of the process
information state

goal(linearMotion),
---goal(motionMetaModel) & goal(guideSpecs),
---success(motionMetaModel),
------goal(motionSpecs) & goal(slotSpecs) ,
------success(motionSpecs) , success(slotSpecs),
------abstract(isGuide(slotl)),
---success(guideSpecs),
---goal(guideGeometry) & goal(motionQualities)

& goal(guideLimits).

At the beginning of fundamental phase of the design process the meta-model
consists of an abstract anatomical description of the design object. During the
course of fundamental design the meta-model is transferred to a concrete
anatomical structure. At this stage the geometrical properties of the design object
are defined by a geometric aspect model, and the requirements for the desired
stroke length of the linear motion are determined by a kinematic aspect model.
The aspect models are created by the scenarios sol veGuideGeometry and
solveGuideLimits respectively. However, the length of the motion can only be
determined if I know the starting and the ending position of the motion. Therefore,
when the geometry of the motion mechanism is set up, these positions are
detected, for there is a contact between the object in motion and the guide of the
motion in these positions. This is done by the scenario sol veMot ionQual i ties.

9.4.1 SolveGuideGeometry

The scenario solveGuideGeometry is very similar to solveGuideSpecs. It

asserts a conjunction of three goals, the first to build the geometry of the guide, the

170 Chapter 9. An Example Design System in ADDL

second to determine the relative angle of all faces, and the last to create a wire
frame modeler to show the actual geometry. The scenario of the latter will not be
presented, because it is rather technical and it does not contribute relevant
information to the reasoning process. The rules of the (meta-level) scenario are:

Name (solveGuideGeometry)
Meta-rules

1 IF positive(isSlot(ro))
THEN goal(slotGeometry) & goal(angleOfFaces)
&

2 IF

goal(slotWireframe)
positive(isShaft(ro))

THEN goal(shaftGeometry) & goal(angleOfFaces)
& goal(shaftWireframe)

3 IF positive(isGuide(G))
& (success(slotGeometry) I success(shaftGeometry))
THEN concrete(isGuide(G)) & success(guideGeometry)

The scenario consists of three rules. Regarding the first two rules either the first or
the second is applied depending on the type of linear motion mechanism. In this
particular case the first rule is applied asserting the conjunction of goals

goal(slotGeometry) & goal(angleOfFaces).
& goal(slotWireframe)

The first goal is to build a geometric model of the slot and pin construction. The
purpose of the second goal is determining for each face the angle which it makes
whit the x-axis. The third goal activates a geometric modeler which shows a wire
frame representation of the current state of the design object. The last rule of the
scenario asserts that the anatomical description of a guide is concrete, if either the
goal slotGeometry or shaftGeometry has been satisfied. Furthermore, it
conclude that the goal of the scenario has been reached.

9.4.2 SolveSlotGeometry

The object-level scenario sol veSlotGeometry builds a geometric representation
of the slot and pin according to specifications given by the designer. A slot has a
rectangular shape consisting of four adjacent faces. The faces have an anti
clockwise orientation. A face has three attributes, an x-coordinate, a y-coordinate,
and an angle. For simplification, I use a 2-dimensional model. I assume that both
the lever and slot lay within a single surface, i.e., the x-y plane. The x- and y
coordinates specify the starting-point of a face. The ending-point of the face is
specified by the starting-point of the face it is adjacent to. A pin has only a single
face whose geometry is specified by the centre of the pin and the diameter. The
geometry of both the slot and pin has been given in Fig. 3.5 of Chapter 3. The
scenario has the following rules and operations.

9.4 Fundamental design of lever and pin

Name (solveSlotGeometry)

Rules

1

2

3

IF

&

isSlot(S) & isFace(Fl) hasPart(S,Fl)

adjacent(Fl , F2) & adjacent(F2 , F3)

& adjacent(F3 ,F4) & adjacent(F4 , Fl)

THEN value(Fl:x,S:position) & value(Fl:y,S:halfWidthUp)

& value(F2 :x,S:position) & value(F2:y,S : halfWidthDown)

& value(F3 : x,S:posLength) & value(F3 :y,S : halfWidthDown)

& value(F4 :x,S:posLength) & value(F4:y,S:halfWidthUp)

& slotGeometry

IF isSlot(S) & typeFor(Fl , face) & typeFor(F2,face)

& typeFor(F3,face) & typeFor(F4,face)

THEN isFace(Fl) & isFace(F2) & isFace(F3) & isFace(F4)

& hasPart(S,Fl) & hasPart(S,F2) & hasPart(S,F3)

& hasPart(S,F4) & adjacent(Fl,F2) & adjacent(F2,F3)

& adjacent(F3,F4) & adjacent(F4,Fl)

IF isPin(P) & typeFor(F,face)

THEN isFace(F) & hasPart(P,F)

Local operations

:halfWidthUp =

:halfWidthDown

self :width / 2 }

{ (self:width / 2) : negated

:posLength = { self:position + self :length}

171

The scenario consists of two parts. The first part (i.e., the first rule) determines the
x- and y-coordinates of the slot's faces. The second part (i.e, the second and third
rule) initializes the slot's and pin's geometry. This structure makes the scenario
generally applicable. If the geometry has not yet been initialized, the condition of
the first rule will not hold. The second and third rule will firstly be applied. After
that the condition of the first rule does hold and the first rule will as yet be applied.
Otherwise, the first rule will immediately be applied and the scenario terminates
successfully without applying the second and third rule.

The second rule asserts four adjacent faces to the fact-base. These faces are
part of the slot. The pin has a single face asserted by the third rule. The coordinates
of the faces of the slot are specified by the first rule in the following way. It detects
four faces which are part of the slot and which are oriented in an anti-clockwise
fashion. If two faces are adjacent, then they share a vertex, viz. the starting-point
of one face is the ending-point of the other. The coordinates of the vertices of the
faces are determined by the angle points of the slot. The position of the slot, the
width of the slot and the length of the slot ascertain these coordinates uniquely.

172 Chapter 9. An Example Design System in ADDL

9.4.3 SolveAngleOfFaces

The object-level scenario so l veAngleO f Face s can generally be applied to
determine the angle of the faces of an object whose geometry is defined in terms
of more than two faces. Its rules are:

Name (so l veAng leOfFaces)
Rules

1 IF isFace(Fl) & isNi l (Fl : angle) & adjacent(Fl , F2)
THEN value (Fl : angl e , Fl: angle [F2))

2 I F i sFace(Fl) & adjacent(Fl, F2)
-i sNil (Fl : angle) & -isNi l(F2 :angle) &

THEN angleOfFaces

The first rule of the scenario takes two adjacent faces and determines the angle of
the former with the x-axis by using its starting-point and the starting-point of the
latter. The goal is solved when there are no more adjacent faces with an unknown
angle. Extending the meta-model of the linear motion mechanism is the next step
to be performed.

9.4.4 SolveMotionQualities

When the geometry of the slot and the pin has been defined, the system can
describe the qualitative behaviour of the linear motion mechanism in detail.
Remember that I defined the limit arrangements for the starting and the ending
position of the motion. These limit arrangements are defined by a contact between
the face of the pin and a face of the slot. The scenario solveMotionQualities
detects the faces which have such a contact. Furthe rmore, it defines the starting
and ending-position of the motion. Its rules follow .

Name (solveMotionQualities)
Rules

1 IF

&

&

limitArrangement(O , G, P) & linearMotion(O , P,W)
isFace(Fl) & hasPart(O,Fl) & isFace(F2)
hasPart(G , F2) & equal(F2 : angle , 270)

THEN startPosition(P) & contact(Fl , F2 , P)
2 IF limitArrange~ent(O , G,P) & linearMotion(O ,W, P)

i sFace(Fl) & hasPart(O ,Fl) & isFace(F2) &

& hasPart(G,F2) & equal(F2 :angle , 90)
THEN endPosition (P) & contact(Fl , F2 , P)

3 IF startPosition(W) & endPosition(w)
THEN mot i onQualities

The first rule of the scenario defines the starting pos1t1on of the motion by
satisfying the following condition. If there is a linear motion of the pin between

9.4 Fundamental design of lever and pin 173

points Pl and P2 , there is a limit arrangement involving the pin and the slot in
Pl , there is a face Fl being part of the pin, there is a face F2 being part of the slot,
and the angle between F2 and the x-axis is 270 degrees anti-clockwise, then Pl

is the starting-position of the motion, and there is a contact between Fl and F2 in
this position, i.e. ,

star tPosition(pointl)
con tact(face9 ,face5 , po i ntl) .

The second rule defines the ending-position P2 in a similar way. In this case,
however, the angle of the face of the slot must be 9 O degrees. It results in

endPosition(p oint2)
contact(f ace9 , face 7,point2).

The last rule asserts that a concrete anatomical description of the guide has been
established and that the scenario can succeed if both the starting and the ending
position of the motion have been determined.

9.4.5 SolveGuidelimits

The meta-level scenario solveGu ideLimits behaves like the meta-level scenario
sol veGu i d eGeometry. It asserts a goal to determine the actual coordinates of the
starting- and ending-point of the linear motion of the pin guided by the slot. The
rules are:

Name (solveGuideLimits)

Meta-rules

1

2

3

4

IF

THEN

IF

THEN

IF

&

&

&

&

THEN

IF

THEN

positive(isSlot(W))

goal(slotLimits)

positive(isShaft(W))

goal(shaftLimits)

positive(isMotion(M)) & pos i tive(isGuide(G))

positive(startPosition(Pl))

positive(endPosition(P2))

positive(smallerEqual(Pl:x , M:start))

positive(greaterEqual(P2 : x , M: end:)

exact(isGuide(G))

success(slotLimits)

success(guideLimits)

success(shaftLimits)

Regarding the first two rules , only the first rule is applied. The second rule deals
with a different kind of solution. The first rule asserts the goal

goal(slotLimits)

to the set of process parameters of the process information state. At this instant, its

174 Chapter 9. An Example Design System in ADDL

contents is as follows:

goal(linearMotion),
---goal(motionMetaModel) & goal(guideSpecs),
---success(motionMetaModel),
--- - --goal(motionSpecs) & goal(slotSpecs),
- --- --success(motionSpecs), success(slotSpecs),
-- ----abstract(isSlot(slotl)),
---success(guideSpecs),
---goal(guideGeometry) & goal(motionQualities)

& goal(guideLimits),
------goal(slotGeometry) & goal(angleOfFaces)

& goal(slotWireframe),
------success(slotGeometry), success(angleOfFaces),
-- -- - - success(slotWireframe),
-- - ---concrete(isSlot(slotl)),
---success(guideGeometry),
---succ ess(motionQualities),
- ---- -goal(slotLimits),

The goals guideGeometry and motionQualities have been solved. The next
goal to be solved is slotLimits .

The third rule of solveGuideLimits applies kinematic knowledge. It

verifies whether the linear motion mechanism meets the requirements given by the
designer. The limit positions specify the starting- and the ending-point (SP and EP

respectively) of the motion. The design fulfills the specifications if the x-coordinate
of the starting-point is smaller than or equal to the starting of the motion S0

specified by the designer, and x-coordinate of the ending-point is greater than or
equal to the end of the motion E0 specified by the designer, i.e.,

If this condition is fulfilled, the rule asserts that an exact anatomical description of
the slot or the shaft has been made, i.e ., the relevant attributes have all received a
value and these values meet the requirements as imposed by the designer. The
design is complete as far as the guide is concerned. The last rule finally states that
the goal of the scenario has been reached, if either the goal slotLimits or
slotLimi ts has been satisfied.

At this state of the design process the description of the design object is
obtained by using a geometric aspect model and a kinematic aspect model. If the
description satisfies the requirements imposed by the designer, it has been found
that the pin can move inside the slot without being obstructed and the design is
exact. However, when this condition is not fulfilled, the obstruction must be
removed, i.e ., the design must be improved. The implication is that the geometry
of the slot is changed, and a revision process must take place.

