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ABSTRACT
Regime Change: Sampling Rate vs. Bit-Depth in Compressive Sensing
by

Jason N. Laska

The compressive sensing (CS) framework aims to ease the burden on analog-to-digital
converters (ADCs) by exploiting inherent structure in natural and man-made signals.
It has been demonstrated that structured signals can be acquired with just a small
number of linear measurements, on the order of the signal complexity. In practice, this
enables lower sampling rates that can be more easily achieved by current hardware
designs. The primary bottleneck that limits ADC sampling rates is quantization, i.e.,
higher bit-depths impose lower sampling rates. Thus, the decreased sampling rates

of CS ADCs accommodate the otherwise limiting quantizer of conventional ADCs.

In this thesis, we consider a different approach to CS ADC by shifting towards
lower quantizer bit-depths rather than lower sampling rates. We explore the extreme
case where each measurement is quantized to just one bit, representing its sign. We
develop a new theoretical framework to analyze this extreme case and develop new
algorithms for signal reconstruction from such coarsely quantized measurements. The
1-bit CS framework leads us to scenarios where it may be more appropriate to reduce
bit-depth instead of sampling rate. We find that there exist two distinct regimes of
operation that correspond to high/low signal-to-noise ratio (SNR). In the measure-

ment compression (MC) regime, a high SNR favors acquiring fewer measurements



with more bits per measurement (as in conventional CS); in the quantization com-
pression (QC) regime, a low SNR favors acquiring more measurements with fewer bits
per measurement (as in this thesis). A surprise from our analysis and experiments
is that in many practical applications it is better to operate in the QC regime, even

acquiring as few as 1 bit per measurement.

The above philosophy extends further to practical CS ADC system designs. We
propose two new CS architectures, one of which takes advantage of the fact that
the sampling and quantization operations are performed by two different hardware
components. The former can be employed at high rates with minimal costs while
the latter cannot. Thus, we develop a system that discretizes in time, performs CS

preconditioning techniques, and then quantizes at a low rate.
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Chapter 1

Introduction

The great shift to digital processing over the last few decades has created an insa-
tiable demand for the digitization of ever wider bandwidth signals [1]. In turn, this
has led to an increased burden on signal acquisition devices that rely on the Shan-
non sampling theorem which requires that such devices must sample at least at the
Nyquist-rate, twice the bandwidth of the signal, for any bandlimited signal [2, 3].}
This requirement forces analog-to-digital converters (ADCs) to sample faster to cap-
ture wideband signals for later digital processing. It is no longer feasible to build
devices that meet our demands for size, weight, power, and bandwidth while still

adhering to classical notions of signal acquisition [6, 7].

Thankfully, we have come a long way in our understanding of signals since Shan-
non’s original theory. The class of bandlimited signals is extremely broad, consisting
of all signals with some maximum frequency. For example, the sampling theorem
enables us to accurately capture an instance of bandlimited noise, even though there

may be little utility for such a signal. In fact, most natural and man-made signals

1While Shannon’s theory of communication (ca. 1949) is perhaps the most popularly cited origin
of this idea, similar sampling theorems were proven by Whittaker [4] in 1915 and Kotelnikov [5] in

1933.



have some inherent additional structure beyond bandlimitedness. In particular, in
this thesis we are interested in signals that when transformed into some domain (via
a linear transformation), have energy that is primarily concentrated among just a few
large coefficients, and all other coefficients can be approximated as zero. This partic-
ular description of signal structure is extremely practical since transforms exist that
firmly put many natural signals such as images [8, 9] and man-made signals [10, 11] in
this class. Indeed, the exploitation of this form of structure is the basis for transform

coding and compression, e.g., JPEG image compression {12, 13].

The confluence of rigorously defined structured signal models and the desire to
circumvent the Shannon-Nyquist limitation has prompted a new signal acquisition
framework, compressive sensing (CS) [14, 15]. A key insight is rather than attempt-
ing to acquire all bandlimited signals, CS assumes that we are only interested in
signals with the structure described above. By reducing the size of class of signals
of interest, we should be able to drive down the number of samples required to ulti-
mately distinguish between the signals. The CS framework harnesses this insight via

three fundamental components:

1. underdetermined linear measurement systems, i.e. we obtain the measurements

y=®z +e, (1.1)

of the signal £ € RV where ® is an M x N matrix with M < N that models

the linear physical sampling system, and with measurement error e € R¥;



2. signal models, the most simple model being that comprising of all K-sparse

signals, i.e., signals for which only K elements are non-zero; and

3. algorithmic reconstruction, such as convex optimization or greedy algorithms.
Briefly, to reconstruct a signal estimate Z from y we generally ask for the sparsest
solution such that its measurements, ®Z, are the same as, or within some close
distance of the observed measurements y. Such algorithms are non-linear and

iterative.

A large body of work has been devoted to the study of each of these components,
e.g., by i) characterizing conditions on ® that provide robust mappings of sparse
signals to lower dimensions and designing physical sampling systems that satisfy such
conditions [16-21]; ) proposing more refined classes of highly structured signals [22—-
24]; and 1) providing reconstruction guarantees and fast solvers for convex programs
[25-28] as well as greedy and first order algorithms [29-31]. We will review some of

these topics in more detail in Section 1.2.

CS promises to lessen our sampling burden by decreasing sampling rates. The
simple consequence of (1.1) is that when the acquisition of each measurement is
“expensive,” then we benefit by only sensing M values rather than N. For instance,
it is possible to design a physical sampling system ® such that y = &z = ®(z(t))
where z is a vector of Nyquist-rate samples of a bandlimited signal z(¢), t € R. In
this case, (1.1) translates to low, sub-Nyquist sampling rates. This is a potential

boon for wideband acquisition as mentioned earlier, since it enables current ADC



technology to acquire larger bandwidths than was possible before, or alternatively

enables a higher precision ADC to be used in current wideband systems.

The significant attention given to reducing the number of acquired measurements
only explicitly acknowledges half of the acquisition process. In practice analog-to-
digital conversion really comprises of two steps: ¢) discretization in time (sampling),
and 41) discretization in amplitude (quantization). Thus, just as in any conventional
sampling system, CS measurements are quantized, i.e., each measurement is mapped
from a real value (over a potentially infinite range) to a discrete value over some
finite range. For example, in scalar quantization, a measurement is mapped to one
of 28 distinct values, where B denotes the number of bits per measurement, i.e., the
bit-depth. The finite range of the quantizer results from a finite number of bits as well

as physical limitations of hardware components.

There are several interesting problems and attributes associated with quantization
(and physical quantizers) that are not considered by the prototype CS framework

described above:

e The quantizer begets the dynamic range of the system: Quantization introduces
two kinds of error: quantization error and saturation error. The former is the
result of measurements that are within the range of the quantizer; this error is
bounded. The latter is the result of measurements with amplitudes beyond the
range of the quantizer, i.e., saturated measurements; this error is unbounded

and in many case more detrimental to performance than quantization error.



The dynamic range of a system is typically defined as the ratio maximum am-
plitude tone to the minimum amplitude tone that can sampled with some given
accuracy. Thus, the finite range of the quantizer places strict limits on the

dynamic range of the ADC system.

Dynamic range tells us how much quieter the “quietest” signal can be than
the “loudest.” This is a fundamental metric of system performance for many

practical applications [32].

e The quantizer is the ADC bottleneck: The ADC is beholden to the quan-
tizer [6, 7]. Quantization significantly limits the maximum speed of the analog-
to-digital converter (ADC), forcing an exponential decrease in sampling rate as
the number of bits is increased linearly [7]. Furthermore, the quantizer is the
primary power consumer in an ADC. Thus, more bits per measurement directly

translates to slower sampling rates and increased ADC costs.

e The quantizer is sensitive to noise: High bit-depth quantization is more sus-

ceptible to non-linear distortion in the ADC electronics [33].

By reducing the sampling rate, the CS framework implicitly assumes we can relieve
some of the burdens associated with the quantizer.
In this thesis, we take a unified approach to CS ADCs, considering the sampling

rate, finite range quantization, and signal noise when studying CS systems. A driving

theme behind this work is that the tradeoff between sampling and quantization can



be manipulated in both directions; simply put, reducing the bit-depth of the quantizer
also reduces our sampling burden and furthers the goals of CS acquisition devices.
We develop the following main ideas (each roughly corresponding to a chapter), that

ultimately lead to this insight.

CS enables higher dynamic range systems. By reducing the sampling rate,
CS enables the use of a higher bit-depth or higher dynamic-range quantizer [7]. If we
are to claim any benefit by this fact, then it is of fundamental importance that the CS
measurement system ® can take advantage of any additional dynamic range granted
by a better quantizer. We rigorously study the dynamic range of CS systems and
determine that indeed it is on the same order as conventional systems for a uniform
quantizer at a given bit-depth. This then verifies that by reducing the sampling rate,

we may indeed obtain an improvement in the dynamic range of the system.

It is possible to extend the dynamic range of CS systems beyond the claims above.
In CS systems, saturated measurements can either be rejected before reconstruction
or included in a reconstruction algorithm. Robust signal reconstruction is possible in
both cases [34, 35]. Intuitively then, if we increase the input signal gain (equivalent
to increasing the scale of the measurements) such that the quantizer saturates sig-
nificantly, yet we still achieve similar reconstruction performance, then the dynamic
range of the system has effectively been increased. The question arises: how many

measurements are allowed to saturate?

Saturate all measurements < Quantize measurements to just 1 bit.



Although unintuitive, it is possible to saturate all of the CS measurements. In this
case, we effectively retain just 1 bit of information per measurement, representing its
sign. Thus, an alternative interpretation is that we can drive the depth of quantizer
down such that it is a simple comparator, testing for measurements above or below
zero. Previous notions of dynamic range no longer apply since any positive scaling of
the signal will result in the same set of measurement signs, i.e., the scale of the signal
will be obliterated. To reconstruct we search for the sparsest signal that yields the
same measurement signs when projected through the measurement system. We call
this consistent reconstruction. Since the scale of the signal is unknown and arbitrary,
we only search for signals with unit energy. We demonstrate that there are is a large
class of 1-bit CS mappings that enable stable reconstruction in this way and we further
demonstrate that practical algorithms can be designed to solve this reconstruction
problem. Finally, we extend the methods for 1-bit CS to measurements that have
been quantized at arbitrary bit-depths, or with arbitrary numbers of saturations,

unknown a priori. We dub this reconstruction technique saturation-agnostic CS.

Reduce the bit-depth, increase the sampling rate. 1-bit CS provides a fresh
perspective on CS ADCs. Driving down the bit-depth to the extreme case of a single
bit per measurement enables extremely fast hardware quantizers; now the quantizer
is a simple comparator. Thus, in stark contrast to the typical CS assertion that we
should reduce the sampling rate and increase the bit-depth of the quantizer we have

demonstrated that indeed the reverse possible. We take this yet a step further to



answer the question: when should we do this?

