8 research outputs found

    Message-Passing Estimation from Quantized Samples

    Full text link
    Estimation of a vector from quantized linear measurements is a common problem for which simple linear techniques are suboptimal -- sometimes greatly so. This paper develops generalized approximate message passing (GAMP) algorithms for minimum mean-squared error estimation of a random vector from quantized linear measurements, notably allowing the linear expansion to be overcomplete or undercomplete and the scalar quantization to be regular or non-regular. GAMP is a recently-developed class of algorithms that uses Gaussian approximations in belief propagation and allows arbitrary separable input and output channels. Scalar quantization of measurements is incorporated into the output channel formalism, leading to the first tractable and effective method for high-dimensional estimation problems involving non-regular scalar quantization. Non-regular quantization is empirically demonstrated to greatly improve rate-distortion performance in some problems with oversampling or with undersampling combined with a sparsity-inducing prior. Under the assumption of a Gaussian measurement matrix with i.i.d. entries, the asymptotic error performance of GAMP can be accurately predicted and tracked through the state evolution formalism. We additionally use state evolution to design MSE-optimal scalar quantizers for GAMP signal reconstruction and empirically demonstrate the superior error performance of the resulting quantizers.Comment: 12 pages, 8 figure

    Optimal quantization for compressive sensing under message passing reconstruction

    Get PDF
    Abstract—We consider the optimal quantization of compressive sensing measurements along with estimation from quantized samples using generalized approximate message passing (GAMP). GAMP is an iterative reconstruction scheme inspired by the belief propagation algorithm on bipartite graphs which generalizes approximate message passing (AMP) for arbitrary measurement channels. Its asymptotic error performance can be accurately predicted and tracked through the state evolution formalism. We utilize these results to design mean-square optimal scalar quantizers for GAMP signal reconstruction and empirically demonstrate the superior error performance of the resulting quantizers. I

    Algorithms for Reconstruction of Undersampled Atomic Force Microscopy Images

    Get PDF

    Regime Change: Sampling Rate vs. Bit-Depth in Compressive Sensing

    Get PDF
    The compressive sensing (CS) framework aims to ease the burden on analog-to-digital converters (ADCs) by exploiting inherent structure in natural and man-made signals. It has been demonstrated that structured signals can be acquired with just a small number of linear measurements, on the order of the signal complexity. In practice, this enables lower sampling rates that can be more easily achieved by current hardware designs. The primary bottleneck that limits ADC sampling rates is quantization, i.e., higher bit-depths impose lower sampling rates. Thus, the decreased sampling rates of CS ADCs accommodate the otherwise limiting quantizer of conventional ADCs. In this thesis, we consider a different approach to CS ADC by shifting towards lower quantizer bit-depths rather than lower sampling rates. We explore the extreme case where each measurement is quantized to just one bit, representing its sign. We develop a new theoretical framework to analyze this extreme case and develop new algorithms for signal reconstruction from such coarsely quantized measurements. The 1-bit CS framework leads us to scenarios where it may be more appropriate to reduce bit-depth instead of sampling rate. We find that there exist two distinct regimes of operation that correspond to high/low signal-to-noise ratio (SNR). In the measurement compression (MC) regime, a high SNR favors acquiring fewer measurements with more bits per measurement (as in conventional CS); in the quantization compression (QC) regime, a low SNR favors acquiring more measurements with fewer bits per measurement (as in this thesis). A surprise from our analysis and experiments is that in many practical applications it is better to operate in the QC regime, even acquiring as few as 1 bit per measurement. The above philosophy extends further to practical CS ADC system designs. We propose two new CS architectures, one of which takes advantage of the fact that the sampling and quantization operations are performed by two different hardware components. The former can be employed at high rates with minimal costs while the latter cannot. Thus, we develop a system that discretizes in time, performs CS preconditioning techniques, and then quantizes at a low rate

    Message-passing estimation from quantized samples,” arXiv:1105.6368v1 [cs.IT

    No full text
    Abstract—Recently, relaxed belief propagation and approximate message passing have been extended to apply to problems with general separable output channels rather than only to problems with additive Gaussian noise. We apply these to estimation of signals from quantized samples with minimum mean-squared error. This provides a remarkably effective estimation technique in three settings: an oversampled dense signal; an undersampled sparse signal; and any signal when the quantizer is not regular. The error performance can be accurately predicted and tracked through the state evolution formalism. We use state evolution to optimize quantizers and discuss several empirical properties of the optimal quantizers. I. OVERVIEW Estimation of a signal from quantized samples arises both from the discretization in digital acquisition devices and the quantization performed for compression. An example in which treating quantizatio
    corecore