9.4 Fundamental design of lever and pin 175

9.4.6 SolveSlotlimits

The object-level scenario sol veSlotLimi ts represents a kinematic aspect-model
of the linear motion mechanism. It calculates the coordinates of the starting- and
ending-points of the motion. These limit positions are then used to check whether

the design satisfies the requirements, i.e., the pin can move unimpededly inside
the slot. The scenario's rules and operations are:

Name(solveSlotLimits)
Rules

1 IF startPosition(Pt) & contact(ro,F,Pt)
& isNil(Pt:x) & isNil(Pt:y) & isPin(P)
THEN value(Pt :x ,F:s tartPoint(P]) & value(Pt:y,O)

2 IF

&

endPosition(Pt) & contact(ro,F,Pt)
isNil(Pt:x) & isNil(Pt:y) & isPin(P)

THEN value(Pt:x,F:endPoint[P)) & value(Pt:y,0)

3 IF

&

THEN

startPosition(Ptl) & notNil(Ptl : x)
endPosition(Pt2) & notNil(Pt2:x)

slotLimits

Local operations

:startPoint[P]

:endPoint[P] =

{ self :x + P:diameter / 2
self:x - P :diameter / 2

Since the system has asserted that there is a contact between the face of the pin
and a face of the slot in two limit arrangements, the scenario sol veSlotLimi ts is
able to compute the limit positions of the motion mechanism. The first rule in
sol veSlotLi;i ts calculates the coordinates of the starting-position of the motion

as follows. The centre of the pin in a limit position determines the starting of the
motion. In such a limit position, there is a contact between the face of the pin and

one of the faces of the slot. Therefore, the x-coordinate of the starting-position is
equal to that of the slot's face plus half the diameter of the pin (see Fig. 9.5).

D=pinl:diameter

contact(face9,face5 , pointl)

Fig. 9.5 Kinematic model of an object in motion.

176 Chapter 9. An Example Design System in ADDL

The second rule of the scenario computes the coordinates of the ending
position of the motion in the same fashion. There is a contact between another
face of the slot and the pin in the second limit position. In this case, the x
coordinate of the ending-position equals to the x-coordinate of the slot's face
minus half the diameter of the pin. The y-coordinate of the starting and the ending
position is set to zero, since the pin moves along the centre line of the lever.
Finally, the scenario succeeds, when the last rule is applied, viz. when the x
coordinates of both the starting- and ending-position are known.

9.5 Detailed design of lever and pin
The final stage of the design of a linear motion mechanism is now reached. Both a
geometric and kinematic model of the design object have been obtained.
However, between these models there might be some inconsistency due to
estimated specifications of the designer using heuristic knowledge. The obtained
geometry might result in an incorrect stroke length. The system is able to detect
such an inconsistency in the meta-model, since the meta-model integrates
knowledge about both models . In this section, I show how the cause of the
inconsistency is detected through a kinematic model and how it is repaired by
changing the geometric model of the design object (see Fig. 9.6).

►
d a

Kinematic model Geometric model

Fig. 9.6 Relation between a kinematic and a geometric aspect model.

At the detailed stage of the design process, the process information state
contains the following set of process parameters

goal(linearMotion),
---goal(motionMetaModel) & goal(guideSpec s),
---success(motionMeLaModel),
------goal(motionSpecs) & goal(slotSpecs),
------success(motionSpecs), success(slotSpecs),
- -- ---abstract(isSlot(slotl)),
---success(guideSpecs),
---goal(guideGeomet r y) & goal(motionQual it ies)

& goal(guideLimits),
-- - - --goal(slotGeometry) & goal(angl eOfFaces)

& goa l(slotWireframe),

9.5 Detailed design of lever and pin 177

------success(slotGeometry) , success(angleOfFaces) ,
------success(slotWireframe),
------concrete(isSlot(slotl)),
---success(guideGeometry), success(motionQualities) ,
------goal(slotLimits) , success(slotLimits) ,
---success(guideLimits),
---goal(motionFault) & goal(guideRefinement)
& goal(guideLimits).

The system behaves as follows. First of all, the stroke fault of the motion is

calculated. Secondly, the geometry of the slot is adjusted, and thirdly the new limit

positions of the motion are determined and the consistency of the design is

verified.

9.5.1 SolveMotionFault

The object-level scenario sol veMot ionFault identifies the cause of the

inconsistency in the design. It represents a kinematic aspect model of the motion

mechanism. Dependent on the nature of the inconsistency it will suggest to either

shift the left most face of the slot to the left, the right most face of the slot to the

right, or both (see Fig. 9.7). The rules and operations of sol veMotionFault are

shown below.

t---i leftShift

Fig. 9.7 Detection of inconsistency.

Name (solveMotionFault)

Rules

1 IF isMotion(M) & startPosition(P)

THEN leftShift(P:leftMinus[M])

2 IF isMotion(M) & endPosition(P) &

THEN rightShift(P:rightMinus[M])

3 IF leftShift (ro) I rightShift(ro)

THEN motionFault

& greater(P : x,M : start)

smaller(P :x , M: end)

178 Chapter 9. An Example Design System in ADDL

Local operations

:leftMinus[M] = { self:x - M:start}
:rightMinus[M] = { M:end - self:x}

The first rule of the scenario is applied when the pin is obstructed by the left most
face of the slot. Consequently, that face is shifted to the right by SP - S0 , e.g.

leftShift(20).

The second rule is applied when the pin is obstructed by the right most face,
resulting in a shift to the left by EP - E0 , e.g.

rightShift(20).

The scenario succeeds if at least one of the first two rules is applied. Solving the
detected inconsistency is the next goal. It is done by adjusting the geometry of the
slot either by a shift to the right, or a shift to the left, or both.

9.5.2 SolveGuideRefinement

The meta-level scenario solveGuideRefinement is similar to
sol veGuideLimi ts. It asserts a goal to adjust the geometry of the slot dependent
on the detected inconsistency in the design. The scenario's rules are:

Name (solveGuideRefinement)
Meta-rules

1 IF positive(isSlot(W))
THEN goal(slotRefinement)

2 IF positive(isShaft(W))
THEN goal(shaftRefinement)

& goal(angleOfFaces)

& goal(angleOfFaces)
3 IF success(slot~efinement) I success(shaftRefinement)

THEN success(guideRefinement)

The scenario's first rule is applied resulting in the assertion of the following
conjunction of goals to the set of process parameters:

goal(slotRefinementJ & goal(angleOfFaces)

When either the goal slotRefinement or the goal shaftRefinement has been
satisfied, the third rule infers that the goal guideRefinement has been satisfied as
well.

9.5.3 SolveSlotRefinement

The object-level scenario solveSlotRefinement revises the designer's original
specifications of the slot to obtain a consistent description of the linear motion
mechanism. Dependent on the cause of the fault the scenario changes the position
of the slot and/or the length. As a result, the slot's geometry, i.e., the position and

9.5 Detailed design of lever and pin

the length of the faces, changes as well. The scenario's rules and operations are:

Name (solveRefineSlot)
Rules

1 IF leftShift(L) & rightShift(R) & isSlot(S)
THEN value(S:position,S:leftShift[L))
& value(S:length,S:rightShift[L,R)) & slotRefinement

2 IF leftShift(L) & isSlot(S)
THEN value(S:position,S:leftShift(L])
& value(S:length,S:rightShift[L)) & slotRefinement

3 IF rightShift(R) & isSlot(S)
THEN value(S:length,S:rightShift[R]) & slotRefinement

Local operations

:leftShift[L] = { self:position - L}
:rightShift[R] = { self:length + R
:rightShift[L,R] = { self:length + L + R

179

There are three possible states of inconsistency to be solved by the scenario
solveSlotRefinement, i) the slot's left most face impedes the motion, ii) the
slot's right most face impedes the motion, or iii) both the slot's left most face and
right most face impede the motion. Each of the first three rules of the scenario is
applicable to one of the three respective cases. When the left most face obstructs
the motion, the first rule moves the position of the slot to the right and accordingly
adjusts the slot's length. The second rule is applied when the right most face
obstructs the motion. It adjusts the length of the slot. In case both the left and right
most face of the slot need to be adjusted, the third rule moves the position of the
slot to the right and increases the length doubly. Since these three situations
always occur separately, only one of the three rules is applied.

Either of the first three rules changes one or more attributes of the slot. I call
such attributes object-facts. E.g. the first rule changes both the length and the
position of the slot. Such a change causes a revision of the fact-base. All object
facts which depend on the changed facts are reset to nil. During the the design
process the system keeps record of these dependencies (The mechanism is
described in Chapter 5). The dependency graph of position and the length of the
slot is shown in Fig. 9.8. Four object-facts depend on the position of the slot, (viz.
faces : x, face6 : x, face7: x, and faces: x). Two object-facts depend on the
length of the slot, (viz. face7: x, and faces: x). Moreover, these object-facts have
again other object-facts depending on them. E.g. pointl: x, faces : angle, and
face6: angle depend on faces: x.

The revision process activated by the change of the slot's attributes, causes a
redoing of part of the design process. Since the x-coordinates of the slot depend

180 Chapter 9. An Example Design System in ADDL

s l o t l : position s l otl :le ng t h

/ ~
f ac eS : x f a ce6: x face7 : x f a ceB :x

I
pointl:x fa ceS :angle fa ce 6 :angle f ac e 7 : ang le f a ceB : angl e poin t2 :x

Fig. 9.8 Dependency graph of attributes of objects.

on the position and length of the slot, they need to be recalculated. This is done by
the the fourth and the fifth rule of so lveS lotRefinemen t dependent on the kind
of refinement. The fourth rule is used when there is a shift to the left, and the fifth
rule is applied when there is a shift to the right.

The scenario so l v e Sl otRef ine ment detects the proper face to be adjusted,
since the meta-model has a description of the behaviour of an object in motion
guided by a slot. This knowledge can be represented in neither the geometric
model nor the kinematic model. Therefore, without a meta-model the system
would not have been able to create a geometric model independent of certain
properties which are determined by a kinematic model. The meta-model avoids
this inflexibility by introducing a general model of the design object (e.g. the limit
arrangements) independent of a certain context. The fact representing a contact
between a face of the slot and a face of the pin at a certain position, is found
because the meta-model has qualitative knowledge about the relation between
kinematic motion and geometry.

After completion of the scenario, the process information state has been
extended with the following process parameters:

------success(slotLimits),
---success(guideLimits),
---goal(motionFault) & goal(guideRefinement),

& goal(guideLimits),
---success(motionFault),
------goal(slotRefinement) & goal(slotGeometry}

& goal(angleOfFaces).

The next scenario which becomes active is angleOfFaces. This scenario is
presented in §9.4.3. It determines unknown angles of faces caused by the revision
process. After completion of this scenario, the scenario solveGu i d eRefinement

succeeds as well, and control is given to solveGuideLimits, presented in §9.4.5.
The new limit positions of the motion mechanism are determined, and if the pin is

9.6 Discussion 181

inside the slot, i.e., the mechanism fulfills its requirements, the an exact anatomical
description is made and the design is complete. The final contents of the process
information state is the following set of process parameters.

goal(linearMotion),
---goal(motionMetaModel) & goal(guideSpecs),
---success(motionMetaModel),
------goal(motionSpecs) & goal(slotSpecs),
------success(motionSpecs), success(slotSpecs),
------abstract(isSlot(slotl)),
---success(guideSpecs),
---goal(guideGeometry) & goal(motionQualities)

& goal(guideLirnits),
------goal(slotGeometry), goal(angleOfFaces),

goal(slotWireframe),
------success(slotGeometry), success(angleOfFaces),
------success(slotWirefrarne),
------concrete(isSlot(slotl)),
---success(guideGeometry),
---success(motionQualities),
------goal(slotLimits), success(slotLimits),
---success(guideLimits},
---goal(motionFault) & goal(guideRefinement),

& goal(guideLimits),
---success(motionFault) ,
------goal(slotRefinement) & goal(slotGeometry)

& goal(angleOfFaces),
------success(slotRefinement), success(slotGeometry) ,

success(angleOfFaces),
---success(guideRefinement) ,
---------goal(slotLimits) , success(slotLimits),
---------exact(isGuide(slotl)),
---success(guideLimits),
success(linearMotion).