Signal noise subject to noise folding in CS, i.e., it is amplified by underdetermined
linear systems [36-38]. This means that as the sampling rate decreases, we incur an
increasing penalty due to input signal noise. Employing more bits at the quantizer
when there is more noise means the extra precision is not being used efficiently.
Sampling at a higher rate with an extremely low bit-depth addresses this problem.
Noise folding either becomes less prevalent, or in the oversampled case, is not present
at all. Meanwhile, the burdens of higher-rate sampling are still relieved by the low

bit-depth of the quantizer.

CS ADCs: Disconnect the sampler from the quantizer. Sampling and
quantization are carried out by two distinct hardware components in physical ADCs.
Specifically, the sample and hold (S/H) component discretizes in time while the hard-
ware quantizer discretizes in amplitude. As previously noted, the quantizer is the
main ADC bottleneck. Indeed, S/H components can operate accurately at extremely
high speeds and low power, as opposed to the quantizer. We propose two new CS
ADC architectures that take advantage of this insight. While previous CS ADC de-
signs use an off-the-shelf ADC at a low rate, we separate the two ADC discretization
steps. The sampling components operate at a high rate while the quantizer oper-
ates at a low rate. We demonstrate that this yields new CS ADCs that avoid many

problems associated with earlier designs.

In this thesis we carefully explore the ideas described above. Along the way we



develop new theoretical frameworks for analyzing dynamic range and 1-bit CS, we
develop new algorithms for sparse signal reconstruction, and we perform extensive
simulations to demonstrate the validity of our claims. We now briefly describe in ever

so slightly more detail what topics and results can be found in each chapter.

1.1 Roadmap and Main Contributions

For the remainder of this chapter in Section 1.2, we review and define the key compo-
nents and results of the CS framework that will be made use of later in this thesis. We
cover sparse signal models and undetermined linear sensing models. We then move on
to introduce a useful property of the matrix ®, the restricted isometry property (RIP),
for which robust signal reconstruction from many algorithms is guaranteed. We re-
view the convex optimization formulations that can be used to reconstruct sparse
signals as well as greedy and first order algorithms that are often used in practice and
will be adapted for our purposes. Finally we discuss the noise folding effect in these

systems.

In Chapter 2 we analyze the dynamic range of CS systems with finite-range
uniform scalar quantizers. OQur new contributions are as follows. We begin by defin-
ing a rigorous and deterministic notion of dynamic range. This enables us to avoid
more heuristic dynamic range analyses that make assumptions about the signal (or
measurement) distribution. We then go on to derive the dynamic range of a conven-

tional system and demonstrate that it reasonably similar to the more conventional



10

dynamic range definitions. The dynamic range of conventional systems provides a
basis for comparison against CS systems. Thus, given our definition, we next derive
the dynamic range for a large class of CS systems (those depending on the RIP of
® discussed in Section 1.2). Combining these results we can then claim that the
dynamic range of CS systems is on the same order as that of conventional sampling
systems. We follow up with a short discussion on the peak-to-average ratio (PAR)

and how for some CS systems this is improved on average.

We conclude the chapter with a review of the democratic property of random ma-
trices and explain how this can be exploited to further increase the dynamic range of
CS systems [34]. We derive an analytical expression for the improvement in terms of
the previous analysis. We experimentally verify the claims in the chapter and demon-
strate the improvement gained by both increasing the quantizer bit-depth as a func-
tion of decreasing measurement rate as well as employing the democratic saturation-
robustness techniques. A surprising empirical result leads us towards the philosophy
espoused in the next two chapters: we should consider decreasing bit-depth and in-

creasing measurement-rate.

In Chapter 3 we study 1-bit quantization for CS measurements. We begin by
explaining how saturating all measurements corresponds precisely to 1-bit quanti-
zation. We then formally define the 1-bit framework as in [39] and explain several
benefits of this framework. Our new contributions are as follows. First we provide

optimal reconstruction bounds from 1-bit measurements from any mapping. We then
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demonstrate that Gaussian ® (among a few others) will enable us to satisfy the pre-
vious bounds in the noiseless case. We next introduce a new property for 1-bit CS
systems that we dub the Binary e-Stable Embedding (BeSE) and demonstrate how
if a system satisfies this property, then robust reconstruction is guaranteed. We fur-
ther demonstrate that again Gaussian sensing systems satisfy this property with high
probability and we derive the number of measurements required for this to hold. We
then apply our results to formulate guarantees from noisy measurements and signals
that are not strictly sparse. We next derive a new reconstruction formulation that
extends the framework to be used not only in the fully saturated case, but can be

applied to problems with arbitrary saturations, i.e., saturation-agnostic sensing.

We continue on to more practical aspects of the 1-bit framework by introduc-
ing two new algorithms for signal reconstruction: Restricted-Step Shrinkage (RSS)
and Binary Iterative Hard Thresholding (BIHT). For the former algorithm we give
convergence guarantees and for the latter algorithm we discuss what problem it is at-
tempting to solve and why the reconstruction error performance may differ between
the two. We additionally motivate the formulation of several convex reconstruction
algorithms. We conclude the chapter and our contributions with an extensive suite of
simulations, comparing the 1-bit algorithms against previously proposed algorithms
and studying the performance in comparison with higher bit-depth uniformly quan-

tized CS systems. We also verify the validity of the saturation-agnostic approach.

In Chapter 4 we explore the tradeoff between bit-depth and measurement rate.
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We find that by considering signal noise, we expose a regime where 1-bit CS out-
performs more conventional CS systems. Our new contributions are as follows. We
study the scenario where there is a fixed bit-budget, a scalar quantizer, and input
signal noise. We begin by developing a theoretical bound on the reconstruction er-
ror from quantized CS measurements. We then show numerically that the minimum
of of this bound is attained for lower bit-depths as the input measurement noise is
increased. In fact, these simulations demonstrate that 1-bit CS outperforms con-
ventional CS when the input SNR is low enough. Thus, we can categorize CS into
two compression regimes, corresponding to the input SNR: measurement compression
(MC) when input SNR is high, and quantization compression (QC) when input SNR
is low. The former finds application when measurements are expensive to sense and
high bit-depths are inexpensive, while the latter finds application when measurements

are inexpensive to sense and high bit-depths are expensive.

In Chapter 5 we introduce two new CS architectures. First, we introduce the
Compressive Multiplexer (CMUX) that can be used to acquire signals from a multi-
channel signal model. We discuss the benefits of this design over previous designs.
We also discuss several algorithms that can be used with this system due to its unique
structure. Second, we introduce the Polyphase Random Demodulator (PRD), a new
take on a more “classical” system the Random Demodulator (RD) [18]. The key
insight driving this design is that the S/H hardware can be separated from the quan-

tizer, providing significant gains over the RD in calibration and computer modeling
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for reconstruction. We also discuss the relationship between the CMUX and the PRD.

We conclude this chapter with simulations demonstrating the validity of the CMUX

and PRD designs.

Without further delay, we now throw down a plain introduction to vanilla CS.

1.2 Compressive Sensing (CS) Toolkit
1.2.1 Signal and sensing models

In the CS framework [14, 15], we acquire a signal z € R" via the linear measurements
y=®x +e, (1.2)

where the underdetermined matrix ® € RM*" models the physical sampling system,
y € RM is the vector of measurements acquired, and e € RM is a measurement noise

vector.

In the most basic CS setup, we are interested in K-sparse signals, i.e., x € Xk
where S = {z € RY : ||z||o := |supp(z)] < K}.2 However in practice, signals
may not be strictly sparse but rather may contain many small coefficients that do
not contribute considerable energy to the signal, or when sorted by magnitude, the
signal coefficients decay with some power law, i.e., have elements such as z,, |n|_1/ p
for p > 1. Such signals that can be well-approximated by just K largest in mag-

nitude coefficients are called compressible signals. We will denote the best K-term

2|l - llo denotes the £y quasi-norm, which simply counts the number of nonzero entries of a vector.
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approximation of x as zx. Finally, in many cases z will not be canonically sparse;
instead it can be sparse is some orthonormal transform basis ¥. In this case we write
z = Wa where oo € Y. Since we still sense z, the measurements can be written as
y = ®Va + e, and thus the matrix ¢V is used in reconstruction when solving for a
sparse estimate @. Unless otherwise noted, for the remainder of this thesis without

the loss of generality, we fix ¥ = I, the identity matrix, implying that z = a.

Recently there has been significant interest in exploiting stronger signal models.
In some cases, there is additional structure known a priori about the non-zero coef-
ficients. For instance, model-based signal reconstruction algorithms have been pro-
posed for the case when some explicit relationship between the support of the non-zero
coefficients is known [24]. This has been used for recovery of spectrally sparse sig-
nals [22] and neural spike trains [23]. Another popular signal model has been that of
group-sparsity where the non-zero coefficients are clustered together [40, 41]. These
stronger models further empower the CS framework to produce more accurate esti-
mates with the same set of measurements but are primarily beyond the scope of this
thesis. We only mention these models since it is possible that many of the methods
described in this thesis can be extended to make use of these models and could be

considered in practical instantiations.
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1.2.2 The restricted isometry property (RIP)

Not all underdetermined sensing systems ® are admissible. For instance, it is clear
that if any signal x € ¥ lies in the nullspace of ®, then it can never be recovered
with bounded error. While & can sometimes be analyzed in conjunction with a
reconstruction algorithm to provide theoretical guarantees [16, 18, 42, 43], we can
study a more generic property of @, the so-called restricted isometry property (RIP);
the sufficient condition that the norm of the measurements is close to the norm of

the signal for all sparse z, i.e.,
(1= O)llzll; < 1223 < (1 +8)ll=ll3, (1.3)

for all z € T [44]. As a minimal sanity check, notice that under this definition no
sparse signal will be in the nullspace of ®. In words, the RIP requires ¢ to act as
an approximate isometry on the set of K-sparse vectors. Remarkably, it has been
shown that if we set M > CsK log(N/K) (where Cjs is some constant) and draw the
elements of ® from a sub-Gaussian distribution, then these matrices will indeed satisfy
the RIP with high probability [45, 46]. Indeed, practical measurement systems with
significantly more structure may also be admissible. For instance, hardware inspired
designs have also been shown to hold this property [18, 47-50]. We will discuss some

of these systems as well as some new architectures in Chapter 5.

The RIP can be expressed in general terms, as a §-stable embedding. Let § € (0,1)
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and X, 5 C RY. We say the mapping ® is a §-stable embedding of X, S if
1= 0)llz - sll < [|Bz — ®s[l3 < (1 + )|z — s]l3, (1.4)

for all z € X and s € S. The RIP requires that (1.4) holds for z + s € Zg; it
is a stable embedding of sparse vectors. Expressing the RIP in this way enables
further interpretation of this property. Specifically, it is clear from (1.4) that the RIP
ensures that the distance between any two length-N K-sparse vectors is preserved
when they are mapped down to the lower dimensional space. This interpretation will

be important when we study 1-bit quantized CS measurements in Chapter 3.

