19 research outputs found

    GIRNet: Interleaved Multi-Task Recurrent State Sequence Models

    Full text link
    In several natural language tasks, labeled sequences are available in separate domains (say, languages), but the goal is to label sequences with mixed domain (such as code-switched text). Or, we may have available models for labeling whole passages (say, with sentiments), which we would like to exploit toward better position-specific label inference (say, target-dependent sentiment annotation). A key characteristic shared across such tasks is that different positions in a primary instance can benefit from different `experts' trained from auxiliary data, but labeled primary instances are scarce, and labeling the best expert for each position entails unacceptable cognitive burden. We propose GITNet, a unified position-sensitive multi-task recurrent neural network (RNN) architecture for such applications. Auxiliary and primary tasks need not share training instances. Auxiliary RNNs are trained over auxiliary instances. A primary instance is also submitted to each auxiliary RNN, but their state sequences are gated and merged into a novel composite state sequence tailored to the primary inference task. Our approach is in sharp contrast to recent multi-task networks like the cross-stitch and sluice network, which do not control state transfer at such fine granularity. We demonstrate the superiority of GIRNet using three applications: sentiment classification of code-switched passages, part-of-speech tagging of code-switched text, and target position-sensitive annotation of sentiment in monolingual passages. In all cases, we establish new state-of-the-art performance beyond recent competitive baselines.Comment: Accepted at AAAI 201

    Learning Sparse Sharing Architectures for Multiple Tasks

    Full text link
    Most existing deep multi-task learning models are based on parameter sharing, such as hard sharing, hierarchical sharing, and soft sharing. How choosing a suitable sharing mechanism depends on the relations among the tasks, which is not easy since it is difficult to understand the underlying shared factors among these tasks. In this paper, we propose a novel parameter sharing mechanism, named \emph{Sparse Sharing}. Given multiple tasks, our approach automatically finds a sparse sharing structure. We start with an over-parameterized base network, from which each task extracts a subnetwork. The subnetworks of multiple tasks are partially overlapped and trained in parallel. We show that both hard sharing and hierarchical sharing can be formulated as particular instances of the sparse sharing framework. We conduct extensive experiments on three sequence labeling tasks. Compared with single-task models and three typical multi-task learning baselines, our proposed approach achieves consistent improvement while requiring fewer parameters.Comment: Accepted by AAAI 202

    Multi-Task Learning with Multi-View Attention for Answer Selection and Knowledge Base Question Answering

    Full text link
    Answer selection and knowledge base question answering (KBQA) are two important tasks of question answering (QA) systems. Existing methods solve these two tasks separately, which requires large number of repetitive work and neglects the rich correlation information between tasks. In this paper, we tackle answer selection and KBQA tasks simultaneously via multi-task learning (MTL), motivated by the following motivations. First, both answer selection and KBQA can be regarded as a ranking problem, with one at text-level while the other at knowledge-level. Second, these two tasks can benefit each other: answer selection can incorporate the external knowledge from knowledge base (KB), while KBQA can be improved by learning contextual information from answer selection. To fulfill the goal of jointly learning these two tasks, we propose a novel multi-task learning scheme that utilizes multi-view attention learned from various perspectives to enable these tasks to interact with each other as well as learn more comprehensive sentence representations. The experiments conducted on several real-world datasets demonstrate the effectiveness of the proposed method, and the performance of answer selection and KBQA is improved. Also, the multi-view attention scheme is proved to be effective in assembling attentive information from different representational perspectives.Comment: Accepted by AAAI 201
    corecore