9.6 Discussion

This chapter shows how ADDL can be used to model a design object independent
of a certain context. The meta-model mechanism provides such a modeling
technique. Besides, it demonstrates the use of meta-level reasoning to control the

design process. I can make two observations regarding the generation of
assumptions upon which the meta-level interpreter makes strategic decisions. First
of all, the assumptions are all made at the object-level. E.g., the object-level
scenario sol veSlotSpecs generates assumptions for the attributes of a slot. The

reason for this is inherent in the use of the reflection principle. In its current
version, ADDL only uses upward reflection. Therefore, assumptions generated at

the object-level can be transformed to process parameters in the process

182 Chapter 9. An Example Design System in ADDL

information state. The reverse, i.e., the transformation of meta-level assumptions to
object-level literal facts appearing in the fact-base, is not possible.

The latter can be achieved though if ADDL uses downward reflection as well.
For example, DESIRE employs the meta-level built-in predicate
possibleAssumption that generates an assumption at the meta-level [Kowalczyk
and Treur, 1990]. Downward reflection transforms its argument to the object-level.
Thus the object-level literal fact value(slotl:position, 10) can be generated
by asserting the meta-atom

possibleAssumption(value(S:position,X))

and by a downward transformation to the fact-base (also called object information
state). A future version of ADDL may also have downward reflection.

The second observation regards the role of the designer in the design process.
The example design system employs the heuristic knowledge of the designer to
generate assumptions about the slot's specifications. For example, the object-level
scenario sol veSlotSpecs queries the designer to supply the system with the
specifications of the slot's attributes. The scenario itself has no embedded heuristic
knowledge. In this approach, the designer is entirely responsible for making the
assumptions. In another approach, the scenario sol veSlotSpecs can generate
the assumptions by applying its own heuristic knowledge embedded in the rules.
In that way, the example design system takes a more mechanical approach in
which the designer only observes the behaviour of the system and intervenes
when the obtained result is not satisfactory. Both approaches can be implemented
in ADDL. There was no particular reason for choosing the first one.

10
Discussion

10.1 Introduction
This dissertation presents the development of ADDL throughout the last five years.
The ordering of the chapter reflects a shift from a merely abstract model being
presented in Chapter2 towards a concrete system in Chapter9. It is no coincidence
that this ordering also reflects a chronological description of the research on ADDL.
However, similar to the design process model it only reflects the research in
retrospect. In practice, it was a process of constantly revising the language
specifications in accordance with the changed demands. Chapter2 is a rewrite of
my first publication [Veerkamp, 1989]. Chapter 3 contains a worked-out example
that appeared in [Veerkamp et al., 1990; Xue et al., 1990]. Chapter4 is a complete
revision of the first paper about ADDL's specifications (at that time it was called
IDOL) written by the entire IIICAD group [Veth, 1987]. Chapters and Chapter6 deal
with the specifications of the object-level language, that appear in a (now)
obsolete form in [Veerkamp et al., 1989; Veerkamp, Pieters Kwiers, and ten Hagen,
1991] Chapter7 and Chapter8 are entirely new and contain recently published
material [Treur and Veerkamp, 1992]. Finally, Chapter9 discusses a design system
which solves the class of design problems introduced in Chapter 3 and in
[Veerkamp et al. , 1990; Xue et al., 1990].

The attentive reader has already noticed that the design maxims are not fully
covered by the language specifications. Especially the multiple worlds, which play
a dominant role in the model, seem to have disappeared from the specifications.
Yet, this is not utterly true. During the development of ADDL it became clear that an
explicit representation of control and process knowledge is a prerequisite before
even thinking about a multi-world mechanism. Therefore, the locus of attention

184 Chapter 10. Discussion

has primarily been on the meta-level reasoning mechanisms. Until I have fully
specified and implemented the meta-level language, the system cannot support a
multi-world mechanism. Hence, the meta-level language signifies a milestone that
must be reached before research on the multi-world mechanism can go on. Having
reached this milestone, it is appropriate to look back and examine the current state
of the art and compare the language specifications with the design maxims, which
is discussed in § 10.2. A comparison of several competitive systems is presented in
§ 10.3 and § 10.4 gives some directions for future research . Finally, § 10.5 concludes
this dissertation.

10.2 Achievements
This dissertation deals with the specification and implementation of a knowledge
representation language for design. In particular, it focuses on the description and
control of design processes. In the introduction of this dissertation (Chapter 1), I
stated that a CAD system must be i) intelligent, ii) interactive, and iii) integrated.
Obviously, these requirements are ambitiously chosen. I shall discuss them one by
one.

As far as intelligence is concerned, ADDL meets the requirements by offering a
conceptual framework for representing both design process and design object
knowledge. The emphasis in the development of ICAD systems or AI systems in
general, has traditionally been on the representation of object knowledge. From
the beginning of my research, the importance of an explicit representation
mechanism for process knowledge has been stressed. Originally, in ADDL there was
no clear separation between object and process knowledge. Scenarios could both
assert literal facts and activate other scenarios [Veerkamp et al., 1989; Veerkamp,
Pieters Kwiers, and ten Hagen, 1991]. Only recently, I made a strict distinction
between object-level and meta-level scenarios and I introduced the process
parameters.

The work of the IIICAD partners at the Vrije Universiteit has strongly influenced
the decision to make a separation between domain and control knowledge. In
[Brumsen, Pannekeet, and Treur, 1992), they present an argument for such a
separation. Because of this rather late change, the current implementation has less
thoroughly been used than previous versions. It may thus be that, for instance, the
number of different process parameters is too small for adequately controlling the
design process in large applications. However, the current framework is such that
it is fairly easy to extend the functionality. Besides, a system with explicitly and
separately represented process knowledge is more modular, and thus easier to
develop, debug and modify (see also [van Harmelen, 1989) pp. 14-).

Concerning the interactiveness of ADDL very little effort has been spent on that
aspect of ADDL, because it is a research topic on its own carried out by another
member of the IIICAD project. Built-in predicates currently keep a simple direct

10.3 Comparison 185

dialogue with the user. In the near future, this dialogue will be held with the
user-interface. In my opinion, defining special purpose scenarios that control the
dialogue with the designer seems to be a promising approach. These scenarios
may have a different syntax and may use other constructs than the 'normal'
scenarios. These scenarios can run concurrently with the actual design process
using the multi-world mechanism. The control of the dialogue can then be
specified using Manifold, a specification language for parallel processes [Arbab
and Herman, 1991; Soede et al., 1991] currently under development at CWI.

The issue of integration must either be dealt with within ADDL or outside the
language. Chapter9 shows an example of the integration of multiple aspect
models with a central qualitative model within ADDL, viz. a kinematic and
geometric aspect model. Besides, it mentions a geometric modeler that generates
a wireframe model of the design object description. The latter is an example of
external aspect model. The wireframe modeler is written in Smalltalk. The
interface to the modeler is achieved by applying functions to an object of the
prototype geometricModel (see § 8.4.3). It turned out to be relatively easy (less
than a week programming) to adapt and connect an existing wireframe modeler to
ADDL. So far, I have not yet tried to connect ADDL to an application outside
Smalltalk. Though I do not foresee any insurmountable difficulties.

The above three requirements are implicitly reflected by some of the design
maxims of Chapter4. However, it does not address which design maxims have
been met and which have not. In the introduction of this chapter, I have have
already discussed the absence of the multi-world mechanism from the
specifications. This discussion is continued in § 10.4.1. Thus OM 1 7 has not been
fulfilled. Furthermore, the design maxim on the dynamic modification of an
object's internal structure (OM 27) has not been worked out. Dynamic modification
can only be achieved if there are more advanced user-interface constructs.
Concerning the inheritance mechanism in ADDL (OM 29) there is no inheritance of
attributes and operations in the current implementation though the type hierarchy
is used for the query mechanism. The remaining design maxims can be found in
the current implementation of ADDL.

10.3 Comparison

As a programming environment, ADDL can be regarded from different points of
view. First of all , it can be compared with expert system tools or knowledge
representation languages in general , in the sense that ADDL suits for implementing
expert systems for design problems. A second comparison is with some meta-level
architectures. Thirdly, a comparison between ADDL and existing CAD development
tools seems natural , though there are few systems that are conceived on a sound
basis. Lastly, IDOL as it has been implemented at the Cniversity of Tokyo seems to
be an obvious candidate for comparison. Evidently, each of these systems lacks

186 Chapter l 0. Discussion

some functionality or has some other drawback compared to ADDL, since otherwise
there was no proper justification for developing ADDL at all.

One of the essential features of ADDL is its underlying model. ADDL is not yet
another general purpose knowledge representation language. It is especially
designed for representing design knowledge. The ADDL specifications are inspired
by a descriptive model of the design process, that describes how design is done 12.

The analysis of the domain and task of the language guides the choice for an
appropriate data model, an adequate knowledge representation and an explicit
control regime. It is thus justified to assert that ADDL is a special purpose
programming language suitable for describing all aspects of design. Especially, the
use of a meta-level language for controlling the design process and the both
elegant and robust integration of the object-oriented and logic programming
paradigm have contributed a lot to ADDL. The following sections compare ADDL

with other approaches.

10.3.1 Expert system tools

In [Richer, 1986], Richer describes a set of criteria for evaluating expert system
software tools and uses these criteria to evaluate several currently available
commercial tools . With pleasure, I use some of his criteria for comparing ADDL with
the given tools. The presented tools are: S.1 [Hayes-Roth, 1984], ART (Automatic
Reasoning Tool) [Williams, 1984], KEE (Knowledge Engineering Environment)
[Intellicorp, 1984] and Knowledge Craft [Buday, 1986].

The system S.1 is a derivative of the EMYCIN system [Davis, Buchanan, and
Shortliffe, 1977]. Production rules represent the embedded knowledge. Meta-level,
algorithmic or procedural knowledge represented in control blocks direct the
problem solving process. It is started by a top-level control block. With respect to
meta-level architectures, S.1 uses production rules at the object-level and control
blocks at the meta-level. S.l 's application domain is restricted to diagnosis and
structured selection problem-solving strategies. It lacks, compared to ADDL, i) the
expressive power of predicate calculus, ii) the flexibility of object-oriented
programming and iii) a declarative description of the control knowledge.

Both the KEE system and Knowledge Craft integrate several Al methodologies
into a single system. They support frame-based knowledge representation, rule
based reasoning, logic representations and object-oriented programming. They
can both be viewed as extended frame-based systems. The rule-based and logic
systems are not fully integrated with the frame-based system. Prototypes in ADDL

are similar to frames in the sense that they consist of attributes and operations.

12 See Chapter2 and [Finger and Dixon, 1989; Takeda et al., 1990] for a thorough
discussion on descriptive, cognitive, prescriptive and computable models of the design
process.

l 0.3 Comparison 187

However, the relationships among frames in those frame-based languages are
represented by frames themselves whereas the relationships among ADDL objects
are represented by literal facts . The latter provides a better separation between
objects and relations. Furthermore, both KEE and Knowledge Craft lack support for
an explicit representation of control knowledge.

ART can be viewed as an extended rule-based system to which frames, logic,
and Lisp programming are added. On the one hand it behaves like a deductive
database that consists of a set of propositions. It makes an explicit distinction
among positive, negative and unknown facts. Goals patterns define the condition
for which the state of the database can be modified to a new state. The goals are
stored in a goal base. A strategy pattern can be defined to control the kind of
inference to satisfy the current goal. Schemata allow the user to describe objects
and classes of objects. Viewpoints allow for an assumption based truth
maintenance very similar to de Kleer's system [De Kleer, 1986a]. Compared to ADDL,

ART lacks a true integration of its components and it does not have an explicit
declarative representation of control knowledge.

A general characteristic of the above expert system tools is the combination of
AI tools that have shown successful in past applications. On the one hand, this
combination provides a good environment for software development. But on the
other hand, the different tools are often loosely integrated resulting in bulky
systems that are hard to comprehend. Furthermore, if the application domain is
complex, such as in design, the systems offer little guidance as to what
components of the system to use for the representation of what kind of
knowledge. This issue is discussed in Chapter 1 of 0ackson, Reichgelt, and
van Harmelen,_ 1989].

10.3.2 Meta-level architectures

None of the evaluated tools (except S.1 that has some facilities to represent control
knowledge procedurally) has a built-in meta-level architecture. A comparison may
therefore look unfair as far as the issue of control is concerned. The obvious
reason is that there are no commercial meta-level reasoning tools available.
Certainly not when the IIICAD project started. Suitable candidates for comparison
are HERACLES, Heuristic Classification Shell , [Clancey and Bock, 1988), the Socrates
system 0ackson, Reichgelt, and van Harmelen, 1989), and DESIRE, a framework for
DEsign and Specification of Interacting REasoning modules [Langevelde, Philipsen,
and Treur, 1992]. Besides, [van Harmelen, 1989) gives a good evaluation and
comparison of meta-level architectures.

