25,824 research outputs found

    Learning Representations in Model-Free Hierarchical Reinforcement Learning

    Full text link
    Common approaches to Reinforcement Learning (RL) are seriously challenged by large-scale applications involving huge state spaces and sparse delayed reward feedback. Hierarchical Reinforcement Learning (HRL) methods attempt to address this scalability issue by learning action selection policies at multiple levels of temporal abstraction. Abstraction can be had by identifying a relatively small set of states that are likely to be useful as subgoals, in concert with the learning of corresponding skill policies to achieve those subgoals. Many approaches to subgoal discovery in HRL depend on the analysis of a model of the environment, but the need to learn such a model introduces its own problems of scale. Once subgoals are identified, skills may be learned through intrinsic motivation, introducing an internal reward signal marking subgoal attainment. In this paper, we present a novel model-free method for subgoal discovery using incremental unsupervised learning over a small memory of the most recent experiences (trajectories) of the agent. When combined with an intrinsic motivation learning mechanism, this method learns both subgoals and skills, based on experiences in the environment. Thus, we offer an original approach to HRL that does not require the acquisition of a model of the environment, suitable for large-scale applications. We demonstrate the efficiency of our method on two RL problems with sparse delayed feedback: a variant of the rooms environment and the first screen of the ATARI 2600 Montezuma's Revenge game

    GMCM: Unsupervised Clustering and Meta-Analysis Using Gaussian Mixture Copula Models

    Get PDF
    Methods for clustering in unsupervised learning are an important part of the statistical toolbox in numerous scientific disciplines. Tewari, Giering, and Raghunathan (2011) proposed to use so-called Gaussian mixture copula models (GMCM) for general unsupervised learning based on clustering. Li, Brown, Huang, and Bickel (2011) independently discussed a special case of these GMCMs as a novel approach to meta-analysis in highdimensional settings. GMCMs have attractive properties which make them highly flexible and therefore interesting alternatives to other well-established methods. However, parameter estimation is hard because of intrinsic identifiability issues and intractable likelihood functions. Both aforementioned papers discuss similar expectation-maximization-like algorithms as their pseudo maximum likelihood estimation procedure. We present and discuss an improved implementation in R of both classes of GMCMs along with various alternative optimization routines to the EM algorithm. The software is freely available in the R package GMCM. The implementation is fast, general, and optimized for very large numbers of observations. We demonstrate the use of package GMCM through different applications

    FSL-BM: Fuzzy Supervised Learning with Binary Meta-Feature for Classification

    Full text link
    This paper introduces a novel real-time Fuzzy Supervised Learning with Binary Meta-Feature (FSL-BM) for big data classification task. The study of real-time algorithms addresses several major concerns, which are namely: accuracy, memory consumption, and ability to stretch assumptions and time complexity. Attaining a fast computational model providing fuzzy logic and supervised learning is one of the main challenges in the machine learning. In this research paper, we present FSL-BM algorithm as an efficient solution of supervised learning with fuzzy logic processing using binary meta-feature representation using Hamming Distance and Hash function to relax assumptions. While many studies focused on reducing time complexity and increasing accuracy during the last decade, the novel contribution of this proposed solution comes through integration of Hamming Distance, Hash function, binary meta-features, binary classification to provide real time supervised method. Hash Tables (HT) component gives a fast access to existing indices; and therefore, the generation of new indices in a constant time complexity, which supersedes existing fuzzy supervised algorithms with better or comparable results. To summarize, the main contribution of this technique for real-time Fuzzy Supervised Learning is to represent hypothesis through binary input as meta-feature space and creating the Fuzzy Supervised Hash table to train and validate model.Comment: FICC201
    • …
    corecore