1.2.3 Signal reconstruction via convex optimization

To reconstruct an estimate Z from y when there is no noise, i.e., ||e|]|ls = 0, we could

naively solve for the sparsest signal that satisfies (1.2),

Z + argmin ||z|lo st. y= Dxz; (£o-min)
z€RN

however, this non-convex program exhibits combinatorial complexity in the size of
the problem [51]. Instead, we solve Basis Pursuit (BP) by relaxing the objective in

(£o-min) to the £;-norm

T < argmin|z|; st. y= dz; (BP)

zeRN

the result is a convex, polynomial-time algorithm [52]. A key realization is that, under

certain conditions on ® (e.g., the RIP), the BP solution will be equivalent to that
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of (fo-min) [14]. This is remarkable since we seemingly have solved a combinatorial
problem in polynomial time. Indeed, this is a key result that generated significant

interest during the nascent years of CS.

The RIP suffices to ensure that a variety of other convex optimization algorithms
can successfully recover any sparse or compressible signal from noisy measurements.

In particular, for bounded errors of the form |le||; < €, the convex program Basis

Pursuit Denoising (BPDN)

Z + argmin ||z||; s.t. |[Pr—y|2 <€ (BPDN)

zERN

can recover a sparse or compressible signal z with bounded error. The following
theorem makes this notion precise by bounding the recovery error of z with respect
to the measurement noise norm, denoted by €, and with respect the best K-term

approximation Tg.

Theorem 1 (Theorem 1.2 of [44]). Suppose that ® satisfies the RIP of order 2K
with § < /2 — 1. Given measurements of the form y = ®x + e, where ||e||2 < ¢, the

solution to (BPDN) obeys

I1Z — zl2 < Coe + CI%, (1.5)

where
Co 4/1+6 0221+(\/§—1)5 (16)
Ti1-(V2+1)s T T1-(V2+1)6 '

Many other convex formulations for reconstruction from noisy measurements have

been proposed with different robustness guarantees depending on the noise model of



18

e. [563, 54]. Furthermore, many fast algorithms have been developed to solve these
problems [26-28, 55].
We conclude this subsection on convex reconstruction algorithms by mentioning

another extremely popular reconstruction formulation, known as the LASSO [56],
~ .1 2
T + argmin - ||y — @z||5 + A||z]|;. (LASSO)
zeRN 2

For any € in (BPDN), there is an appropriate choice of A such that the solutions to
(BPDN) and (LASSO) are equivalent [57, 58]. A wide range of algorithms have been

design to solve this problem rather than (BPDN) [25, 59].

Although (LASSO) can be thought of as a relaxation of (BPDN) where the con-
straints have been moved into the objective function, the LASSO actually has its
roots in statistical regression and is often interpreted as solving the least squares
problem with a sparse penalty, or ¢;-regularizer. It has long been known in the statis-
tics community that the ¢; penalty biases in favor of sparse solutions, but a complete
analytical framework for signal reconstruction with deterministic guarantees such as

those given in Theorem 1.5 are a new result of the CS framework.

1.2.4 Signal reconstruction via greedy and first order algorithms

While convex optimization programs such as (BPDN) are powerful methods for CS
signal recovery, there also exist a variety of alternative algorithms that are commonly
used in practice and for which performance guarantees comparable to that of Theorem

1 can be established. In particular, greedy algorithms such as CoSaMP [29] and first
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Algorithm 1: Prototype CS greedy algorithm
so Initialize

Set initial solution z° := 0
Set iteration s := 0

while not converged do
S1 Form signal proxy

R+l .= Ty
S2 Update coefficient support set 2

e.g., add location of largest element in A**! to Q (in OMP [16, 61])
S3 Update coefficient estimate

e.g., via pseudo-inverse 7°!|q := @Lys

S3 Subtract current estimate from measurements

Yo+l = g — Bpotl

S4 Update iteration count

Set s :=s5+1

order optimization algorithms such as iterative hard thresholding (IHT) [30, 60| are
known to satisfy similar guarantees under slightly stronger assumptions on the RIP
constants. We briefly describe a prototypical greedy CS algorithm and IHT since

algorithms in later chapters will inspired by these methods.

Greedy Algorithms. We call an algorithm greedy if it makes decisions that are

locally optimal in each iteration. While greedy algorithms are popular because they
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are fast and effective in practice, under certain circumstances these algorithms can
produce solutions that are also globally optimal [61]. Algorithm 1 summarizes the
general steps employed by a CS greedy algorithm, such as CoSaMP. The basic steps
are as follows. Form a signal proxy, usually by computing h**t! = ®Ty* at iteration s.
This vector looks like a noisy version of the signal and enables fairly accurate detection
of signal support, of course depending on ||e||; and K. We next refine our support set
estimate 2. In orthogonal matching pursuit (OMP) [16, 61] this is done by simply
selecting the support of the single largest in magnitude element of A°*! and adding
it to the support set, while in CoSaMP, 2K elements are selected simultaneously and
added to support set. In the case of CoSaMP this set is later pruned. After updating
the support estimate, we refine the coefficient amplitude estimates. Typically to do

this, the optimal linear estimator, least squares is performed
~ .1 2
Zlo + min - |y — Bazlal (1.7)

where ®q denotes the submatrix of ® formed by selecting the columns of ¢ according
to the index set €2 and similarly z|q represents the corresponding subvector of z.
Thus, the estimator is only applied to the non-zero coefficients and the resulting

linear system is overdetermined. This can be computed via
o « Ohy®, Z°lgc =0, (1.8)

where @ denotes the submatrix of ® formed by selecting the columns of ® according

to the index set €, Z°|q is the corresponding subvector of Z°, Q€ is the complement
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Algorithm 2: Iterative Hard Thresholding (IHT) [30, 60]
so Initialize

Set initial solution z° := 0
Set iteration s :=10

while not converged do
S1 Update estimate

atl = z° + @7 (y — ®z°)
S2 Hard threshold — select largest K
s+l = ,,]K(as+1)

S3 Update iteration count

Set s :=s+1

set to €2, and T denotes the Moore-Penrose pseudo-inverse. This can also be computed
using an algorithmic technique such as the conjugate-gradient method [62]. Finally,
once the coefficients supports and values are estimated, we subtract their contribution

from the measurements, y°*! = y* — ®q7%|q.

Iterative Hard Thresholding (IHT). Algorithm 2 summarizes the IHT algo-
rithm. In the first step we add the proxy h (from the greedy algorithm) to the current
signal estimate resulting in a**! = z° + ®T(y — ®z°), at iteration s. We then simply
threshold this estimate by setting all elements of a**! to zero except for the largest
K elements via the function nx(-). The first step is effectively a gradient descent for

the function %|ly — ®z||3. Thus, IHT for CS can be thought of as trying to solve the
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problem

T + argmin 1lly — @z|} st |zl = K. (1.9)
zeRN

Other first order algorithms such as approzimate message passing (AMP) proceed in
a similar manner, sometimes adding additional terms to the first step and adapting

how many coefficients are selected in each iteration [31].

1.2.5 Oracle-assisted signal reconstruction

As we saw in the greedy algorithm, CS reconstruction can be thought of as consisting
of two steps: first finding the non-zero coefficient locations (the support) and then
estimating the coefficient values. If we can correctly identify the true signal support,
then the optimal linear estimate for coefficient values cén be computed via least
squares. Indeed, if an oracle were to provide the true support €2, then no linear
CS reconstruction algorithm can perform better than (1.8). Thus, reconstruction
with known signal support is sometimes called oracle-assisted reconstruction [38, 53].
Some of our analysis will be primarily in terms of the performance of this best-case

reconstruction algorithm.

1.2.6 Noise folding

Signal noise is amplified by underdetermined linear measurement systems [36]. Specif-
ically, it has been shown that if n is white Gaussian noise with variance o2, then for

CS measurement systems, ®n is also white, Gaussian, and each noise measurement
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has increased variance 0%, ~ .02 [37, 38]; this increase in noise power is often called
noise folding. It can be shown that for Gaussian noise, the oracle reconstruction error
is proportional to ¢2,,, thus the reconstruction incurs a penalty due to the noise fold-
ing. Roughly speaking, this result implies that during reconstruction we lose about
3dB of signal-to-noise ratio (SNR) as the number of measurements decreases by half.

The key series of results that make this so are as follows.

Suppose that z = ®x —y, where z is a zero-mean random vector with uncorrelated
(white) entries, each having variance o2. Furthermore suppose that ® has the RIP
of order K, and that z is K-sparse. Then Theorem 4.1 of [38] demonstrates that

oracle-assisted reconstruction will have expected error

Ko?
146

Ko?
1-6

<E(|lz—z|3) <

(1.10)

A key component of our analysis in Chapter 4 will be understanding the variance
of the noise term z that arises from quantized noisy measurements. The expression
(1.10) then gives the intuition that the expected reconstruction error behaves on the

order of the variance of the error per measurement o2.

The variance o2 of the signal noise can be easily related to the variance of the mea-
sured noise 02,,. If n is white with mean zero and variance o2, and ® has orthonormal

rows, i.e., ®®T = &L 1), 3 then it is straightforward to show that the measured noise

3The so-called tight frame condition ®&T = %I M is not overly restrictive, since for any RIP
matrix U, a matrix that has both the same row-space as U and the tight frame condition can be

derived from U [38].
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is also white and zero mean and has variance

2 N 2

Ogn = 370" (1.11)

Note that the measured noise is only uncorrelated (i.e., white) when M < N; indeed,

the condition ®®T = %I M can only hold when M < N.

In [38], the authors combine the results of (1.10) and (1.11) to obtain a bound on
the oracle-assisted reconstruction error due to noise folding. In Chapter 4 we will take
a similar approach, however we will additionally include the effects of quantization.
Furthermore, because our quantization error is not necessarily uncorrelated, we also
generalize (1.10) to obtain an upper bound on the oracle reconstruction error with

correlated measurement noise.
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Chapter 2

Quantization and Dynamic Range in Compressive
Sensing

Practical, finite range quantization imposes a finite dynamic range on a system, i.e.,
there is an intimate relationship between the scale and the precision of the signal
that can be represented. A fundamental advantage of CS is that it enables a sig-
nificantly lower sampling rate for sparse signals, which in turn enables the use of
higher-resolution ADCs [7]. By exploiting this fact, a CS acquisition system should
be able to provide a significantly larger dynamic range than a conventional system.
In this chapter,! we justify this claim in two ways. First, we define and review finite
range scalar quantization. Second, we provide a theoretical justification that the dy-
namic range of a conventional CS systems is on the same order as for a conventional
ADC. We can then conclude that using a lower rate ADC enables higher bit-depth
quantizers and thus the dynamic range is increased. Third, we demonstrate that be-
cause a large class of randomized CS systems are democratic, we can in fact increase

the dynamic range of some CS systems in unconventional ways.

1This chapter includes work done in collaboration with Mark Davenport, John Treichler, Petros

Boufounos, and Richard Baraniuk [34, 38].
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Figure 2.1 : (a) Midrise scalar quantizer. (b) Finite-range midrise scalar quantization
function Qp with saturation level G and quantization interval A = 2~ B+1@G.