HERACLES is a task-specific language based on NEOMYCIN. It is yet another
derivative of the MYCIN system. In NEOMYCIN the (medical) domain knowledge and
the strategic or control knowledge (diagnostic procedure) are expanded and
represented separately and explicitly. HERACLES groundwork (a kind of expert

188 Chapter 10. Discussion

system shell) is obtained by extracting the domain knowledge from NEOMYCIN. Its
control knowledge consists of metarules, tasks, and a task interpreter. Metarules
consist of a premise and an action. Tasks consist of ordered sequences of
metarules and additional knowledge about how the task interpreter should apply
them. The premises of metarules examine the domain rules and relations and the
problem-solving history. The actions involve the application of domain rules and
the request and assertion of data. HERACLES and ADDL have a similar architecture
though the former is merely designed for diagnosis while the latter is appropriate
for design tasks. Compared to ADDL, HERACLES lacks an object-level that can reason
explicitly and independently and it has a less declarative reading. Furthermore,
HERACLES controls the interpretation of individual rules at the object-level while
ADDL controls the interpretation of groups of rules either at the meta-level or at the
object-level (meta-level or object-level scenarios).

Socrates is a logic-based general purpose knowledge representation system
that has been developed at the University of Edinburgh. It is a pure meta-level
inference system, which connotes that the behaviour of the object-level is fully
specified at the meta-level. Applied to designing, the implication is that all
decisions are taken at the meta-level and the object-level is merely used for
asserting facts and assigning attributes. However, in designing a strategic decision
often leaves room for multiple elaborations at the object-level. Therefore, since all
alternative solutions are completely specified at the meta-level in a pure meta-level
inference system, the need for a meta-meta-level may be raised. It is often more
elegant to infer strategic decisions at the meta-level and to infer the solution
dependent facts at the object-level. Hence, a mixed-level inference system is
preferred above a pure meta-level inference system when design systems are
concerned.

The DESIRE framework is based on a mixed-level inference system. Its
development takes place at the Vrije Universiteit in Amsterdam in cooperation with
the IIICAD project. ADDL and DESIRE are therefore based on common grounds though
the emphasis may be placed differently. ADDL is more focused on the area of
design while DESIRE is a more generic framework. A recent paper [Treur and
Veerkamp, 1992] discusses the specification and implementation of a design
problem in both languages. The following is a quote from this paper:

[.. .] the framework DESIRE [.. .] can be used to design and formally specify
complex reasoning tasks and compositional architectures of knowledge-based
reasoning systems that perform these tasks. A complex task can often be
modeled by decomposing it into a number of subtasks. These subtasks can be
described as components or modules. Within DESIRE, precisely defined notions
of a module and of interactions between modules are used. This provides
uniformity of specifications of both modules and interactions, which can serve
as standardized building blocks and interfaces among them. By combining
such building blocks, a compositional architecture is obtained that models the

l 0.3 Comparison

given complex reasoning task (see [Tan and Treur, 1991; Treur, 1989; Brumsen,
Pannekeet, and Treur, 1992; Treur, 1991al).

189

Compared to ADDL, DESIRE lacks the object-oriented paradigm but provides a more
formal approach as an added value. Furthermore, DESIRE lacks features specific to
designing which are reflected by both object-level and meta-level built-in
predicate symbols. However, there is no impediment to add these features to
DESIRE.

10.3.3 Intelligent CAD systems

Currently, there are no commercially available design knowledge representation
languages that offer the same functionality as ADDL. An attempt to that end is the
!CAD System [ICAD, 1986]. It is a system that claims to be a powerful, knowledge
based modeling environment in which engineers and designers represent the
knowledge used to design and manufacture complex mechanical products. Unlike
traditional CAD systems, the !CAD System does not only deal with geometric
information of a product but also with the rules that determine the product.
According to the company's brochure, product designers use ICAD's object-oriented
language to create product descriptions. They define rules for all of the product's
design parameters such as size, shape and orientation; specify how it connects to
other parts; designate what material it is made of, etc. Designers can include
manufacturing limitations, cost factors and other constraints in addition to
mechanical design rules.

From the above specifications, it is evident that the !CAD System only deals
with object-level knowledge. The system is an environment in which the
knowledge how to model a product is represented. It lacks an explicit
representation of which process steps to undertake to arrive at a product's
description. In other words , it does not have a separate level at which the
knowledge how to control the design process is represented.

10.3.4 An integrated data description language

The Integrated Data Description Language (IDOL) is a s:bling of ADDL. It is currently
under development at The University of Tokyo [Tomiyama, Xue, and Ishida, 1991].
Both languages originate from the same roots [Veth, 19871. The major difference
between the two languages is the use of two separate languages for the meta-level
and the object-level in ADDL. Since recently, IDDL also distinguishes between
action-level scenarios and object-level scenarios. However, both scenarios use the
same language and there is no notion of reflection. IDDL uses modal operators for
expressing uncertainties of facts and other design process information [Hughes and
Cresswell, 1972].

Another difference is the procedural reading of IDDL. While ADDL has a purely
declarative reading, IDDL uses built-in predicate symbols with a procedural

190 Chapter l 0. Discussion

connotation. Especially at the action-level built-in predicate symbols with
procedural names such as use, select and do are used to execute scenarios and
to invoke an inference engine. Furthermore, the built-in predicate symbols fail
and succeed also suggest an involved action. IDOL has in addition to a forward
reasoning engine also the possibility to perform backward reasoning which cannot
be done in ADDL. Both languages use an assumption-based truth maintenance
system based on the original ideas of De Kleer's [De Kleer, 1986a] but without
bookkeeping of each individual state. The complete model of De Kleer is ruined
by its complexity.

10.4 Future directions
This dissertation reflects the present implementation of ADDL. There have been less
detailed versions in the past and there will be more extended versions in the
future . However, each of these versions have been and will be based on the
design process model presented in Chapter 2. When I compare the present
implementation with this model , then there is a number of issues that can be
subject to future research.

10.4.1 Multi-world evaluation

The multi-world mechanism as being described in this section is still in
development. It turned out that the primary requirements which ADDL must meet,
are too ambitiously chosen to be fulfilled by a single person four-year project. A
frame-work for a multi-world mechanism has been set up, but the actual design
and implementation is a matter for future research.

In Chapter2, I have presented a descriptive model that (partly) describes
design as a process that develops different aspects of an artifact simultaneously.
This notion reenters in Chapter4 in terms of multiple scenarios being active at the
same time. It is therefore evident that an approach to control the multi-world
mechanism at the meta-level should be adopted. A goal meta-predicate symbol
with two or more goal names causes the activation of multiple scenarios. Each
scenario views its own world. Three kinds of such goal meta-predicate symbols
can be distinguished, viz. syncGoal, asyncGoal, and spl i tGoal. I briefly
discuss them in the following three sub-sections.

Synchronous multiple goals. The assertion of a meta-predicate symbol
syncGoal causes the activation of synchronous multiple scenarios which are
indicated by the arguments of the meta-predicate symbol. These scenarios are
called synchronous, because the meta-level interpreter waits for each of them to be
satisfied before it proceeds to the next rule . When a meta-atom
syncGoal (g1 , · · · , g n) is asserted, the meta-level interpreter activates n scenarios
concurrently, each with its own world. The names of the scenarios are determined

10.4 Future directions 191

by g 1 · · · gn and the worlds by their arguments. After termination of one of these
scenarios, the interpreter checks whether other scenarios activated by the same
goal statement are still active. When all the scenarios have terminated successfully,
the synchronous multiple goal has been satisfied.

This mechanism allows the designer to generate some concurrent views on
the fact-base. Each of these views may model a different, but related, aspect of the
design object. These views are related because they have to terminate together.
Each of the scenarios generates its own set of hypotheses which are specific to the
aspect being modeled. The consistency of each individual set of hypotheses can
easily be checked against the fact-base. The mutual consistency among the
different sets of hypotheses is checked when each of the related scenarios has
terminated successfully. The goal has been satisfied if they are indeed consistent
with each other.

Asynchronous multiple goals. The concept of an asynchronous multiple goal
is in principle the same as the concept of a synchronous one. Multiple related
scenarios are activated by means of the meta-predicate symbol asyncGoal. The
arguments of the meta-atom denote the names of the scenarios. The difference
between synchronous and asynchronous goals lies in the condition on which the
goal is satisfied. For satisfying an asynchronous multiple goal only one of the
activated scenarios needs to terminate. The other activated scenarios may remain
active as background processes whose termination has no influence on the course
of the design process. Scenarios, which are active in the background, may act as
monitors which control the interaction with the user interface, or which show a
geometric model of the current state of the design object, and so on.

During the lifetime of a background scenario, the world it is viewing may
become obsolete, i.e . it may represent an antiquated state of the sub-set of the
fact-base, which it is viewing. Furthermore, it may be required to merge the set of
hypotheses with the fact-base. The atomic built-in (object-level) predicate symbol
update causes a recreation of a scenario's world and it merges its set of
hypotheses with the fact-base. As usual, they are checked for consistency with the
fact-base. This way, the outcome of a scenario may become known although the
scenario may remain active.

Independent multiple goals. The two meta-predicate symbols, presented
above, are concerned with multiple views on the same fact-base. Using the meta
predicate symbol spli tGoal, multiple copies of the fact-base are generated by
asserting an independent multiple goal. The scenarios activated by synchronous
and asynchronous multiple goals operate on a single design object description.
Each of the scenarios, which is activated by an independent multiple goal,
operates on its own description of the design object. Therefore, they produce

192 Chapter 10. Discussion

different solutions to the design problem. A special category of meta-predicate
symbols is needed to control this mechanism. For instance, it may enable the
designer to discard a less promising solution, or to focus solely on a specific
solution letting other possibilities sleep for the time being.

The issues concerned with the multi-world mechanism are subject to future
research. The multi-world mechanism is an obvious candidate for inclusion in a
next implementation. As shown above, the meta-level language is a suitable basis
for controlling the multi-world mechanism. Special built-in predicates assert
synchronous or asynchronous multiple goals causing the concurrent activation of
multiple scenarios. This seems to be a promising approach, especially since it does
not affect the declarative semantics of the meta-level language. However, research
to whether such an implementation meets the required functionality needs still to
be carried out.

10.4.2 The user interface

The integration of the multi-world mechanism with the user-interface is of extreme
importance because the effectiveness of the mechanism depends heavily on the
interaction with the designer. The designer must always be aware of what the
system is doing and must always have full control over the system. This leads
automatically to the second candidate for future research: the user-interface. The
built-in predicates that now maintain a dialogue of questions and answers may not
be sufficient. An approach of having special purpose scenarios that direct the
dialogue may be promising. Such scenarios may view (next to the process and
object information state) a user information state. It represents the data that have
been provided by the designer.

10.4.3 Feature modeling

A last candidate for future research deals with the application of features. In CAD,

features are a well known mechanism for representing manufacturing operations
[Cunningham and Dixon, 1988]. For instance, the attachment of a leg to a tabletop
can be described by a feature . In ADDL features can be represented by prototypes.
However, a feature can be applied in different ways. Therefore, a feature prototype
has a meta-level scenario and a set of object-level scenarios associated with it. The
meta-level scenario evaluates the context in which the feature needs to be applied.
Based on this context the meta-level scenario asserts a goal that is satisfied by one
of the object-level scenarios. The selected scenario contains the (object)
knowledge how to apply the feature with regard to the context. Part of the
research on this topic has already been carried out by Jan Rogier. The realization of
the scenario-based feature application as described above amounts to the
integration of his feature modeler and ADDL.

l 0.5 Conclusions 193

10.5 Conclusions

This dissertation presented an analysis of the design process and a formalization
according to the analysis. Although the design process consists of several
distinguishable stages, it was possible to build some descriptive models that cover
all stages. These models served as a source of inspiration to extract design maxims
from for the development of ADDL. These design maxims represent the
requirements that a programming language for implementing a knowledge-based
CAD system must fulfill. They serve as a basis for the formal language specifications
of ADDL.

