80,447 research outputs found
Hybrid approximate message passing
Gaussian and quadratic approximations of message passing algorithms on graphs have attracted considerable recent attention due to their computational simplicity, analytic tractability, and wide applicability in optimization and statistical inference problems. This paper presents a systematic framework for incorporating such approximate message passing (AMP) methods in general graphical models. The key concept is a partition of dependencies of a general graphical model into strong and weak edges, with the weak edges representing interactions through aggregates of small, linearizable couplings of variables. AMP approximations based on the Central Limit Theorem can be readily applied to aggregates of many weak edges and integrated with standard message passing updates on the strong edges. The resulting algorithm, which we call hybrid generalized approximate message passing (HyGAMP), can yield significantly simpler implementations of sum-product and max-sum loopy belief propagation. By varying the partition of strong and weak edges, a performance--complexity trade-off can be achieved. Group sparsity and multinomial logistic regression problems are studied as examples of the proposed methodology.The work of S. Rangan was supported in part by the National Science Foundation under Grants 1116589, 1302336, and 1547332, and in part by the industrial affiliates of NYU WIRELESS. The work of A. K. Fletcher was supported in part by the National Science Foundation under Grants 1254204 and 1738286 and in part by the Office of Naval Research under Grant N00014-15-1-2677. The work of V. K. Goyal was supported in part by the National Science Foundation under Grant 1422034. The work of E. Byrne and P. Schniter was supported in part by the National Science Foundation under Grant CCF-1527162. (1116589 - National Science Foundation; 1302336 - National Science Foundation; 1547332 - National Science Foundation; 1254204 - National Science Foundation; 1738286 - National Science Foundation; 1422034 - National Science Foundation; CCF-1527162 - National Science Foundation; NYU WIRELESS; N00014-15-1-2677 - Office of Naval Research
Typing Copyless Message Passing
We present a calculus that models a form of process interaction based on
copyless message passing, in the style of Singularity OS. The calculus is
equipped with a type system ensuring that well-typed processes are free from
memory faults, memory leaks, and communication errors. The type system is
essentially linear, but we show that linearity alone is inadequate, because it
leaves room for scenarios where well-typed processes leak significant amounts
of memory. We address these problems basing the type system upon an original
variant of session types.Comment: 50 page
Message passing for the coloring problem: Gallager meets Alon and Kahale
Message passing algorithms are popular in many combinatorial optimization
problems. For example, experimental results show that {\em survey propagation}
(a certain message passing algorithm) is effective in finding proper
-colorings of random graphs in the near-threshold regime. In 1962 Gallager
introduced the concept of Low Density Parity Check (LDPC) codes, and suggested
a simple decoding algorithm based on message passing. In 1994 Alon and Kahale
exhibited a coloring algorithm and proved its usefulness for finding a
-coloring of graphs drawn from a certain planted-solution distribution over
-colorable graphs. In this work we show an interpretation of Alon and
Kahale's coloring algorithm in light of Gallager's decoding algorithm, thus
showing a connection between the two problems - coloring and decoding. This
also provides a rigorous evidence for the usefulness of the message passing
paradigm for the graph coloring problem. Our techniques can be applied to
several other combinatorial optimization problems and networking-related
issues.Comment: 11 page
Message passing for vertex covers
Constructing a minimal vertex cover of a graph can be seen as a prototype for
a combinatorial optimization problem under hard constraints. In this paper, we
develop and analyze message passing techniques, namely warning and survey
propagation, which serve as efficient heuristic algorithms for solving these
computational hard problems. We show also, how previously obtained results on
the typical-case behavior of vertex covers of random graphs can be recovered
starting from the message passing equations, and how they can be extended.Comment: 25 pages, 9 figures - version accepted for publication in PR
Entropy Message Passing
The paper proposes a new message passing algorithm for cycle-free factor
graphs. The proposed "entropy message passing" (EMP) algorithm may be viewed as
sum-product message passing over the entropy semiring, which has previously
appeared in automata theory. The primary use of EMP is to compute the entropy
of a model. However, EMP can also be used to compute expressions that appear in
expectation maximization and in gradient descent algorithms.Comment: 5 pages, 1 figure, to appear in IEEE Transactions on Information
Theor
Characterizing and Improving Generalized Belief Propagation Algorithms on the 2D Edwards-Anderson Model
We study the performance of different message passing algorithms in the two
dimensional Edwards Anderson model. We show that the standard Belief
Propagation (BP) algorithm converges only at high temperature to a paramagnetic
solution. Then, we test a Generalized Belief Propagation (GBP) algorithm,
derived from a Cluster Variational Method (CVM) at the plaquette level. We
compare its performance with BP and with other algorithms derived under the
same approximation: Double Loop (DL) and a two-ways message passing algorithm
(HAK). The plaquette-CVM approximation improves BP in at least three ways: the
quality of the paramagnetic solution at high temperatures, a better estimate
(lower) for the critical temperature, and the fact that the GBP message passing
algorithm converges also to non paramagnetic solutions. The lack of convergence
of the standard GBP message passing algorithm at low temperatures seems to be
related to the implementation details and not to the appearance of long range
order. In fact, we prove that a gauge invariance of the constrained CVM free
energy can be exploited to derive a new message passing algorithm which
converges at even lower temperatures. In all its region of convergence this new
algorithm is faster than HAK and DL by some orders of magnitude.Comment: 19 pages, 13 figure
- …