2.1 Finite-Range Scalar Quantization

In practice CS measurements are mapped to bits via a physical quantizer. A more

precise model of the CS acquisition step (1.2) might be written as

Yo = Qp(®(z +n) +e), (2.1)

where Op : R — 2 is a B-bit scalar quantization function (applied element-wise
in (2.1)) that maps real-valued CS measurements to the discrete alphabet 2 with
|2 = 2B. We have additionally included signal noise n € RY that we will discuss
in more detail in Chapter 4 and will be assumed to be zero unless otherwise noted.
Since in a well-designed hardware system the primary source of measurement noise
derives from quantization and for clarity of exposition, we will also assume ||e||z = 02

for the remaining chapters.

2The general trends presented in this thesis remain unchanged when ||e||2 > 0, unless otherwise

noted.
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In practice, quantizers have a finite dynamic range, dictated by hardware con-
straints such as the voltage limits of the devices and the finite number of bits per
measurement of the quantized representation. Thus, a finite-range quantizer repre-
sents a symmetric range of values |g| < G, where G > 0 is known as the saturation
level [63]. Values of g between —G and G will not saturate, thus, the quantization
interval is defined by these parameters as A = 2783+1G. In this chapter, without
loss of generality we assume a midrise B-bit uniform quantizer, i.e., the quantization
levels are g, = A/2+ kA, where k = —2B8-1 .. 2B-1 _ 1. Note that if |g| < G, then
we have that |g — Qg (9) | < A/2, but if |g| > G then |g— Qg (g9) | = |9| — (G—A/2).
Figure 2.1(a) depicts the mapping performed by a midrise quantizer with interval A

and Figure 2.1(b) depicts a finite range variant with saturation level G.

The quantizer induces two forms of error on the measurement: quantization and
saturation (or clipping) error. The former is due to the finite precision of the quantizer
and the latter is due to the finite range of the quantizer. One way to account for
quantization error is to treat it as bounded noise and employ robust reconstruction
algorithms. Alternatively, we might try to reduce the error by choosing the most
efficient quantizer for the distribution of the measurements. Several reconstruction
techniques that specifically address CS quantization have also been proposed [34, 64—
69]. Saturation error is usually avoided by scaling the measurements such that few or
no saturations occur. We will see shortly that in CS there are alternative techniques

for dealing with saturations.
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2.2 Dynamic Range of CS-Based Acquisition Systems

We begin our analysis by first providing a rigorous and general definition of dynamic
range. Roughly, we define the dynamic range as the ratio of the maximum to the
minimum signal power levels that can be handled with “full fidelity”.> In order to
make this notion precise, as previously stated, we will ignore the effects of any noise
or nonlinearities from the other ADC components and examine only the impact of
quantization. This is a fair assumption, since a key goal in the design of an ADC is

that the quantizer be the only component that limits the device’s dynamic range.

Our definition of dynamic range has two properties that aid us in the analysis of
CS systems: (%) the dynamic range does not depend on a stochastic quantization error
model, and (%) any reduction of quantization error yields a corresponding improve-
ment in dynamic range, i.e., the dynamic range of the quantizer effectively determines
the dynamic range of the system. With this definition in hand, we examine quantiza-
tion in both conventional and CS systems and provide lower bounds on the dynamic
range of each. Our key finding in this section will be that, all things being equal,
the dynamic range of a CS acquisition system is generally no worse than that of a
conventional system. Thus, since CS enables lower sampling rates for sparse signals,

we can employ a higher-resolution ADC and attain a larger dynamic range.

3In this section we are analyzing the CS-based receiver’s dynamic range as a system. This should
not be confused with the dynamic range of a signal, which in our framework could be quantified as

the ratio of the largest to smallest entry in z.
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2.2.1 A deterministic approach to dynamic range

To formulate our definition of dynamic range, we first analyze the error induced by

the quantization of z. For a given x, we define the reconstruction SNR (RSNR) as

el
RSNR = ——=—, 2.2
T (22)

where 7 is the output of our CS reconstruction algorithm and the signal-to-quantization

noise ratio (SQNR) of the quantizer as

e
A PR 9

We make the dependence of the SQNR on z explicit, since our definition of dynamic
range will be based on how the scaling of x affects the SQNR. First, however, we

establish a practical bound on the best SQNR attainable for a given G, A, and .

Lemma 1. Let € RN be arbitrary. There always exists a 8 > 0 such that

1 [2G\?
where
() 7]l oo (2.5)

lell, /YN

The proof of this lemma can be found in Appendix A.1.

The quantity + in (2.5) is known as the peak-to-average ratio (PAR) of z. Also
known as the crest factor or loading factor [70], it is a measure of the ratio between

a signal’s “average energy” to its peak.
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While the expression in (2.4) may look foreign to some, this bound is similar to
standard results for peak SQNR. Recall that 2G/A = 2B. Thus, if we express (2.4)

in dB, then we observe that by setting 8 appropriately we can obtain
SQNR(Bz) > 20Blog;((2) — 20logo(v(z)) Z 6.02B — 201logo(y()). (2.6)

This corresponds to the well-known result that the peak SQNR grows by approxi-
mately 6dB per quantizer bit [70]. Furthermore, although the SQNR bound in (2.6)
provides only a lower bound on the SQNR, it generally agrees with the results in the
literature that assume probabilistic models on the signal z and/or the quantization
noise. For example, a more conventional probabilistic analysis would assume that
the quantization noise has a uniform distribution. In this case, one can derive the
expression

SQNR(Bz) = 6.02B — 201og,o(y(z)) + 4.77,

where the additive constant 4.77 reflects the improvement made possible over our
worst-case bound by placing a uniform distribution on the quantization noise [70).
For our purposes below, a lower bound on the SQNR is sufficient. We view the de-
terministic nature of our bound as a strength allowing us to avoid any questionable
assumptions concerning the quantization noise distribution. It is important to note
that by considering only the deterministic, worst-case error as in (2.6), the result-
ing expressions will generally differ from more standard results based on uniformly

distributed quantization noise by 4.77dB.

We now show how we can use the SQNR to offer a concrete definition for dynamic
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range. Specifically, suppose that we are given a target SQNR C to achieve. We aim
to identify the range of scalings 8 of a given signal x for which SQNR(8z) > C. More
formally, we can always ensure that SQNR(Bz) > C for all 8 € | gi“(x),ﬂga"(m)],

where %17(z) and %**(z) are scalars satisfying

BE" () < G/ llzllee < BE™ (). (2.7)

In words, 8%*(z) and S%'"(z) define a range of scalings over which we achieve the

desired SQNR C.

We define the dynamic range of a conventional acquisition system as

DRo(z) = (E%a’(—((%)z (2.8)

Hence, the dynamic range of a conventional ADC is the ratio of the maximum input
scaling to the minimum input scaling of x such that for both scalings the SQNR is
at least C.

At first sight, (2.8) may appear to be a rather complicated way of describing what

is at heart an elementary concept — dynamic range is often simply quantified as the

4In our analysis we consider C € (1,(2G/A)? /y(x)?] to ensure that our definition leads to a
meaningful notion of dynamic range. Specifically, once we fix A and G, there is an upper limit
on the SQNR we can hope to achieve, and for C beyond that limit the dynamic range will be ill-
defined. Similarly, if we set C = 1 then one can easily achieve infinite dynamic range by quantizing

all signals to zero. However, for the range of C considered we can always set 8 = G/ ||z||,, will

satisfy SQNR(Bz) > C (see the proof of Lemma 1).
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ratio of the largest to smallest quantization levels. However, the strength of this def-
inition is that it can easily be extended to quantify the dynamic range of a CS-based
ADC in which the measurement and reconstruction processes obscure the impact of
finite-range quantization on the final RSNR as given by (2.2). Specifically, given an
input signal z we apply a reconstruction algorithm to the quantized CS measurements
O (y) = Qp (Pz) to obtain a reconstruction Z. We wish to understand the impact
of this quantization on the resulting RSNR of Z. While it might not otherwise be im-
mediately apparent, (2.8) suggests a natural way to extend the definition of dynamic
range to the CS setting by simply replacing RSNR with SQNR, i.e., defining 8% (z)
and %% (z) by considering the range of scalars 8 such that RSNR(Sz) > C. Note
that for a conventional ADC, since RSNR = SQNR, the definition remains unchanged
from (2.8). We now analyze the dynamic range of a conventional acquisition system

in Section 2.2.2 and then extend this analysis to the CS setting in Section 2.2.3.

2.2.2 Dynamic range of a conventional ADC

We now provide a simple bound on the dynamic range DR¢(z) for a conventional

ADC.

Theorem 2. The dynamic range of a quantizer as defined by (2.8) is bounded by

DRe(z) > 57(?5%“——1 ((2—;)2 - 1) , (2.9)

where y(z) is defined as in (2.5).
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The proof of this Theorem can be found in Appendix A.2.
For large B, the “—1” term in (2.9) will be negligible, and so by expressing (2.9)

in dB we obtain

DR¢(z) 2 6.02B — 101log,, (Cy(z)® — 1) . (2.10)

This coincides with the familiar rule of thumb that just like the SQNR in (2.6), ADC
dynamic range increases by 6dB per quantizer bit [70]. Note, however, that we again
have an additive constant that here depends both on the targeted SQNR C as well
as the PAR «(z). This is again expected, since a more ambitious required SQNR is
more difficult to achieve and since a signal with higher PAR is harder to quantize,
which both lead to a more limited dynamic range. We revisit the issue of PAR below

in Section 2.2.4.

In summary, our definition of dynamic range (2.8) yields a reasonable expression
(2.9) for a conventional ADC that coincides with the traditional “folk wisdom” on

dynamic range.

2.2.3 Dynamic range of a CS-based acquisition system

Thus far we have proposed a rigorous and general definition of dynamic range and
analyzed a conventional ADC in this context. We now extend the dynamic range

analysis to the CS case. Our argument proceeds by first showing that we can always
relate RSNR(Bz) to SQNR(By) and then relate SQNR(By) to SQNR(Bz). This allows

us to argue that whenever SQNR(Sz) > C, we have that RSNR(Bz) > C’ for some
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C’. In other words, whenever we can achieve a certain SQNR C by directly quantizing
z, a CS-based system can also achieve the RSNR C’ (where C’ is typically comparable
to C). Thus, the dynamic range of these systems will be essentially the same. We

begin by relating RSNR(8z) to SQNR(By).

Lemma 2. Suppose thaty = Oz, where x is K-sparse and ® satisfies the RIP of order
K with constant 8. Let T denote the output of applying a reconstruction algorithm
to the quantized measurements Qg (y) which satisfies a reconstruction guarantee like

that given in Theorem 1, i.e.,

|12 — =l < &} 15 (v) — yll5- (2.11)
Then
SQNR(By)
RSNR(Bz) > m (2.12)

Proof. Without loss of generality, suppose that 8 = 1. From the RIP we have that

@]l

2
>
Ialf} > 3=

Combining this with (2.11), we obtain the bound

[EE Iyl SQNR(y)
RSNR(z) = > — ,
(@) 12—z~ 1+0)r2 Qs (v) —ylls (1+08)x]

which completes the proof. O

In words, the RSNR(B1) is lower bounded by a constant multiple of the SQNR (By).