A third version of ADDL is now operational, and a first experimental !CAD has
been built. The result of the experiments will be used to evaluate the language
specifications. It might be possible that they must be adjusted to adapt to the
changed needs. For the time being I have succeeded in developing a knowledge
representation language that has the facilities to i) represent a complex object
structure, ii) encode object-level rules that can reason about this structure and iii)
control the object-level reasoning by means of meta-level rules.

1 1
Bibliography

Aho and Ullman, 1977
Aho, A.V. and Ullman,].D. 0977). Principles of Compiler Design. Addison
Welsey, Reading, MA, 1977.

Aiello and Levi, 1988
Aiello, L. and Levi, G. 0988). 'The Uses of Metaknowledge in AI Systems'. In
P. Maes and D. Nardi (Eds.), Meta-level Architectures and Reflection, pages
243-254. North-Holland, Amsterdam, 1988.

Akman et al. , 1988
Akman,V., tenHagen, PJ.W., Rogier,J., and Veerkamp, P.J. 0988).
'Knowledge Engineering in Design'. Knowledge-Based Systems 1 (2): 67-77,
1988.

Apt, 1990
Apt, K.R. 0990). 'Logic Programming'. In J. van Leeuwen (Ed.), Handbook of
Theoretical Computer Science. Elsevier Science Publishers B.V., Amsterdam,
1990.

Arbab and Herman, 1991
Arbab, F. and Herman, I. 0991). 'Manifold: A Language for Specification of
IPC' . Proc. EurOpen Autumn Conference. 127-144, Budapest, September
1991.

Arbab, 1991
Arbab, F. 0991). 'Design Object Representation'. In H. Yoshikawa, F. Arbab,
and T. Tomiyama (Eds.) , Intelligent CAD, Ill, pages 31-41. North-Holland,
Amsterdam, 1991.

196 Chapter 11 . Bibliography

Blake and Cook, 1987
Blake, E. and Cook, S. (1987). 'On Including Part Hierarchies in Object
Oriented Languages, with an Implementation in Smalltalk'. In J. Bezivin, J.-M.
Hullot, P. Cointe, and H. Lieberman (Eds.), ECOOP'87 European Conference
on Object-Oriented Programming, pages 41-50. Springer-Verlag, 1987.

Blarney, 1986
Blarney, S. (1986). 'Partial Logic'. In D. Gabbay and F. Guenthner (Eds.),
Handbook of Philosophical Logic, Volume III , pages 1-70. Reidel, Dordrecht,
1986.

Bobrow, 1984
Bobrow, H.G. (1984). 'Qualitative Reasoning about Physical Systems: An

Introduction'. Artificial Intelligence 24 (3): 1-6, 1984.

Bramsen, Pannekeet, and Treur, 1992
Brumsen, H.A. , Pannekeet,].H.M. , and Treur,J. (1992). 'A Compositional
Knowledge Based Architecture Modelling Process Aspects of Design Tasks'.
Proc. Twelfth International Conference on Artificial Intelligence and Expert
Systems. 283-293, Avignon, 1992.

Buday, 1986
Buday, R. (1986). 'Carnegie: Schooled in Expert Systems'. Information Week
35-37, 1986.

Bylander and Chandrasekaran, 1987
Bylander, T. and Chandrasekaran, B. (1987). 'Generic Tasks for Knowledge
Based Reasoning: the Right Level of Abstraction for Knowledge Acquisition'.
Int. j. of Man-Machine Studies. 231-244, 1987.

Clancey and Bock, 1988
Clancey, W.J. and Bock, C. 0988). 'Representing Control Knowledge as
Abstract Tasks and Metarules'. In L. Bole and M.]. Coombs (Eds.), Expert
System Applications, pages 1-77. Springer-Verlag, Berlin, 1988.

Clark and Tarnlund, 1982
Clark, K.L. and Tarnlund, S.-A. (1982). Logic Programming. Academic Press,
London, 1982.

Clocksin and Mellish, 1981
Clocksin, W.F. and Mellish, C.S. (1981). Programming in Prolog. Springer
Verlag, Berlin, 1981.

Cook,1987
Cook, W. (1987). Self-Referential Models of Inheritance. Brown University
Report, 1987.

Cunningham and Dixon, 1988
Cunningham,].]. and Dixon,].R. (1988). 'Designing with Features: The Origin
of Features'. In proceedings of ASME Computers in Engineering 1988, pages

10.5 Conclusions 197

237-243, 1988.

Davis, Buchanan, andShortliffe, 1977
Davis, R., Buchanan, B., and Shortliffe, E. (1977). 'Production Rules as a
Representation for a Knowledge-Based Consultation Program'. Artificial
Intelligence 8: 15-45, 1977.

Davis and King, 1977
Davis, R. and King,]. (1977). 'An Overview of Production Systems'. In E.W.
Elcock and D. Michie (Eds.), Machine Intelligence 8, pages 300-332. Ellis
Horwood Ltd., Chichester, 1977.

De Kleer, 1986a
De Kleer,]. (1986a). 'An Assumption Based TMS'. Artificial Intelligence 28:

127-162, 1986.

De K.leer, 1986b
De Kleer,]. (1986b). 'Problem Solving with the ATMS' . Artificial Intelligence
28: 197-224, 1986.

Finger and Dixon, 1989
Finger, S. and Dixon,J.R. (1989). 'A Review of Research in Mechanical
Engineering Design. Part I: Descriptive, Prescriptive, and Computer-Based
Models of Design Processes'. Research in Engineering Design l (1): 51-67,
1989.

Gero, 1990
Gero,].S. (1990). 'Design Prototypes: A Knowledge Representation Schema
for Design'. AI Magaz ine ll (4): 26-36, 1990.

Goldberg and Robson, 1983
Goldberg, A. and Robson, D. (1983). Smalltalk-BO: Tbe Language and its
Implementation. Addison-Wesley, Reading, MA, 1983.

Goldberg, 1984
Goldberg, A. (1984). Smalltalk-BO: Tbe Interactive Programming
Environment. Addison-Wesley, Reading, MA, 1984.

Hayes, 1979
Hayes, P. (1979). 'The logic of frames '. In D. Metzing (Ed.) , Frame
Conceptions and Text Understanding, pages 46-61. Walter de Gruyter and
Co., Berlin, 1979.

Hayes-Roth, 1984
Hayes-Roth, F. (1984). 'The Industrialization of Knowledge Engineering'. In
W. Reitman (Ed.), Artificial Intelligence Applications in Business. Ablex,
Norwood, NJ, 1984.

Hubka, 1987
Hubka, V. (1987). Principles of Engineering Design. Springer-Verlag, Berlin,
1987.

198 Chapter 11 . Bibliography

Hughes and Cresswell, 1972
Hughes, G.E. and Cresswell , M.J . 0972). An Introduction to Modal Logic.
Methuen and Co. Ltd., London, 1972.

ICAD, 1986
ICAD, Inc. 0986). 1be ICAD System: A New Way to Capture Design and
Manufacturing Knowledge. ICAD Company Brochure, Cambridge, MA, 1986.

Intellicorp, 1984
Intellicorp 0984). 1be Knowledge Engineering Environment. Intellicorp
Company Brochure, Mountain View, CA, 1984.

Jackson, Reichgelt, and vanHarmelen, 1989
Jackson, P ., Reichgelt, H., and van Harmelen, F. 0989). Logic-Based
Knowledge Representation. The MIT Press, Cambridge, MA, 1989.

Johnson, 1986
Johnson, S.C. 0986). 'Yacc: Yet Another Compiler Compiler'. Unix

Programmer's Manual, Supplementary Documents 1: PSl :15, 1986.

Kernighan and Ritchie, 1978
Kernighan, B.W. and Ritchie, D.M. 0978). 1be C Programming Language.
Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1978.

Kleene, 1956
Kleene, S.C. 0956). 'Representation of Events in Nerve Nets'. In C.E.
Shannon and J. McCarthy (Eds.) , Automata Studies, pages 3-40. Princeton
University Press, 1956.

Kowalczyk and Treur, 1990
Kowalczyk, W. and Treur,J. 0990). 'On the use of a formalized generic task
model in· knowledge acquisition'. In Wielinga, BJ., Boose,]., Gaines, B. ,
Schreiber, G. , and Someren, M. van (Eds.), Current trends in knowledge
acquisition, pages 198-221. IOS Press, 1990.

Kumagai, 1976
Kumagai, S. 0976). 300 Selections of Automated Mechanisms. Nikkan
Industrial Newspaper, Tokyo, 1976.

Langevelde and Treur, 1991
Langevelde, I.A. van and Treur,J. 0991). Tackling the Incompleteness of
Chaining. Report IR-274, Dept. of Math. and Comp. Sc., Vrije Universiteit
Amsterdam, 1991.

Langevelde, Philipsen, and Treur, 1992
Langevelde, I.A. van, Philipsen, A.W., and Treur,J. 0992). 'Formal
Specification of Compositional Architectures'. Proc. European Conference on
Artificial Intelligence, ECA1'92, 1992.

10.5 Conclusions 199

Lesk and Schmidt, 1986
Lesk, M.E. and Schmidt, E. (1986). 'Lex - A Lexical Analyzer Generator'. Unix

Programmer's Manual, Supplementary Documents 1: PSl:16, 1986.

Lieberman, 1986
Lieberman, H. (1986). 'Using Prototypical Objects to Implement Shared
Behavior in Object-Oriented Languages'.
SIGPLAN Notices Notices 21 (11), 1986.

OOPSLA '86, Special Issue of

Lloyd, 1987
Lloyd,].W. (1987). Foundations of Logic Programming.
edition, Springer-Verlag, Berlin, 1987.

Martelli and Montanari, 1982

Second, Extended

Martelli,A. and Montanari, U. (1982). 'An Efficient Unification Algorithm'.
ACM Trans. on Frog. Lang. and Systems 4 (2): 258-282, 1982.

Maurice, 1991
Maurice, I. (1991). Gebruik van een ontwerpsysteem; meer grip op bet
ontwerpen?. Stage verslag, Centrum voor Wiskunde en Informatica,
Amsterdam, 1991. (in Dutch.)

Megens, 1987
Megens, M. (1987). An Implementation of a Simple Design Description
Language. MSc. thesis, Centre for Mathematics and Computer Science,
Amsterdam, 1987.

Meyer, 1988
Meyer, B. (1988). Object-oriented Software Construction. Prentice Hall ,
Hertfordshire, 1988.

Mink.er, 1988
Minker,J. (1988). Foundations of Deductive Databases and Logic
Programming. Morgan Kaufmann Publishers, Inc., Lost Altos, CA, 1988.

Mostow, 1985
Mostow,J. (1985). 'Toward Better Models of the Design Process'. AI

Magazine 6 (1): 44-57, 1985.

Pahl and Beitz, 1988
Pahl, G. and Beitz, W. (1988). Engineering Design - A Systematic Approach.
Springer-Verlag, Berlin, 1988.

Paterson and Wegman, 1978
Paterson,M.S. and Wegman, M.N. 0978). 'Linear Unification'. Journal of
Computer and System Sciences 16(2): 158-167, 1978.

Perlis, 1988
Perlis, D. (1988). 'Meta in Logic'. In P. Maes and D. Nardi (Eds.), Meta-level
Architectures and Reflection, pages 37-49. North-Holland, Amsterdam, 1988.

200 Chapter 11 . Bibliography

Reiter, 1978
Reiter, R. 0978). 'On Closed-World Databases'. In H. Gallaire and J. Minker
(Eds.), Logic and Data Bases, pages 55-76. Plenum Press, New York, 1978.

Richer, 1986
Richer, M.H. 0986). 'An Evaluation of Expert System Development Tools' .
Bcpert Systems 3 (3): 166-183, 1986.

Rogier, 1989
Rogier,J. 0989). 'The BiCad System: An Intelligent Product Modelling System
for Architectural Design'. In Varol Akman, PJ.W. tenHagen, and P.J
Veerkamp (Eds.), Intelligent CAD Systems II - Implementational Issues, pages
291-310. Springer-Verlag, Berlin, 1989.

Rogier, Veerkamp, and ten Hagen, 1989
Rogier,J, Veerkamp, P.]., and ten Hagen, PJ.W. 0989). 'An Environment for
Knowledge Representation for Design'. In Proc. Civil Engineering Bcpert
Systems, Madrid, 1989.

