2,000 research outputs found

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    An Incremental Construction of Deep Neuro Fuzzy System for Continual Learning of Non-stationary Data Streams

    Full text link
    Existing FNNs are mostly developed under a shallow network configuration having lower generalization power than those of deep structures. This paper proposes a novel self-organizing deep FNN, namely DEVFNN. Fuzzy rules can be automatically extracted from data streams or removed if they play limited role during their lifespan. The structure of the network can be deepened on demand by stacking additional layers using a drift detection method which not only detects the covariate drift, variations of input space, but also accurately identifies the real drift, dynamic changes of both feature space and target space. DEVFNN is developed under the stacked generalization principle via the feature augmentation concept where a recently developed algorithm, namely gClass, drives the hidden layer. It is equipped by an automatic feature selection method which controls activation and deactivation of input attributes to induce varying subsets of input features. A deep network simplification procedure is put forward using the concept of hidden layer merging to prevent uncontrollable growth of dimensionality of input space due to the nature of feature augmentation approach in building a deep network structure. DEVFNN works in the sample-wise fashion and is compatible for data stream applications. The efficacy of DEVFNN has been thoroughly evaluated using seven datasets with non-stationary properties under the prequential test-then-train protocol. It has been compared with four popular continual learning algorithms and its shallow counterpart where DEVFNN demonstrates improvement of classification accuracy. Moreover, it is also shown that the concept drift detection method is an effective tool to control the depth of network structure while the hidden layer merging scenario is capable of simplifying the network complexity of a deep network with negligible compromise of generalization performance.Comment: This paper has been published in IEEE Transactions on Fuzzy System

    Ensemble based on randomised neural networks for online data stream regression in presence of concept drift

    Get PDF
    The big data paradigm has posed new challenges for the Machine Learning algorithms, such as analysing continuous flows of data, in the form of data streams, and dealing with the evolving nature of the data, which cause a phenomenon often referred to in the literature as concept drift. Concept drift is caused by inconsistencies between the optimal hypotheses in two subsequent chunks of data, whereby the concept underlying a given process evolves over time, which can happen due to several factors including change in consumer preference, economic dynamics, or environmental conditions. This thesis explores the problem of data stream regression with the presence of concept drift. This problem requires computationally efficient algorithms that are able to adapt to the various types of drift that may affect the data. The development of effective algorithms for data streams with concept drift requires several steps that are discussed in this research. The first one is related to the datasets required to assess the algorithms. In general, it is not possible to determine the occurrence of concept drift on real-world datasets; therefore, synthetic datasets where the various types of concept drift can be simulated are required. The second issue is related to the choice of the algorithm. The ensemble algorithms show many advantages to deal with concept drifting data streams, which include flexibility, computational efficiency and high accuracy. For the design of an effective ensemble, this research analyses the use of randomised Neural Networks as base models, along with their optimisation. The optimisation of the randomised Neural Networks involves design and tuning hyperparameters which may substantially affect its performance. The optimisation of the base models is an important aspect to build highly accurate and computationally efficient ensembles. To cope with the concept drift, the existing methods either require setting fixed updating points, which may result in unnecessary computations or slow reaction to concept drift, or rely on drifting detection mechanism, which may be ineffective due to the difficulty to detect drift in real applications. Therefore, the research contributions of this thesis include the development of a new approach for synthetic dataset generation, development of a new hyperparameter optimisation algorithm that reduces the search effort and the need of prior assumptions compared to existing methods, the analysis of the effects of randomised Neural Networks hyperparameters, and the development of a new ensemble algorithm based on bagging meta-model that reduces the computational effort over existing methods and uses an innovative updating mechanism to cope with concept drift. The algorithms have been tested on synthetic datasets and validated on four real-world datasets from various application domains

    A randomized neural network for data streams

    Get PDF
    © 2017 IEEE. Randomized neural network (RNN) is a highly feasible solution in the era of big data because it offers a simple and fast working principle in processing dynamic and evolving data streams. This paper proposes a novel RNN, namely recurrent type-2 random vector functional link network (RT2McRVFLN), which provides a highly scalable solution for data streams in a strictly online and integrated framework. It is built upon the psychologically inspired concept of metacognitive learning, which covers three basic components of human learning: what-to-learn, how-to-learn, and when-to-learn. The what-to-learn selects important samples on the fly with the use of online active learning scenario, which renders our algorithm an online semi-supervised algorithm. The how-to-learn process combines an open structure of evolving concept and a randomized learning algorithm of random vector functional link network (RVFLN). The efficacy of the RT2McRVFLN has been numerically validated through two real-world case studies and comparisons with its counterparts, which arrive at a conclusive finding that our algorithm delivers a tradeoff between accuracy and simplicity

    Adjoining Internet of Things with Data Mining : A Survey

    Get PDF
    The Interactive Data Corporative (IDC) conjectures that by 2025 the worldwide data circle will develop to 163ZB (that is a trillion gigabytes) which is ten times the 16.1ZB of information produced in 2016. The Internet of Things is one of the hot topics of this living century and researchers are heading for mass adoption 2019 driven by better than-expected business results. This information will open one of a kind of user experience and another universe of business opening. The huge information produced by the Internet of Things (IoT) are considered of high business esteem, and information mining calculations can be connected to IoT to extract hidden data from information. This paper concisely discusses the work done in sequential manner of time in different fields of IOT along with its outcome and research gap. This paper also discusses the various aspects of data mining functionalities with IOT. The recommendation for the Challenges in IOT that can be adopted for betterment is given. Finally, this paper presents the vision for how IOT will have impact on changing the distant futur

    An incremental interval Type-2 neural fuzzy Classifier

    Full text link
    © 2015 IEEE. Most real world classification problems involve a high degree of uncertainty, unsolved by a traditional type-1 fuzzy classifier. In this paper, a novel interval type-2 classifier, namely Evolving Type-2 Classifier (eT2Class), is proposed. The eT2Class features a flexible working principle built upon a fully sequential and local working principle. This learning notion allows eT2Class to automatically grow, adapt, prune, recall its knowledge from data streams in the single-pass learning fashion, while employing loosely coupled fuzzy sub-models. In addition, eT2Class introduces a generalized interval type-2 fuzzy neural network architecture, where a multivariate Gaussian function with uncertain non-diagonal covariance matrixes constructs the rule premise, while the rule consequent is crafted by a local non-linear Chebyshev polynomial. The efficacy of eT2Class is numerically validated by numerical studies with four data streams characterizing non-stationary behaviors, where eT2Class demonstrates the most encouraging learning performance in achieving a tradeoff between accuracy and complexity
    • …
    corecore