This means that we can expect the RSNR to follow the same trend as the SQNR of
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the measurements. Thus, we can restrict our analysis and comparisons to the mea-

surement SQNR.

We next aim to compare SQNR(By) here to SQNR(Bz) from Section 2.2.1. The
following lemma shows that we can bound SQNR(By) in a manner similar to how

Lemma 1 bounds SQNR(8z).

Lemma 3. Suppose that y = &z, where x is K-sparse and ® satisfies the RIP of

order K with constant . Then there exists a 8 such that

Nz|2, 1 [2G\?
SQNR 1-0)— £ — ) .

Proof. We begin by noting that from Lemma 1 we have that for 8 = G/ ||y||, we

have that

SQNR(8y) > (%) <%)2.

Since ® satisfies the RIP we have that

lyll? > (1 — 6) flall3.

Thus we have that

W2/ (=8 lzlE _ o Nl (el /N _ o N el 1
> = - (- g () = (- 4)
iz = Tl iz, \ Tiall%

M |ly||3, (=)’
which establishes the lemma. O

Thus, CS has the same 6dB per quantier bit behavior as in (2.6) with

SQNR(By) = 6.02B — 20 log,(y(z)) + 20logy, (V ( _”‘;)”'Mj Ilwlloo> . (213)
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the only difference being an additional additive constant that we will analyze in more

detail in Section 2.2.4.

We are now ready to compute the dynamic range of the CS acquisition system. We
retain the same definition of dynamic range as in (2.8), but with 8%2*(z) and 8% (z)
defined by substituting the SQNR constraint with the requirement that RSNR(8z) >

C. In this setting, we can repeat the same analysis as in Theorem 2 to obtain

oreto> g (5) 1)

where

(L+0)st M lyllc,

Thus, when measured in dB the dynamic range is affected by CS only through an

additive constant.

In practice, we can take significant advantage of the fact that, all things being
equal, a CS system has the same dynamic range as a conventional Nyquist ADC.
Moreover, because the ADC employed in a CS-based system operates at a significantly
lower rate than would be required in a conventional system, a slower quantizer with
higher bit-depth can be employed [7]. If the gain in effective bits is large, then the
6dB per bit improvement in dynamic range will dominate the additive constant and
result in a substantial increase in the CS system’s dynamic range as compared to a

conventional ADC. We explore this idea empirically in Section 2.4.
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2.2.4 Impact of CS on the PAR

We conclude this section on dynamic range with one last note regarding the mollifying
effect of a CS acquistion system on the PAR. All of our expressions for the SQNR or
RSNR as well as the dynamic range of a system depend in some way on the PAR of
the signal x or the measurements y, depending on the context. In practice, the PAR
has a significant impact on the resulting expressions. However, the PAR of a signal

z can vary widely in the range
1<(z) < VN, (2.14)

which follows from standard norm inequalities. As an example, combining (2.14)
with the lower bound on the SQNR of a conventional ADC in (2.6) means that in the
best case (which corresponds to an all-constant vector z) the bound in (2.6) reduces
to 6dB per bit growth in SQNR with no offset, whereas in the worst case (which
corresponds to a K = 1 sparse z) we incur an additive penalty of —101log,o(/N) dB.
As the dimension N grows this penalty can become large, reflecting the fact that
as the number of samples grows it becomes possible to construct a signal that has
ever larger PAR. This translates to a similarly wide range of possible values for the

additive penalty in the bound on dynamic range in (2.10).

Our aim here is to understand how CS impacts PAR. Clearly, we expect the
PAR of the CS measurements y to differ from that of the signal z since each mea-

surement typically consists of a weighted sum of the entries of . Intuitively, such
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measurements have the potential to average out some of the “spikes” in z resulting
in a potentially improved PAR. This appears in the analysis in the expression for
SQNR(By) in (2.13), which shows that SQNR(By) can be improved over SQNR(Bz)

in (2.6) if &% Iz, / lly||%, is somewhat larger than 1.

In the worst-case, the quantity & lz|l% / lly]|%, can be a great deal smaller than
1; however, on average we are likely to do significantly better. As an illustration,
we describe what can be said when ® is a matrix with i.i.d. £1/v/ M (Rademacher)

entries.

We begin with the worst-case. By combining the the Cauchy-Schwartz inequality
with standard £,-norm inequalities, we have that for all j, |y;| < & ||zl . Thus we

obtain

g ™

SE

Jall%,

5 =
1¥llo

Sk

Hence, in the worst-case

1—0)4 N
Ylog,, <\/< B ||a:uoo) ~~1010g,0 (37 )

[1¥lleo

which corresponds to an SQNR loss of 3dB per octave increase in the subsampling
factor. However, this bound will be achieved only when z is both constant magnitude
and has elements with signs exactly matching one of the (randomly chosen) rows of ®
— a highly unlikely scenario. Furthermore, this bound makes no use of the “dithering”
effect promoted by the randomized measurements; a grave omission indeed. Towards
this end, we next consider a probabilistic bound to see that we can typically obtain

better performance.
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Lemma 4. Suppose that ® is chosen with i.i.d. entries with variance 1/M drawn

according to any strictly sub-Gaussian distribution. Then

Nl o )
M ||, = Tlog(M)

(2.15)

with probability at least 1 —2/M.

Proof. By combining the union bound (over M measurements) with standard tail

bounds on a strictly sub-Gaussian distribution, we obtain

Mit?
P (lyllee > £) < 2M exp (—————) -
L

Thus, the probability that (2.15) does not hold is bounded by

oM e (_ AM % log(M) nxnio) . (ﬁzlog(M) nxnio)
2y(@)? ol @2 elZ/N

= 2exp (log(M) — 2log(M)) =

2
Ma

which establishes the lemma. O

Thus, in practice we expect our bound for SQNR(y) in (2.13) to differ from our
bound for SQNR(z) in (2.6) only by a factor of v(z)%/41log(M). Recalling our bound

on y(z) we have that

1 . v(z)? < N
4log(M) ~ 4log(M) — 4log(M)’

Hence, for z with small PAR, we can expect a potential loss in SQNR when compared
to direct quantization of z, while for z with moderate or large PAR we can actually

expect a significant improvement.
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Finally, we can use Lemma 4 to approximate (2.13) with high probability as

SQNR(By) 2 6.02B — 201log;, (4log(M)/V1 —4),

which implies that CS allows us to essentially eliminate the negative impact of high
PAR signals. This is because the randomized measurement procedure of CS will,
with high probability, produce measurements having a PAR that is completely inde-
pendent of the input signal’s PAR. For high PAR signals, this results in a substantial

improvement.

2.3 Liberating Dynamic Range via Democracy

As previously explained, the limited dynamic range of the system is induced by both
the precision and the finite range of the quantizer. An example of how limited dynamic
range presents a design challenge in practice is as follows. Error due to saturation
is typically considered more detrimental than the error due to quantization. Thus
the naive approach to dealing with saturation is to scale down the amplitude of the
signal or its measurements so that saturation never or very rarely occurs. This is
the approach pursued in many conventional sensor systems; a typical rule of thumb
used with communication system ADCs suggests that one reduce the signal amplitude
until only 63 in one million samples saturates [32]. Unfortunately, scaling down the

signal amplitude proportionately scales up the amount of quantization noise.

Fortunately, we can exploit the so-called democracy property exhibited by many

CS systems. Roughly, this property explains that each measurement contains about
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the same amount of information as any other measurement. Said another way, it
is possible to reconstruct sparse signals from any subset of measurements, subject
to only a small penalty in reconstruction error. This means that if a measurement
saturates with significant error, we may incur less reconstruction error by simply
discarding it.

In [34, 71], the authors demonstrated that indeed rejecting saturated measure-
ments can lead to improved performance. Interestingly, these results concluded that
the best performance in these systems is achieved when the quantizer range is set
low enough to induce a significantly non-zero saturation rate. This is due to the fact
that as the quantizer range G decreases (and thus saturation rate increases), the error
due to quantization on the remaining measurements decreases since the quantization
interval decreases, as expressed by A = 278+1G. Furthermore, the authors found
that the amount of saturation allowed is determined by the sparsity of signal. The
implication is clear: the dynamic range of these democratic systems is limited by the

complexity of the signal, not the range of the quantizer.

In this section we review the democracy property and some of its implications. We
review two reconstruction approaches for dealing with saturation. We then discuss
how these approaches lead to increased dynamic range. The approaches detailed in
this section will provide significant motivation the ideas and methods found in the

next chapter.

We briefly establish some notation that will prove useful for the remainder of this
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chapter. Let I' C {1,2,,...,M}. By ®' we mean the |['| x M matrix obtained by
selecting the rows of ® indexed by I'. Alternatively, if A C {1,2,..., N}, then we use
®, to indicate the M x |A| matrix obtained by selecting the columns of ® indexed by
A. Denote the vector of unsaturated measurements as yV of length 9. The matrix

@Y is created by selecting the rows of & corresponding to the elements of yY.

2.3.1 The democratic caucus of random matrices

We begin by establishing a strong notion of the democratic property of a matrix ®

as in [34, 35, 46].

Definition 1. Let ® be an M x N matriz, and let M < M be given. The matriz ®
is (M, K, §)-democratic if, for all T such that || > 9M, the matriz ®F satisfies the

RIP of order K with constant §.

In words, this definition explains that for any RIP matrix &, any subset of rows

of ® will satisfy the RIP, with perhaps a different constant §.

It is possible to show that certain randomly generated matrices will be (9, K, §)-
democratic. The following theorem restates a result of [34, 35, 46] for democratic
Gaussian matrices, but the analysis can be extended (with different constants) to the

more general class of sub-Gaussian matrices (see methods in [46]).

Theorem 3. Let ® be an M x N matriz with elements ¢;; drawn according to
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N(0,1/M) and let M < M, K <M, and é € (0,1) be given. Define D = M —9M. If

M=01(K+D)log(]l\;,:]‘;), (2.16)

then with probability exceeding 1 — 3e~2M we have that ® is (M, K,6/(1 — §))-

democratic, where C is arbitrary and Cy = (6/8)% — log(42¢/6)/C,.

Observe that we require roughly O(D log(N)) additional measurements to ensure
that ® is (9, K, §)-democratic compared to the number of measurements required to
simply ensure that ® satisfies the RIP of order K (recall that D = M — 9t). This
seems intuitive; if we wish to be robust to the loss of any D measurements while
retaining the RIP of order K, then we should expect to take at least D additional

measurements.

Theorem 3 further guarantees the graceful degradation of CS recovery due to loss
of measurements. Specifically, the theorem implies that recovery from any subset of
CS measurements is stable to the loss of a potentially larger number of measurements
than anticipated. To see this, suppose that an M x N matrix ® is (M — D, K, 6)-
democratic, but consider the situation where D + % measurements are dropped. It
is clear from the proof of Theorem 3 that if ® < K, then the resulting matrix &
will satisfy the RIP of order K — ® with constant . Thus, from [72], if we define

R = (K — D)/2, then the signal recovery error is bounded by

l — zallx

\/E )

|z -2l < Cs (2.17)

where T4 denotes the best f-term approximation of x and Cj3 is an absolute constant
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depending on ® that can be bounded using the constants derived in Theorem 3.
Thus, if © is small enough, then the additional error incurred by dropping too many

measurements will also be relatively small.