Rogier, 1991
Rogier,J 0991). 'A Component Class for Design Objects'. In P.JW.
ten Hagen and P.J. Veerkamp (Eds.), Intelligent CAD Systems III - Practical
Iixperience and Evaluation, pages 41-60. Springer-Verlag, Berlin, 1991.

Rosenbloom, Laird, and Newell, 1988
Rosenbloom, P., Laird,;., and Newell,A. 0988). 'Meta-Levels in SOAR'. In P.
Maes and D. Nardi (Eds.), Meta-level Architectures and Reflection, pages 227-
240. North-Holland, Amsterdam, 1988.

Rumbaugh et al., 1991
Rumbaugh,]., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. 0991).
Object-oriented Modeling and Design. Prentice Hall , Englewood Cliffs, NJ,

1991.

Soede et al., 1991
Soede,D. , Arbab,F., Herman,I. , and tenHagen,PJ.W. (1991). 'The GKS Input
Model in Manifold'. Computer Graphics Forum 10: 209-224, North-Holland,
1991.

Sterling, 1988
Sterling, L. (1988). 'A Meta-Level Architecture for Expert Systems'. In P. Maes
and D. Nardi (Eds.), Meta-level Architectures and Reflection, pages 301-311.
North-Holland, Amsterdam, 1988.

Stroustrup, 1986
Stroustrup, B. 0986). The C++ Programming Language. Addison-Wesley,
Reading, MA, 1986.

l 0.5 Conclusions 201

Takala, 1987a
Takala, T. (1987a). 'Theoretical Framework for Computer Aided Innovative
Design'. In H. Yoshikawa and E.A. Warman (Eds.), Proc. IFIP WG 5.2
Working Conference on Design Theory for CAD, pages 323-338. North
Holland, Amsterdam, 1987.

Takala, 1987b
Takala, T. (1987b). 'Intelligence beyond Expert Systems: A Physiological
Model with Applications in Design'. In P.J.W. tenHagen and T. Tomiyama
(Eds.), Intelligent CAD Systems I - Theoretical and Methodological Aspects,
pages 286-294. Springer-Verlag, Berlin, 1987.

Takeda et al., 1990
Takeda, H., Veerkamp, P.] ., Tomiyama, T., and Yoshikawa, H. (1990).
'Modeling Design Processes'. AI Magazine 11 (4): 37-48, 1990.

Tan and Treur, 1991
Tan, Y.H. and Treur,J. (1991). 'A Bi-modular Approach to Nonmonotonic
Reasoning'. Proc. World Congress on Fundamentals of Artificial Intelligence,
WOCFAI-91: 461-476, 1991.

Tan, 1992
Tan, Y.H. (1992). Non-Monotonic Reasoning: Logical Architecture and
Philosophical Applications. Ph.D. Thesis, Vrije Universiteit Amsterdam, 1992.

Tomiyama and Yoshikawa, 1987
Tomiyama, T. and Yoshikawa, H. (1987). 'Extended General Design Theory'.
In H. Yoshikawa and E.A. Warman (Eds.), Proc. IFIP WG 5.2 Working
Conference on Design Theory for CAD, pages 95-125. North-Holland,
Amsterdam, 1987.

Tomiyama and ten Hagen, 1987
Tomiyama, T. and ten Hagen, P.J.W. (1987). Tbe Concept of Intelligent
Integrated Interactive CAD Systems. CWI-Report CS-R8717, 1987.

Tomiyama, Xue, and Ishida, 1991
Tomiyama, T., Xue, D., and Ishida, Y. 0991). 'An Experience with Developing
a Design Knowledge Representation Language' . In P.J.W. tenHagen and P.J.
Veerkamp (Eds.), Intelligent CAD Systems III - Practical Bcperience and
Evaluation, pages 131-154. Springer-Verlag, Berlin, 1991.

Treur, 1989
Treur,J. (1989). 'A Logical Analysis of Design Tasks for Expert Systems'.
International journal of Bcpert Systems 2: 233-253, 1989.

Treur, 1991a
Treur,J. O991a). 'Interaction types and chemistry of generic task models '.
Proc. European Knowledge Acquisition Workshop, EKA W-91, 1991.

202 Chapter l l . Bibliography

Treur, 1991b
Treur,J 0991b). 'On the Use of Reflection Principles in Modelling Complex
Reasoning' . International journal of Intelligent Systems 6: 277-294, 1991.

Treur, 1991c
Treur,J. 0991c). 'A Logical Framework for Design Processes' . In P.J.W.
ten Hagen and P.J. Veerkamp (Eds.), Intelligent CAD Systems III - Practical
F,xperience and Evaluation, pages 3-20. Springer-Verlag, Berlin, 1991.

Treur and Veerkamp, 1992
Treur,J. and Veerkamp, P.J. (1992). 'Explicit Representation of Design Process
Knowledge' . In JS. Gero (Ed.), Proc. of 2nd Int. Conj. on Artifi,cial
Intelligence in Design, AID'92. Kluwer Academic Publishers, 1992.

Turner, 1984
Turner, R. (1984). Logics for Artifi,cial Intelligence. Ellis Horwood, Inc., 1984.

van Dalen, 1985
vanDalen,D. (1985). Logic and Strncture, 2nd edition. Springer-Verlag,
Heidelberg, 1985.

van Harmelen, 1989
vanHarmelen,F. (1989). 'A Classification of Meta-Level Architectures'. In P.
Jackson, H. Reichgelt, and F. van Harmelen (Eds.), Logic-Based Knowledge
Representation, pages 13-35. The MIT Press, Cambridge, MA, 1989.

van Klarenbosch, 1991
van Klarenbosch, H.E. (1991). A Task-Based Intelligent User Interface. CWI
Report CS-R91??, Amsterdam, 1991.

Veerkamp et al., 1989
Veerkamp, P.J., Akman, V., Bemus, P., and ten Hagen, P.J.W. (1989). 'IDDL: A
Language for Intelligent Interactive Integrated CAD Systems'. In V. Akman,
P.J.W ten Hagen, and P.J. Veerkamp (Eds.) , Intelligent CAD Systems II -
Implementational Issues, pages 58-74. Springer-Verlag, Berlin, 1989.

Veerkamp, 1989
Veerkamp, PJ. (1989). 'Multiple Worlds in an Intelligent CAD System'. In H.
Yoshikawa and D. Gossard (Eds.), Intelligent CAD, I, pages 77-88. North
Holland, Amsterdam, 1989.

Veerkamp et al., 1990
Veerkamp, P.J., Kiriyama, T., Xue, D. , and Tomiyama, T. (1990).
'Representation and Implementation of Design Knowledge for Intelligent CAD
- Theoretical Aspects'. Proc. Fourth Eurographics Workshop on Intelligent
CAD- 1be Added Value of Intelligence, Compiegne, 1990.

Veerkamp, PietersKwiers, and tenHagen, 1991
Veerkamp, P.J., Pieters Kwiers, R.S.S., and ten Hagen, P.J.W. (1991). 'Design
Process Representation in ADDL'. In P.J.W. tenHagen and P.J. Veerkamp

10.5 Conclusions 203

(Eds.), Intelligent CAD Systems III - Practical Experience and Evaluation,
pages 155-168. Springer-Verlag, Berlin, 1991.

Veerkamp and ten Hagen, 1991
Veerkamp, P.J. and ten Hagen, P.J.W. (1991). 'Qualitative Reasoning about
Design Objects'. Preprints of the 5th International Conference on the
Manufacturing Science and Technology of the Future, Enschede, The
Netherlands, June 11-13, 1991.

Veth, 1987
Veth, B. (1987). 'An Integrated Data Description Language for Coding Design
Knowledge'. In P.J.W. tenHagen and T. Tomiyama (Eds.), Intelligent CAD
Systems I - Theoretical and Methodological Aspects, pages 295-313. Springer
Verlag, Berlin, 1987.

Waldron, 1991
Waldron, M.B. (1991). 'Design Processes and Intelligent Computer-Aided
Design (CAD)'. In H. Yoshikawa, F. Arbab, and T. Tomiyama (Eds.),

Intelligent CAD, III, pages 51-75. North-Holland, Amsterdam, 1991.

Wegner, 1990
Wegner, P. (1990). 'Concepts and Paradigms of Object-Oriented
Programming'. OOPS Messengerl (1): 7-87, 1990.

Weyhrauch, 1980
Weyhrauch, R.W. 0980). 'Prolegomena to a Theory of Mechanized Formal
Reasoning'. Artificial Intelligence 13: 133-170, 1980.

Williams, 1984
Williams, C. (1984). ART Tbe Advanced Reasoning Tools - Conceptual
Overview: Inference Corporation, 1984.

Xue et al., 1990
Xue, D., Kiriyama, T., Veerkamp, P.]., and Tomiyama, T. (1990).
'Representation and Implementation of Design Knowledge for Intelligent CAD
- Implementational Aspects'. Proc. Fourth Eurographics Workshop on
Intelligent CAD- Tbe Added Value of Intelligence, Compiegne, 1990.

Yoshikawa, 1981
Yoshikawa, H. (1981). 'General Design Theory and a CAD System'. In H.
Yoshikawa, T. Sata, and E.A. Warman (Eds.), Man-Machine Communication
in CAD/CAM, Proc. IFIP WC 5.2 Working Conference, pages 35-. North
Holland, Amsterdam, 1981.

I
Lexical Analyzer

1.1 Transition diagram
The complete transition diagram of the lexical analyzer is depicted in Fig. I.1 . For
convenience, the states directly following state Oare m:mbered 1- 9a-n. Thus, the
methods lex2 and lex3 given in Chapter8 are actually called lex4 and lex41.

e = all other characters

#41 = transition to 41 on e

#4 = transition to 4 on other alphanumeric

>---N • ~ (~) THEN

#4

Fig. I.1 Transition diagram for all tokens appearing in ADDL.

206 Appendix I. Lexical Analyzer

E = all other characters

ASSIGN

FNAME

Fig. I. 1 Transition diagram (continued).

1.1 Transition diagram 207

t = all other characters

Fig.1.1 Transition diagram (continued).

II
ADDL Definitions for Yacc

11.1 Definition of object-level scenarios
The definition of object-level scenarios is given by the following grammer rules:

%start scenario
%token IF THEN VARIABLE AND OR NOT FNAME ID
%token NUMCONSTANT STRINGCONSTANT CHARCONSTANT
%token HASH LPS RPS LSB RSB COMMA
%right NOT
%left AND OR OPERATOR
%%
scenario

head

rules

rule

antecedent

c onseque nt

/ * l* / head rules

/ * 2* / ID LPS ID RPS
/ * 3* / ID

/ * 4* / rules rule
/ * 5* / rule

/ * 6* / IF antecedent THEN consequent

/ * 7* / atom
/ * 8* / NOT atom
/ * 9* / antecedent AND antecedent
/ *10* / antec edent OR antecedent
/ *11* / LPS antecedent RPS

/ *1 2 * / at om
I * 13 * / NOT at om
/ *14* / consequent AND consequent
/ *15* / LPS conse quent RPS

210 Appendix II. ADDL Definitions for Yacc

atom

terrnlist

term

/*16* / ID LPS termlist RPS
/ *17* / ID

/*18*/ termlist COMMA term
/*19*/ term

/*20*/ simpleterm
/*21*/ function
/*22*/ simpleterrn OPERATOR simpleterm

function

a·rglist

simpleterm

elements

/*23*/ simpleterm FNAME
/*24*/ simpleterm FNAME LSB arglist

/*25*/ arglist COMMA simpleterm
/*26*/ simpleterm

/*27*/ VARIABLE
/*28*/ ID
/*29*/ NUMCONSTANT
/*30*/ STRINGCONSTANT
/*31*/ CHARCONSTANT
/*32*/ HASH LPS elements RPS

/*33*/ elements simpleterm
/*34*/ simpleterm

11.2 Definition of meta-level scenarios

RSB

The definition of meta-level scenarios is given by the following grammer rules:

%start scenario
%token IF TBEN VARIABLE AND OR NOT FNAME ID
%token NUMCONSTANT STRINGCONSTANT CHARCONSTANT
%token HASH LPS RPS LSB RSB COMMA
%right NOT
%left AND OR OPERATOR
%%
scenario

head

rules

rule

antecedent

/* l*/ head rules

/* 2*/ ID OPERATOR ID LPS ID RPS
/* 3*/ ID OPERATOR ID

/* 4*/ rules rule
/* 5*/ rule

/* 6*/ IF antecedent THEN consequent

/* 7*/ atom
/* 8*/ NOT atom
/* 9*/ antecedent AND antecedent
/ *10*/ antecedent OR antecedent
/*11*/ LPS antecedent RPS

11.3 Definition of local operations

consequent

atom

constant

termlist

term

/*12*/ atom
/*13*/ NOT atom
/ *14* / consequent AND consequent
/ *15* / LPS consequent RPS

/ *16* / ID LPS constant RPS
/ *17* / ID

/*18*/ ID LPS termlist RPS
/* 19* / ID

/ *20* / termlist COMMA term
/ *21* / term

/ *22* / simpleterm
/ *23* / function
/ *24* / simpleterm OPERATOR simpleterm

function / *25*/ simpleterm FNAME
/ *26* / simpleterm FNAME LSB arglist RSB

arglist

simpleterm

elements

/ *27* / arglist COMMA simpleterm
/ *28* / simpleterm

/*29 * / VARIABLE
/ *30*/ ID
/ *31* / NUMCONSTANT
/ *32* / STRINGCONSTANT
/ *33* / CHARCONSTANT
/ *34* / HASH LPS elements RPS

/*35 * / elements simpleterm
. I /*36 * I simpleterm

11.3 Definition of local operations

The definition of local operations is given by the following grammer rules:

%start operations
%token FNAME VARIABLE IS ID OPERATOR
%token NUMCONSTANT STRINGCONSTANT CHARCONSTANT
%token HASH LPS RPS LSB RSB LCB RCB ASSIGN COMMA SEMI
%left OPERATOR
%%
operations /* 1*/ operations operation

/* 2*/ operation

operation /* 3*/ FNAME IS body
/* 4*/ FNAME LSB varlist RSB IS body

body / * 5*/ LCB statements expression RCB

statements /* 6*/ statement SEMI statements

211

212

statement

expression

function

arglist

simpexpr

elements

varlist

Appendix II. ADDL Definitions for Yacc

I* 7 statements may be empty* I

/ * 8*/

/* 9*/
/*10*/

VARIABLE ASSIGN expression

simpexpr
function

/*11*/ expression OPERATOR expression
/*12*/ LPS expression RPS

/*13*/ simpexpr FNAME
/*14*/ simpexpr FNAME LSB arglist RSB

/*15*/ arglist COMMA simpexpr
/*16*/ simpexpr

/*17*/ VARIABLE
/*18*/ ID
/*19*/ NUMCONSTANT
/*20*/ STRINGCONSTANT
/*21*/ CHARCONSTANT
/*22*/ HASH LPS elements RPS

/*23*/ elements simpexpr
/*24*/ simpexpr

/*25*/ varlist COMMA VARIABLE
/*26*/ VARIABLE

111

Signatures of the Example Design
System

m.1 Maximum signature of the process information state

1: (processinformationstate)

Type

objectAtom

composite

slot

Meta-constant

linearMotion, motionMetaModel, guideSpecs,

guideGeometry, motionQualities, guideLimits,

motionFault, guideRefinement, motionSpecs,

slotSpecs , slotGeometry, angleOfFaces,

slotWireframe, slotLimits, shaftLimits,

slotRefinement

slotl

Meta-function

isSlot

Meta- predicate

goal, success, abstract, concrete, exact

Notation

A

C

SL

Type

A

SL

Type

C ➔ A

Type

A

214 Appendix Ill. Signatures of the Example Design System

m.2 Maximum signature of the fact-base

1: (fact-base)

Type

composite

number

lever

pivot

motion

guide

slot

objectinMotion

pin

point

face

Constant

20

leverl

pivot!

slotl

pinl

point!, point2

facel, face2, face3, face4, faces, face6, face?, face8, face9

Predicate

isLever, isPivot, isSlot, isPin, isPoint, isFace

leftShift, rightShift

value

hasPart

adjacent

linearMotion

limitArrangement

contact

startPosition, endPosition

slotRefinement, motionSpecs, slotSpecs, slotGeometry,

angleOfFaces, motionQualities, slotLimits, motionFault,

motionMetaModel

Notation

C

NU

LE

PV

MN

GU

SL

OM

PI

PT

FA

Type

NU

LE

PV

SL

PI

PT

FA

Type

C

NU

NUXNU

CXC

FAXFA

OMXPTXPT

OMXGUXPT

FAX FAX PT

PT

nil

111.3 Signatures of the meta-level scenarios

ill.3 Signatures of the meta-level scenarios

l (solveLinearMotion)

Type

composite

objectAtom

Meta-constant

motionMetaModel, guideSpecs, guideGeometry,

motionQualities, guideLimits, motionFault,

guideRefinement, linearMotion

Meta-function

isGuide

Meta-predicate

unknown, abstract, concrete, exact,

goal, success

~ (solveGuideSpecs)

Type

objectAtom

guide , slot, shaft

Meta-constant

motionSpecs, slotSpecs, shaftSpecs, guideSpecs

Meta-function

isSlot, isShaft, isGuide

Meta-predicate

abstract, positive, goal, success

l(solveGuideGeomet:ry)

Type

composite

objectAtom

Meta-constant

slotGeometry, shaftGeometry, angleOfFaces,

slotWireframe, shaftWireframe, guideGeometry

215

Notation

C

A

Type

A

Type

C ➔ A

Type

A

Notation

A

C

Type

A

Type

C ➔A

Type

A

Notation

C

A

Type

A

216 Appendix Il l. Signatures of the Example Design System

Meta-function

isSlot, isShaft, isGuide

Meta-predicate

positive, goal, success, concrete

t (solveGuideLimits)

Type

composite

objectAtom

number

point

Meta-constant

slotLimits, shaftLimits , guideLimits

Neta-function

isSlot , isShaft , isGuide

startPosition, endPosition

smallerEqua l, greaterEqual

Neta-predicate

positive, goal , success, exact

t (solveGuideRefinement)

Type

composite

objectAtom

Neta-constant

guideRefinement

Neta-function

isSlot

isShaft

Neta-predicate

positive, goal, success

Type

C ➔A

Type

A

Notation

C

A

NU

PT

Type

A

Type

C ➔ A

PT➔A

NUXNU➔ A

Type

A

Notation

C

A

Type

A

Type

SL➔A

SH ➔ A

Type

A

11 1.4 Signatures of the object-level scenarios

m.4 Signatures of the object-level scenarios

L(solveMotionMetaModel)

Type

composite

type

guide

objectlnMotion

point

Constant

slot, pin, shaft , slider, point

Predicate

isLever, isSliderDevice, isMotion, isGuide, isSlot,

isShaft, isObjectlnMotion, isPin, isSlider , isPoint

typeFor

hasPart

linearMotion

limitArrangement

motionMetaModel

L(solveMotionSpecs)

Type

motion

number

string

composite

Constant

'start of motion', 'end of motion'

Function

: start, : end, : halfWidth, : innerRange, : startWidth,

Notation

C

TY

GU

OM

PT

Type

TY

Type

C

CXTY

cxc
OMXPTXPT

OMXGUXPT

nil

Notation

MN

NU

ST

C

Type

ST

Type

:motionRange MN➔NU

Predicate Type

isMotion C

isNil, notNil NU

217

uiNumber STXNUXNUXNU

value NUxNU

motionSpecs nil

218 Appendix Ill. Signatures of the Example Design System

r (solveSlotSpecs)

Type Notat i on

lever LE

slot SL

pin PI

number NU

string ST

composite C

Constant Type

'position of slot', 'length of slot', 'width of slot',

'diameter of pin' ST

10 NU

Function Type

:position, :length, :width

:diameter

:maxPosition, :widthMinusTol

:maxLength

Predicate

isLever, isSlot, isPin

isNil, notNil

uiNumber

value

slot Specs

r(solveSlotGeometry)

Type

slot

face

number

type

composite

Constant

face

C ➔ NU

PI ➔NU

LE➔ NU

SLXLE➔NU

Type

C

NU

STXNUXNUXNU

NUXNU

nil

Notation

SL

FA

NU

TY

C

Type

TY

11 1.4 Signatures of the object-level scenarios

FUnction

:position, :halfWidthUp, :halfWidthDown, :posLength

:x , :y

Predicate

isSlot, isPin, isFace

typeFor

hasPart

adjacent

value

slotGeometry

t (solveAngleOfFaces)

Type

face

number

composite

l"wlction

:angle

:angle

Predicate

isFace

isNil

adjacent

value

angleOfFaces

t (solveMotionQualities)

Type

objectlnMotion

guide

point

face

number

composite

Constant

270, 90

Type

SL ➔ NU

FA➔NU

Type

C

C ➔ TY

cxc
FA XFA

NUXNU

ni l

Notation

FA

NU

C

Type

FA➔ NU

FA X FA➔NU

Type

C

NU

FA XFA

NU XNU

nil

Notation

OM

GU

PT

FA

NU

C

Type

NU

219

220

Function

:angle

Predicate

limitArrangement

linearMotion

isFace

hasPart

equal

contact

startPosition, endPosition

motionQualities

t (solveSlotLimits)

Type

point

pin

face

number

composite

Function

:x , :y

:diameter

:startPoint, :endPoint

Constant

0, 2

Predicate

isPin

contact

startPosition, endPosition

value

isNil , notNil

slotLimits

Appendix Il l. Signatures of the Example Design System

Type

FA➔NU

Type

OMXGU XPT

OMXPT XPT

C

cxc
NU XNU

FAX FA X PT

PT

nil

Notation

PT

PI

FA

NU

C

Type

PT ➔NU

PI ➔NU

FA X PI ➔NU

Type

NU

Type

C

FAX FAX PT

PT

NUXNU

NU

nil

111.4 Signatures of the object-level scenarios

r(solveMotionFault)

Type

motion

point

number

composite

Function

:start , : end

:x

: leftMinus, :rightMinus

Predicate

isMotion

sta rtPosition, endPosition

greater, smaller

leftShift , rightShift

motionFault

r (solveRefineSlot)

Type

slot

number

composite

Function

:position, :length

: leftShift , : rightShift

: right Shift

Predicate

isSlot

leftShift, rightShift

value

slotRefinement

Notation

MN

PT

NU

C

Type

MN➔NU

PT➔NU

PTXMN➔NU

Type

C

PT

NU X NU

NU

nil

Notation

SL

NU

C

Type

221

SL➔NU

SL X NU➔NU

SLXNU X NU➔NU

Type

C

NU

NUXNU

nil

Nederlandse samenvatting

Inleiding
Het in dit proefschrift beschreven onderzoek is gericht op de ontwikkeling van
een nieuwe generatie Computer Aided Design (CAD) systemen. Het doe] van een
CAD-systeem is het ondersteunen van een ontwerper. Deze ondersteuning houdt in
dat bepaalde routinehandelingen en arbeidsintensieve klussen aan een computer
systeem overgelaten kunnen worden en dat het systeem voorstellen aan de
ontwerper doet welke richting het ontwerp op zou kunnen gaan. De ontwerper
bepaalt de richting van het ontwerpproces en het systeem moet voldoende flexibel
zijn om deze rkhting te kunnen volgen; op sommige momenten worden bepaalde
taken gedelegeerd worden naar het CAD-systeem. Teneinde zulke taken te kunnen
vervullen moet het systeem kunnen beschikken over de ontwerpkennis aangaande
deze taken. Bovendien moet het systeem kunnen redeneren met deze kennis. De
huidige generatie CAD-systemen bezit dit soort kennis en het vermogen tot rede
neren niet of nauwelijks. Het onderzoek heeft zich voornamelijk gericht op CAD
systemen die werktuigbouwkundig en ook architectonisch ontwerpen onder
steunen.