This property and its implications are key to enabling the rejection of saturated

measurements.

2.3.2 Saturation rejection signal recovery

A simple and intuitive way to handle saturated measurements is to simply discard
them and then run a standard CS recovery algorithm [71]. Using, for instance,

(BPDN) for reconstruction yields the program:

Z + argmin ||z|); st. |8z — Y2 <. (2.18)
N

zeR
Since the democracy property implies that any 99t x N submatrix of ® has RIP,
it immediately follows from Theorem 1 that the saturation rejection program (2.18)
yields a signal estimate with the stability guarantee (1.5). By the same argument, it
is straightforward to demonstrate that other algorithms such as CoSaMP applied to
®V and yY will achieve performance given by Theorem A in [29], as long as they rely

on the RIP for performance guarantees.

2.3.3 Saturation rejection signal processing

Saturation rejection is also useful in conjunction with processing and inference tech-

niques that work directly on the compressive measurements. For example, in the
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smashed filter for signal detection and classification the key calculation is the inner
product (®z, Pv) between the compressive measurements of a test signal z and a
target template signal v [73]. If z and v are sparse then, thanks to the RIP, this
low-dimensional inner product can be used as a proxy for the inner product between
z, and v; that is (®z, Pv) = (z,v). Unfortunately, if any of the elements of ®x or dv
are saturated, then the approximation no longer holds and the performance of the

smashed filter deteriorates.

Consider Qp(®z) and Qp(Pv) and let I, and I', be the supports of the mea-
surements that do not saturate on each vector, respectively. Then we have that for
' =T, NT, that ||Qp(®'z) — ®'x||, < A/2 and ||Qp(®Tv) — ®Tv|| < A/2. Thus,
it is straightforward to show that

2

|<QB((I>P:E), Qp(®Tv)) — (<I>Px,<I>Pv)| < é— -+ é + a Z(@Fv)n
4 2

n

Z(@Fx)n

n

. (2.19)

Furthermore, the two sums in (2.19) are likely to concentrate around zero. The
democracy of ® furthermore implies that (®'z, ®'v) ~ (x,v). Thus, discarding the
corresponding entries of ®x and ®v when one of them saturates makes considerable

practical sense.

2.3.4 Saturation consistency signal recovery via convex optimization

Clearly saturation rejection discards potentially useful signal information, since we
know that saturated measurements are large (we just do not know how large). It

is possible to augment a standard convex optimization-based CS recovery algorithm
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with a set of inequality constraints that enforce signal consistency with the saturated
measurements. By consistency we mean that the magnitudes of the values of ®Z
corresponding to the saturated measurements are larger than G — A, i.e., they are

consistent with what we observed.

More specifically, let ST and S~ correspond be the index sets of the positive
saturated measurements and negative saturated measurements, respectively. Define

the matrix ®° as

$S*
oS = : (2.20)
—PS”
We estimate Z via the program
& < argmin||z|; st.  ||®Vz —yYlz <€ (2.21a)
z€RN
and &%z > (G-A)-1, (2.21b)

where 1 denotes an (M —901) x 1 vector of ones. In words, we seek the z with the mini-
mum #¢; norm such that the measurements that do not saturate have bounded ¢5 error
and the measurements that do saturate are consistent with the saturation constraint.
The program (2.21) obeys the same reconstruction error bounds as (2.18) [34]. Alter-
native regularization terms that impose the consistency requirement on the unsatu-
rated quantized measurements can be used on yV, such as those proposed in [64, 65],
or alternative techniques for the unsaturated quantized measurements can be used

such as those proposed in [66].
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In addition to the convex optimization program (2.21), the authors in [34] pro-
posed a greedy algorithm, saturation consistent CoSaMP (SC-CoSaMP) to impose
saturation consistency during reconstruction. Some of our simulations will make use
of this algorithm since it is fast and has been shown empirically to improve perfor-

mance from finite range quantized measurements.

We note that a saturation rejection algorithm and a saturation consistency algo-
rithm will not necessarily yield the same signal estimate. This is because the solution
from the rejection approach may not lie in the feasible set of solutions of the consis-
tency approach (2.21). However, the reverse is true. The solution to the consistent
approach does lie in the feasible set of solutions of the rejection approach. While
we do not provide a detailed analysis that compares the performance of these two
algorithm classes, one should expect that the consistency approach will outperform
the rejection approach in general, since it incorporates additional information about

the signal.

2.4 Experimental Performance of CS Dynamic Range

In this section, we conduct an experiment that demonstrates how the dynamic range of
a CS system can be increased. We are interested in demonstrating two main points: i)
as we decrease the sample rate of a system, we can apply a higher bit-depth quantizer.
This should improve performance even though the number of measurements is fewer;

and 1) the saturation consistent approach that utilizes the democracy of CS systems
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RSNR (dB)

[--- Oracle CS
H — CoSaMP CS :
----- Democracy CS (SC—CoSaMP) :

Octaves of Decnmatnon (‘?ogz(N/iA)) 8

Figure 2.2 : RSNR for an environment consisting of a noise-free single unmodulated voice
channel and quantized measurements starting at a bit-depth of 4 bits per measurement
when logy(N/M) = 0. We increased the bit-depth as a function of the sample rate accord-
ing to the trends outlined in [7]. We see a marked improvement in RSNR as a direct result
of the sampling rate being decreased. We see further improvement when the gain is tuned
to maximize the performance of a saturation consistent algorithm, SC-CoSaMP. Interest-
ingly, the best saturation consistent CS performance occurs when no subsampling has been
performed, but when significantly many measurements saturate (even though the quantizer
precision is at its lowest). This suggests that it may be beneficial to sample at a high rate
and increase the dynamic range by exploiting the democratic nature of CS systems, rather
than applying a higher bit-depth quantizer at a lower rate.

can be used to increase the performance further, by extending the dynamic range of

the system.

Any improvement in the SQNR of the CS measurements will translate to an
improved dynamic range. Thus, in our experiments, we compute the average RSNR
obtained after recovery from quantized CS measurements as a proxy for the dynamic
range. Furthermore, we make use of the trends outlined in [7] that show that the
number of bits per measurement grows according to B = A—101log 10(M) /2.3 where A
is a constant that determines the bit-depth of a Nyquist-rate sampler. The number of

bits per measurements then grows linearly with the octaves of subsampling, with slope
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of about 1.3. This relationship between sample rate and bit-depth is fundamental to

understanding the dynamic range benefits of CS systems.

Our experiment proceeds as follows and is depicted in Figure 2.2. The signal to
be acquired consists of a single 3.1 kHz-wide unmodulated voice signal single-side-
band-upconverted to a frequency within the 1 MHz input bandwidth of the receiver.
The signals are noise-free so that we can isolate the impact of quantization noise.
Additionally, we employ an ideal random demodulator [18] (discussed in Chapter 5)
to measure the signals. Performance is measured as a function of the subsampling
factor N/M. In each trial we generate a single voice-like signal and compute mea-
surements with the CS receiver. The measurements are further quantized utilizing
the full scale of the quantizer in the oracle and conventional CoSaMP cases. In the
saturation consistent case, the scale of the signal (and thus measurements) is tuned
to maximize the RSNR performance. This optimal performance occurs when a sig-
nificant number of measurements have saturated. The measurements were quantized
to 4 bits each, and then recovered using CoSaMP (solid line), the oracle recovery al-
gorithm (dashed line), and SC-CoSaMP (dash-dotted). We report the average RSNR

for each subsampling factor.

From this experiment we see that in both the oracle and conventional CS cases,
the RSNR grows significantly, achieving a 20dB gain at 4 octaves of subsampling
over Nyquist sampling. Conventional CS performance then decreases as we move to

an undersampled regime where CS recovery is no longer sustainable (too few mea-
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surements for the given sparsity). The oracle performance continues to improve as
subsampling is further increased. This experiment highlights the very real benefit of
reduced sampling rates; easing the sampling rate requirements can allow us to use

higher fidelity hardware components, such as high bit-depth quantizers.

The saturation consistent case provides further insight. When the number of
measurements is decimated, even by half (log,(N/M) = 1), the saturation consistent
approach achieves about a 5dB to 10dB gain over the conventional CS approach,
but follows the same performance trend. However, when there is no decimation, the
saturation consistent algorithm exhibits a 40dB gain over conventional CS and the
oracle. Indeed the SC-CoSaMP performance at the Nyquist rate is as good as the
oracle performance at more than 6 octaves of decimation (i.e., better than using an
ADC that is 2° times as slow). The implication of this result is that it might be better
to take many measurements and drive up the gain such that most of them saturate,
rather than attempting to reduce the sampling rate and applying a higher bit-depth
quantizer. Abusing the quantizer by saturating most of the measurements leads to
the theme of the following chapters— can we saturate all of the measurements? Can
we expand CS methods to include scenarios where we drive up the sampling rate and

drive down the bit-depth of the quantizer?
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Chapter 3

Single Bit Compressive Sensing

3.1 Supersaturated Sensing

One question that arises from the previous chapter is how many measurements can
saturate in practice? The saturation rejection reconstruction approach of Section 2.3.2
will fail when the number of non-saturated measurements is too few; unfortunately
the constants for the democratic property of random matrices are not tight enough
to predict the precise number of measurements at which this transition occurs. It has
been shown that the saturation consistent reconstruction approach of Section 2.3.4
can achieve reasonable performance in the face of significantly more saturation than
in the rejection approach; however, even this technique appears to fail when too many

measurements have saturated [34].

In this chapter,! we consider the most extreme case when all measurements have
saturated, i.e., the measurements are supersaturated. We ask the question: is signal
reconstruction possible in this regime? In supersaturated sensing, the measurements

take the value G or —G and information about the true scale of the signal is lost.

1This chapter includes work done in collaboration with Laurent Jacques, Petros Boufounos,

Zaiwen Wen, Wotao Yin, and Richard Baraniuk [74, 75].
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Indeed, we are only able maintain a single bit of information about each measurement
and a lower bound on the signal energy. In fact, if we intend to operate only in the
supersaturated regime, the quantizer can be reduced to a simple comparator that
tests if values are above or below zero, enabling extremely simple, efficient, and fast

quantization.

It is not obvious that the signs of the CS measurements retain enough information
for signal reconstruction. For instance, as just explained, we have lost information
about the scaling of the signal. Nonetheless, there has been recent empirical evidence
that signal reconstruction is possible from just the signs of the measurements, via
the 1-bit compressive sensing framework established in [33, 39, 76]. This framework
suggests that signals can be reconstructed, up to a scale factor, from only the signs

of their CS measurements.

The primary contribution of this chapter is a rigorous analysis of the 1-bit CS
framework. We provide two flavors of results. First, we determine the best achievable
performance of this 1-bit CS framework. We further demonstrate that if the elements
of measurement system & are drawn randomly from Gaussian distribution or its rows
are drawn uniformly from the unit sphere, then it is possible to pose a reconstruction
formulation that will have bounded error on the order of the optimal lower bound.
Second, we provide conditions on the measurement system that enable us to char-
acterize the reconstruction performance even when some of the measurement signs

have changed (e.g., due to noise in the measurements). In other words, we derive
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the conditions under which robust reconstruction from 1-bit measurements can be
achieved. We do so by demonstrating that 1-bit CS systems can be stable embed-
dings of sparse signals, in similar fashion to the RIP systems of conventional CS. We
apply these stable embedding results to the cases where we have noisy measurements
and signals that are not strictly sparse. Our guarantees demonstrate that the 1-bit

CS framework is on sound footing.

To develop robust reconstruction guarantees, we propose a new tool, the binary
e-stable embedding (BeSE), to characterize 1-bit CS systems. The BeSE implies that
the normalized angle between any sparse vectors on the unit sphere is close to the
normalized Hamming distance between their 1-bit measurements. We demonstrate
that again the quantized measurements from Gaussian measurement matrices exhibit
this property when M > C.K log N (where C; is some constant). Thus remarkably,
there exist systems such that the BeSE holds when both the number of measurements
M is smaller than the dimension of the signal N and the measurement bit-depth is

at minimum.

As a complement to our theoretical analysis, we introduce two algorithms to solve
the non-convex reconstruction problem originally posed in this context, as well as
several new convex formulations of the reconstruction problem. We present extensive
numerical simulations to prove the validity of this framework and these algorithms.
Finally, we demonstrate that the 1-bit reconstruction algorithms can be extended to

perform consistent reconstruction of multibit quantized measurements with arbitrary
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numbers of saturations. We thusly provide a complete solution for handling finite

range quantized measurements.

This chapter is organized as follows. In Section 3.2 we formally summarize the
1-bit CS framework. In Section 3.3 we describe some additional benefits of 1-bit
quantized measurements beyond those described above. In Section 3.4 we provide
reconstruction bounds on the performance from noiseless measurements and demon-
strate that a large class of measurements matrices will yield such performance. In
Section 3.5, we introduce the BeSE property that ensures robust recovery guaran-
tees. We then prove that such mappings exist and give an example of a class of these
matrices. This section also provides reconstruction bounds for noisy measurements
and compressible signals. In Section 3.6 we demonstrate how the 1-bit framework
can be extended to handle multibit quantized measurements as well as an arbitrarily
large or small number of saturations. In Section 3.7 we introduce two new algorithms
for solving the reconstruction problem and also pose some convex formulations. In
Section 4.2 we perform numerical simulations to validate and characterize the ideas
presented in this chapter. We conclude by reviewing some alternative 1-bit frame-

works in Section 3.9.
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3.2 The 1-bit CS framework

We briefly describe the 1-bit CS framework proposed in [39]. Measurements of a

signal z € RN are computed via

ys = A(x) := sign (Pz). (3.1)

Thus, the measurement operator A(-) is a mapping from R¥ to the Boolean cube?
BM :={—1,1}™. At best, we hope to recover signals z € I} := {z € SV~ : ||z||o <
K} where SV=1 := {z € R" : ||z||; = 1} is the unit hyper-sphere of dimension N.
We restrict our attention to sparse signals on the unit sphere since, as previously
mentioned, the scale of the signal has been lost during the quantization process.
To reconstruct, we enforce consistency on the signs of the estimate’s measurements,
i.e., that A(Z) = A(z). Specifically, we define a general non-linear reconstruction

algorithm A™it(y, &, K) such that, for Z = AlP(y, @, K), the solution Z is
(i) sparse, i.e., satisfies ||Z]jo < K = ||z||o; and
(i) consistent, i.e., satisfies A(Z) = ys = A(z).

With (£p-min) from CS as a guide, one candidate program for reconstruction is of
course

T < argmin ||z|lo s.t. ys = sign (Pz). (£o-min;g)
zeSN-1

2Generally, the M-dimensional Boolean cube is defined as {0,1}*. Without loss of generality,

we use {—1,1}M instead.
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Be that as it may, an algorithm has been developed for the relaxation, as well as a
greedy algorithm inspired by the same ideas [39, 76]. The program (¢;-min;g) can
also be posed in a convex way as will be discussed in Section 3.7.3, but for the sake

of theory we proceed with the unit energy constraint.

Figure 3.1 depicts the geometry of the components of (¢;-min;g) in two dimensions.
The hyperplanes (lines) ¢; and ¢, correspond to the first and second rows of ®,
respectively. In this figure they are drawn to be perfectly orthogonal but in general
this may not be the case. Indeed, if these rows were drawn randomly from a Gaussian
distribution, they will be approximately orthogonal. Furthermore, in this example
we choose ® to be square to clearly depict the relevant concepts in two dimensions.
The green shaded region depicts the feasible region, i.e., the set where all = satisfy
Y®z > 0, and thus have measurement signs that are consistent with the diagonal of
Y. The unit sphere is represented by the circle labelled ||z||2 = 1 and thus the only
unit norm sparse solution in the feasible region lies at [0, 1], denoted by the red dot.
The key feature of this picture is that each row of ® defines some hyperplane and
each measurement sign determines on which side of the hyperplane the solution lies.
The feasible region can be though of as a “cone3” and our goal during reconstruction
is to find the sparsest solution within that region. A major goal of this chapter is
to show that all sparse unit norm solutions in this cone are within some small error

tolerance of each other.

3This is not a true cone in the geometrical sense.
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3.3 Immediate Benefits of 1-bit CS

There are several benefits to obtaining 1-bit quantized measurements. First, effi-
cient hardware quantizers can be built to operate at high speeds, since the quantizer
can be a simple comparator that merely tests if a measurement is above or below
zero. Indeed, as previously discussed there is an inverse relationship between sample
rate and quantization bit-depth, such that the sample rate increases exponentially
as the bit-depth is decreased linearly. Second, it has been shown that the program
(¢1-min;g) can be used to recover signals with gross non-linearities applied to the
measurements [33]. In particular, suppose a non-linearity f(-) is applied to the mea-
surements. If the f(-) preserves the sign of the measurements, then clearly (4;-min;g)
can be still be used to recover x with the same performance as using the non-linearity-
free measurements. Additionally, if we assume that the non-linearity preserves the

relationship
f(z:) < f(@ig1) i 25 < i,

then the program

z + A™*(sign(diff(f(®z))), D®, K), (3.2)

can be used to recover z with similar guarantees as (¢;-min;g), where D is a differ-
ence matrix with 1’s along the diagonal and —1’s along the first sub-diagonal, with

diff(z) = 441 — x5, fori=1,...,N —1 [33].



59

3.4 Noiseless Reconstruction Performance
3.4.1 Reconstruction performance lower bounds

In this section, we seek to provide guarantees on the reconstruction error from 1-
bit CS measurements. Before analyzing this performance from a specific mapping A
with the consistent sparse reconstruction algorithm Abit (ys, @, K), it is instructive
to determine the best achievable performance from measurements acquired using any

mapping. Thus, in this section we seek a lower bound on the reconstruction error.

We develop the lower bound on the reconstruction error based on how well the
quantizer exploits the available measurement bits. A distinction we make in this
section is that of measurement bits, which is the number of bits acquired by the
measurement system, versus information bits, which represent the true amount of
information carried in the measurement bits. Our analysis follows similar ideas to

that in [77, 78], adapted to sign measurements.

We first examine how 1-bit quantization operates on the measurements. Specifi-
cally, we consider the orthants of the measurement space. An orthant in R is the

set of vectors such that all the vector’s coefficients have the same sign pattern

Os = {z | signz = s},

where s is a vector of 1. Any M-dimensional space is partitioned to 2™ orthants.
Figure 3.2(a) shows the 8 orthants of R3 as an example. Since 1-bit quantization

only preserves the signs of the measurements, it encodes in which measurement space
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dimension K, and let M 1-bit measurements y, be acquired via the mapping A :
RN — BM as defined in (3.1). Then the measurements y, can effectively use at most

L(%)ZK quantization points, i.e., carry at most K log,(eLM/K) information bits.

Proof. A K-dimensional subspace in an M dimensional space cannot lie in all the 2M
available octants. For example, as shown in Fig. 3.2(b), a 2-dimensional subspace of a
3-dimensional space can intersect at most 6 of the available octants. In Appendix B.1,
we demonstrate that one arbitrary K-dimensional subspace in an M-dimensional
space intersects at most (%)21" orthants of the 2M available. Since ® is a linear
operator, any K-dimensional subspace S; in the signal space RV is mapped through
® to a subspace S] = ®S; C RM that is also at most K-dimensional and therefore
follows the same bound. Thus, if the signal of interest belongs in a union S := U~ S;
of L such K-dimensional subspaces, then &z € S’ := U~ ; S/, and it follows that at
most L(%)ZK orthants are intersected. This means that at most L(%)2K effective
quantization points can be used, i.e., at most K log,(eLM/K) information bits can

be obtained. O

Since K-sparse signals in any basis ¥ € RV*Y belong to a union of at most (IJZ)

subspaces in R, using Lemma 5 we can obtain the following corollary.

Corollary 1. Let z = Va € RY be K-sparse in a certain basis ¥ € RN*N 4.,

a € Xk. Then the measurements ys = A(x) can effectively use at most (1]?) (AI;I)QK

1-bit quantization points, i.e, carry at most 2K log,(ev/ NM /K) information bits.
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The set of signals of interest to be encoded is the set of unit-norm K-sparse signals
Y% Since unit-norm signals of a K-dimensional subspace form a K-dimensional unit
sphere in that subspace, £} is a union of (%) such unit spheres. The Q = (Z) (%) 2K
available quantization points partition ¥} into ) smaller sets, each of which contains

all the signals that quantize the same point.

To develop the lower bound on the reconstruction error we examine the optimal
such partition, with respect to the worst-case error, given the number of quantization
points used. The measurement and reconstruction process maps each signal in X% to
a finite set of quantized signals Q C T}, |Q| = @. At best this map ensures that the

worst case reconstruction error is minimized, i.e.,

€opt = X min |l — g2, (3.3)

where €,y denotes the worst-case quantization error and g each of the available quanti-
zation points. The optimal lower bound is achieved by designing Q to minimize (3.3)
without considering whether the measurement and reconstruction process actually

achieve this design. Thus, designing the set Q becomes a set covering problem.

Using this intuition and Lemma 5, Appendix B.2 proves the following statement
about a set of unit-norm signals in a union of L, K-dimensional subspaces, specifically

T € Xk

Theorem 4. Let the mapping A : RV — BM and measurements y, be defined

as in (3.1) and let x € ¥3,. Then the estimate from the reconstruction algorithm
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APy, @, K) has error defined by (3.3) of at least

- K _q _f_{_)
Cort = 9enr ~ C\M )

Thus, the worst-case error cannot decay at a rate faster than 2(1/M) as a function
of the number measurements, no matter what reconstruction algorithm is used. The
bound in the theorem is independent of L, but similarly to the relation between

Lemma 5 and Corollary 1, K-sparse signals are a special case with L = (ﬁ)

This result assumes noiseless acquisition and provides no guarantees of robust-
ness and noise resiliency. This is in line with existing results on scalar quantization
in oversampled representations and CS that state that the distortion due to scalar
quantization of noiseless measurements cannot decrease faster than the inverse of the
measurement rate [77-81]. To improve the rate vs. distortion trade-off, alternative
quantization methods must be used, such as Sigma-Delta quantization [82-88] or

non-monotonic scalar quantization [89].