Het proefschrift handelt over de programmeertaal ADDL (Artifact and Design
Description Language), specifiek ontworpen voor de implementatie van CAD
systemen. ADDL is een kennisgebaseerde taal specifiek ontwikkeld voor de
representatie van ontwerpkennis. De taal is ontworpen aan de hand van een
beschrijvend model van het ontwerpproces. Dit model beschrijft het ontwerpen
als een iteratief proces dat een representatie van een ontwerpobject stapsgewijs
verfijnt totdat een uitgewerkt en fabriceerbaar produktmodel is ontstaan. De object
representatie is derhalve onderhevig aan toestandsveranderingen beginnend met

224 Nederlandse samenvatting

een abstracte representatie en eindigend met een volledig gedetailleerde represen
tatie. Tussenliggende objectrepresentaties beschrijven een incomplete toestand
van het ontwerpobject die steeds nauwkeuriger wordt naarmate het
ontwerpproces vordert. Een ontwerpstap bestaat uit het toevoegen van nieuwe in
formatie aan de huidige toestand zodat een minder incomplete nieuwe toestand
onstaat. Een stap is derhalve gebaseerd op een analyse van de huidige toestand en
resulteert in de synthese van nieuwe informatie. De huidige toestand met daaraan
toegevoegd de nieuwe informatie vormt een nieuwe toestand die weer
geanalyseerd kan warden. Dit proces wordt vervolgd totdat een object
representatie is verkregen die voldoet aan de specificaties.

Uit het bovenstaande blijkt dat ADDL in staat moet zijn zowel ontwerpobjecten
als het ontwerpproces adequaat te representeren. Daartoe bestaat de taal uit drie
verschillende functionele componenten. De eerste component bestaat uit de
representatie van het ontwerpobject. Zowel de afzonderlijke onderdelen van het
ontwerpobject als de samenhang tussen die delen kunnen beschreven warden in
ADDL. De tweede component representeert de kennis die een CAD-systeem nodig
heeft om een ontwerpobject te manipuleren. In andere woorden, het bevat de
kennis over de eerste component; oak wel objectkennis genoemd. De ob
jectkennis is vastgelegd door middel van als-dan-regels. De derde component
redeneert over het redeneren met de objectkennis. Het bevat de kennis (ook wel
metakennis genoemd) over de wijze waarop de regels beschreven door de tweede
component toegepast moeten warden. De metakennis wordt ook gerepresenteerd
door als-dan-regels. De metakennis bepaalt welke ontwerpstappen er genomen
moeten warden in een bepaalde fase van het ontwerpproces. De objectkennis
bepaalt hoe deze stap vervolgens genomen wordt. Deze componenten warden
achtereenvolgens behandeld in de volgende drie paragrafen.

Objectrepresentatie

Een ontwerpobject wordt beschreven als een gestructureerde verzameling losse
onderdelen. Deze onderdelen warden gegroepeerd in assemblages die op hun
beurt deel uitmaken van (hogere orde) assemblages. Het onderdeel op het
hoogste aggregatieniveau representeert het ontwerpobject als geheel. De onder
delen op het laagste decompositieniveau vormen de bouwstenen van het uitein
delijke produkt. Zowel de onderdelen als de assemblages warden in ADDL
gerepresenteerd door middel van ADDL-objecten. De decompositie resulteert in een
objectrepresentatie in de vorm van een hierarchie van ADDL-objecten.

Een ADDL-object is een abstract datatype bestaande uit attributen en operaties.
De attributen representeren een expliciet bepaalde eigenschap van een object
zoals bijvoorbeeld de lengte van een tafelpoot of de hoogte van een tafel. Opera
ties warden gebruikt om bepaalde eigenschappen te berekenen als deze niet ex
pliciet gegeven warden. Deze impliciet bepaalde eigenschappen hangen dan af

Representatie van objectkennis 225

van andere eigenschappen. De hoogte van een tafel kan bijvoorbeeld afhangen
van de lengte van de poten en de dikte van het blad. In dit geval kan de hoogte
van een tafel gerepresenteerd worden door een operatie in plaats van een attri
buut. De hoogte wordt bepaald door de eigenschappen van de poten en het blad.

De samenhang tussen de verschillende onderdelen van een ontwerpobject is
vastgelegd door middel van predikaatsymbolen. Een predikaatsymbool geeft een
relatie weer tussen de objecten waarop het is toegepast. Bijvoorbeeld , de relatie
h e eftOnderdeel (tafell, p oot2) beschrijft dat poot2 een onderdeel van
ta fell is en de relatie steuntOp (bladl, poot2) geeft aan dat bladl op poot2

steunt. De attributen en operaties beschrijven waarden en berekeningen met be
trekking tot de kwantitatieve eigenschappen van objecten terwijl predikaatsym
bolen zowel kwantitatieve als kwalitatieve eigenschappen van objecten represen
teren. De verzameling van objecten en relaties over de objecten heet de object
informatie-toestand van het ontwerpobject.

Representatie van objectkennis

Wil een CAD-systeem kunnen redeneren over een ontwerpobject, dan moet het
kennis over dit object bezitten. Deze kennis wordt objectkennis genoemd. In ADDL
wordt deze kennis gerepresenteerd door middel van logische als-dan-regels (ook
we! implicaties genoemd). Logische als-dan-regels zijn regels van de vorm
"I F · · · THEN · · · " . Het gedeelte na de IF wordt het antecedent genoemd en het
gedeelte na de THEN het consequent. Als het antecedent van een regel waar is met
betrekking tot een object-informatie-toestand van het ontwerpobject dan geldt het
consequent als een geldige conclusie over het object. Enke) het opslaan van
kennis door middel van als-dan-regels is natuurlijk niet voldoende. Om te kunnen
redeneren met de kennis moeten de regels ook toegepast kunnen worden. Een
inferentie-mecbanisme zorgt voor het redenerend vermogen van ADDL. Het bepaalt
welke regel toepasbaar is op een object-informatie-toestand en trekt valide con
clusies uit de regel en de toestand.

Een relatief simpel ontwerpprobleem brengt al een enorm aantal regels met
zich mee. Als er geen structuur in deze regels is aangebracht ziet zowel het
inferentie-mechanisme als de programmeur door de bomen het bos niet meer. Een
groot aantal regels maakt het voor het inferentie-mechanisme erg lastig een
geschikte volgende regel te zoeken. Bovendien is het voor de programmeur
moeilijk bij te houden waar welke kennis gerepresenteerd is en hoe deze kennis
uit te breiden. Daarom zijn de regels in ADDL gegroepeerd in scenarios. Een
scenario bevat de regels die nodig zijn voor het uitvoeren van een bepaald type
ontwerpstap. Door middel van het sequentieel uitvoeren van verschillende
scenarios worden de verschillende stadia van het ontwerpproces doorlopen.

226 Nederlandse samenvatting

Representatie van proceskennis
Zoals hierboven al gesteld is, wordt het ontwerpproces gemodelleerd door het
stapsgewijs uitvoeren van scenarios. Dit brengt ons tot het probleem welk scenario
gekozen moet worden in een bepaalde object-informatie-toestand. Hiertoe is ADDL
uitgerust met meta-niveau scenarios. Meta-niveau scenarios besturen de wijze
waarop het ontwerpproces wordt uitgevoerd. Meta-niveau scenarios onder
scheiden zich van gewone (of object-niveau) scenarios in die zin <lat meta-niveau
scenarios een proces-injormatie-toestand uitbreiden terwijl object-niveau scenarios
een object-informatie-toestand uitbreiden. De kennis, opgeslagen in de meta
niveau scenarios, wordt ook we! proceskennis genoemd.

De regels op het meta-niveau stellen doelen die gerealiseerd warden op het
object-niveau. Gedurende het uitvoeren van een ADDL-programma vindt er
derhalve een continue interactie plaats tussen het meta- en object-niveau. Op het
meta-niveau wordt er afhankelijk van de proces-informatie-toestand een doe!
gesteld. Als <lit doe! is verwezenlijkt is de ontwerper weer een stapje dichter bij de
oplossing gekomen. De activering van een object-niveau scenario zorgt hiervoor.
De uitvoering van <lit scenario leidt tot de toevoeging van gegevens aan de object
informatie-toestand. Na het beeindigen van het scenario verschuift de besturing
van object-niveau naar meta-niveau; er wordt een nieuw doe! gesteld. Naast het
stellen van doelen kunnen meta-niveau regels ook andere conclusies trekken.
Deze conclusies hebben betrekking op de toestand van het ontwerpobject gerela
teerd aan de fase van het ontwerpproces. Deze zogenaamde procesparameters
geven aan <lat het gedeelte van het ontwerpobject waarop ze betrekking hebben
een bepaalde fase van het ontwerpproces achter de rug hebben. De parameter
abstract geeft bijvoorbeeld aan <lat voor het onderdeel waar de parameter betrek
king op heeft een abstract beschrijving is gemaakt. Deze beschrijving bevat de be
langrijkste functionele componenten van het ontwerpobject zonder <lat er sprake is
van een duidelijke samenhang tussen de componenten.

Resultaten
De in <lit proefschrift beschreven kennis-representatietaal geeft op het eerste ge
zicht een redelijk complexe indruk. In het dagelijks gebruik blijkt <lit alleszins mee
te vallen. Zowel een doctoraal student aan de universiteit van Tokio als een hts
student werktuigbouwkunde in Amsterdam konden na een inwerkperiode van
twee weken goed met ADDL uit de voeten. Waarbij vermeld dient te worden <lat
beide studenten niet of nauwelijks ervaring hadden met logische programmeer
talen.

De huidige versie van ADDL is een prototype en kan nog verder uitgebreid
warden. Zo kan de interactie met de ontwerper nog verbeterd worden. Mijn
gedachten gaan daarbij uit naar speciale user-interface scenarios die de dialoog

Resultaten 227

met de ontwerper onderhouden. Verder zijn ontwerpers zeer geinteresseerd in
grafische representaties van ontwerpobjecten. Voor dit soort representaties zijn er
nog geen expliciete taalconstructies ingebouwd. Binnen het onderzoeksproject
heeft een promovendus zich juist met deze representaties beziggehouden. Het is
de intentie het daaruit voortgevloeide systeem en ADDL in de nabije toekomst te
koppelen. Al met al is ADDL een taal die geschikt is voor het representeren van
ontwerpkennis. In het huidige stadium is ADDL echter voornamelijk bruikbaar voor
het implementeren van ontwerpsystemen die bepaalde taken op vrij mechanische
wijze kunnen vervullen. Het systeem dient nog uitgebreid te worden met com
ponenten die op een meer geavanceerde wijze textuele en grafische interactie met
de ontwerper kunnen onderhouden. De ontwikkeling van ADDL als een
ge"integreerd onderdeel van een complex ontwerpsysteem is de volgende uitda
ging die aangegaan dient te worden.

Stellingen behorende bij het Proefschrift

On the Development of an
Artifact and Design Description Language

Paul Veerkamp

1. Iemand die samenleeft met een promovendus dient daarvoor
beloond te worden met een promotie zonder zelf een proef
schrift te hoeven schrijven.

2. De leercurve van Smalltalk is te vergelijken met die van Japans
voor een westerling. De syntax is redelijk eenvoudig onder de
knie te krijgen maar er is flink wat studie vereist voordat het
vocabulaire eigen is gemaakt.

3. Het descriptieve model van het ontwerpproces zoals
beschreven is in hoofdstuk twee van dit proefschrift kan ook
gebruikt worden om de verschillende stadia van een promo
tieonderzoek te beschrijven.

4. Misdaad is het enige gezwel waarbij een celtekort optreedt.

5. Gezien het feit dat er sinds de jaren dertig onafgebroken confes
sionele partijen in de regering hebben gezeten kan Nederland
amper een seculiere staat genoemd worden.

6. Een volk is een volk niet door een gemeenschappelijke taal,
noch door een gemeenschappelijk stuk land maar zuiver door
een gemeenschappelijke historie.

7. De kloof tussen het bedrijfsleven en de universiteiten heeft
gezorgd voor de achterstand van Nederland op het gebied van
informa tica.

8. Het gegeven dat het nederlandse woord 'kop' en het engelse
woord 'mug' zowel de betekenis 'hoofd' als 'drinkgerei' heeft
komt voort uit de gewoonte van de Vikingen Calva te drinken
uit de schedels van de overwonnen vijanden.

9. Het rijgedrag van automobilisten zou aanzienlijk verbeteren als
zij verplicht zouden worden een dag per maand in Amsterdam
te fietsen (en vice versa).