Theorem 4 bounds the best possible performance of a consistent reconstruction
over all possible mappings A. However, it is straightforward to construct mappings A
that do not behave as the lower bound suggests. In the next section we identify one
class of matrices such that the mapping A admits an almost optimal upper bound on

the reconstruction error from a general algorithm APit,
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3.4.2 Achievable performance via random projections

In this section we describe a class of matrices ® such that the consistent sparse re-
construction algorithm A*(y,, &, K) can indeed achieve error decay rates of optimal
order, described by Theorem 4, with the number of measurements growing linear in
the sparsity K and logarithmically in the dimension [V, as is required in conventional
CS. We first focus our analysis on Gaussian matrices, i.e., ® such that each element
¢i; is randomly drawn i.i.d. from the standard Gaussian distribution, N'(0,1). We
use the short notation ® ~ N"M*N (0, 1) for characterizing such matrices, and we write
@ ~ NNx1(0,1) for describing equivalent random vectors in R" (e.g., the rows of ®).

For these matrices @, we prove the following in Appendix B.3.

Theorem 5. Let ® be matriz generated as ® ~ NM*N(0,1), and let the mapping
A : RN — BM be defined as in (3.1). Fiz 0 < n <1 and ¢, > 0. If the number of
measurements s

M > X (2K log(N) + 4K log(2) + log 1), (3.4)
then for all z,s € L} we have that
lz —sll2 > e = A(z) # A(s), (3.5)

or equivalently

A(z) = A(s) = |lz — s|l2 < €,

with probability higher than 1 — n.
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The Theorem demonstrates that if we use Gaussian matrices in the mapping A,
then, given a fixed probability level 5, the reconstruction algorithm AM™®(y, &, K)

will recover signals with optimal error order
e = O((£) "logN),

for arbitrarily small o > 0; the presence of the log(1/€p) term in (3.4) prevents us

from setting o = 0.

A similar result has been very recently shown for sign measurements of non-sparse
signals in the context of quantization using frame permutations [90]. Specifically, it
has been shown that reconstruction from sign measurements of signals can be achieved
(almost surely) with a O((1/M)'~%) error rate decay for arbitrarily small & > 0. Our
main contribution here is extending this result to K-sparse vectors in RY. Our results,
in addition to introducing the almost linear dependence on K, also show that if the
signal is sparse then we pay a logarithmic penalty in N. This is consistent with results
in CS, but seems not to be necessary from the lower bound in the previous section.
We will see in Section 4.2 that for Gaussian matrices, the optimal error behavior is
empirically exhibited on average. Finally, we note that for a constant €y, the number
of measurements required to guarantee (3.5) is M = O(K log N/ K), nearly the same

as order in conventional CS.

We note a few minor extensions of the Theorem. We can multiply the rows of ®
with a positive scalar without changing the signs of the measurements. By normalizing

the rows of the Gaussian matrix, we obtain a matrix with rows drawn uniformly
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from the unit £, sphere in RY. It is thus straightforward to extend the Theorem to
such matrices with such rows as well. Furthermore, note that these projections are
“universal,” meaning that the theorem remains valid for sparse signals in ¥, i.e., for
,s belonging to X} x := {u = Yo € RV : o € T%}. This is true since for any
orthonormal basis ¥ € RV*N &' = @ ~ NM*N(( 1) when & ~ NM*N (0, 1).

We can also view the binary measurements as a hash or a sketch of the signal.
With this interpretation of the result we guarantee with high probability that no
sparse vectors with Euclidean distance greater than €, will “hash” to the same binary
measurements. In fact, similar results play a key role in locality sensitive hashing
(LSH), a technique that aims to efficiently perform approximate nearest neighbors
searches from quantized projections [91-94]. Most LSH results examine the perfor-
mance on point-clouds of a discrete number of signals instead of the infinite subspaces
that we explore in this chapter. Furthermore, the primary goal of the LSH is to pre-
serve the structure of the nearest neighbors with high probability. Instead, in this
chapter we are concerned with the ability to reconstruct the signal from the hash, as
well as the robustness of this reconstruction to measurement noise and signal model
mismatch. To enable these properties, we require a property of the mapping A that
preserves the structure (geometry) of the entire signal set. Thus, in the next section
we seek an embedding property of A that preserves geometry for the set of sparse

signals and thus ensures robust reconstruction.
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3.5 Robust 1-bit CS via Binary Stable Embeddings
3.5.1 Binary e-stable embeddings

In this section we establish an embedding property for the 1-bit CS mapping A that
ensures that the sparse signal geometry is preserved in the measurements, analogous
to the RIP for real-valued measurements. This robustness property enables us to
upper bound the reconstruction performance even when some measurement signs
have been changed due to noise. Conventional CS achieves robustness via the §-
stable embeddings of sparse vectors (1.4) discussed in Section 1.2. This embedding is
a restricted quasi-isometry between the metric spaces (R",dx) and (RM,dy), where
the distance metrics dx and dy are the o-norm in dimensions N and M, respectively,
and the domain is restricted to sparse signals.* We seek a similar definition for our
embedding; however, now the signals and measurements lie in the different spaces
SN-1 and BM, respectively. Thus, we first consider appropriate distance metrics in

these spaces.

The Hamming distance is the natural distance for counting the number of unequal

bits between two measurement vectors. Specifically, for y,v € BM we define the

4A function A : X — Y is called a quasi-isometry between metric spaces (X,dx) and (Y,dy)
if there exists C > 0 and D > 0 such that £dx(z,s) — D < dy(A(z), A(s)) < Cdx(z,s) + D for
z,s € X, and E > 0 such that dy(y, A(z)) < E for all y € Y [95]. Since D = 0 for é-stable

embeddings, they are also called bi-Lipschitz mappings.
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normalized Hamming distance as

Mk

1
dH (y, ’U) =

_—Mi yi@vi’

1
where @ is the XOR operation such that a @ b equals 0 if @ = b and 1 otherwise.
The distance is normalized such that dy € [0,1]. In the signal space we only consider
unit-norm vectors, thus, a natural distance is the angle formed by any two of these

vectors. Specifically, for z,s € S¥~!, we consider
1
ds(z, s) := = arccos(z, ).
T

As with the Hamming distance, we normalize the true angle arccos(z,y) such that
ds € [0,1]. Note that since both vectors have the same norm, the inner product (z, s)

can easily be mapped to the ¢;-distance using the polarization identity.

Using these distance metrics we define the binary stable embedding.

Definition 2 (Binary e-Stable Embedding). Let e € (0,1). A mapping A : RN — BM

is a binary e-stable embedding (BeSE) of order K for sparse vectors if
ds(z,s) — e < dg(A(z), A(s)) < ds(z,s) + €
forall z,s € SN~ with z + s € L.

Our definition describes a specific quasi-isometry between the two metric spaces
(SN-1 ds) and (BM,dy), restricted to sparse vectors. While this mirrors the form

of the d-stable embedding for sparse vectors, one important difference is that the
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sensitivity term e is additive, rather than multiplicative, and thus the BeSE is not bi-

Lipschitz. This is a necessary side-effect of the loss of information due to quantization.

A stated in the next Lemma, the BeSE enables robustness guarantees on any

reconstruction algorithm extracting a sparse signal Z from the mapping A(z).

Lemma 6. Let A : RV — BM be a BeSE of order 2K for sparse vectors and let
T € B}. A sparse, unit norm estimate T of x with Hamming error dy(A(z), A(Z))

from any reconstruction algorithm has angular error bounded by
ds(z,2) <du(A(z),AR)) +e.

Proof. If Z is K-sparse (||Z]|lo < K) and unit norm, then the result follows from the

lower bound in Definition 2. O

In other words, the reconstruction error is bounded by a small quantity more
than the Hamming error. Thus, if an algorithm returns a unit norm sparse solution
with measurements that are not consistent (i.e., dg(A(z), A(Z)) > 0), as is the case
with several algorithms [39, 75, 76], then the the worst-case angular reconstruction
error is close to Hamming distance between the estimate’s measurements’ signs and
the original measurements’ signs. Section 4.2 verifies this behavior with simulation
results. Furthermore, in Section 3.5.3 we use the BeSE property to guarantee that
if measurements are corrupted by noise or if signals are not exactly sparse, then the

reconstruction error is bounded.

Note that if A is a BeSE, then the angular error of any A*(y, &, K) algorithm
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is bounded by € since in that case dir(A(z), A(Z)) = 0. As we have seen earlier this is
to be expected because, unlike conventional noiseless CS, quantization fundamentally
introduces uncertainty and exact recovery cannot be guaranteed. This is an obvious

consequence of the mapping of the infinite set 3% to a discrete set of quantized values.

We next identify a class of matrices ® for which A is a BeSE.

3.5.2 Binary e-stable embeddings via random projections

As is the case for conventional CS systems with RIP, designing a ® for 1-bit CS such
that A has has the BeSE property is a computationally intractable task. Fortunately,
an overwhleming number of “good” matrices do exist. Specifically we again focus our
analysis on Gaussian matrices, i.e., ® ~ NM*N(0 1) such that each element ¢; ; is
randomly drawn i.i.d. from A/(0, 1), as in as in Section 3.4.2. As motivation that this
choice of ® will indeed enable robustness, we begin with a classical concentration of

measure result for binary measurements from a Gaussian matrix.

Lemma 7. Let ® be a matriz generated as ® ~ NM*N(0,1), and let the mapping

A: RN — BM be defined as in (8.1). Fiz e > 0. For any z,s € SV~!, we have
IP( |dH(A(a:),A(s)) — dg(z, s)l < e) > 1-2e7 %M (3.6)
where the probability is with respect to the generation of ®.

Proof. This lemma is a simple consequence of Lemma 3.2 in [96] which shows that, for

one measurement, P[A;(z) # A;(s)] = ds(z,s). The result then follows by applying
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Hoeflding’s inequality to the binomial random variable M dH(A(:c),A(s)) with M

trials. Oa

In words, Lemma 7 implies that the Hamming distance between two binary mea-
surement vectors A(z), A(s) tends to the angle between the signals z and s as the
number of measurements M increases. In [96] this fact is used in the context of ran-
domized rounding for max-cut problems; however, this property has also been used
in similar contexts as ours with regards to preservation of inner products from binary

measurements [97, 98].

The expression (3.6) indeed looks similar to the definition of the BeSE, however, it
only holds for a fixed pair of arbitrary (not necessarily sparse) signals, chosen prior to
drawing ®. Our goal is to extend (3.6) to cover the entire set of sparse signals. Indeed,
concentration results similar to Lemma 7, although expressed in terms of norms, have
been used to demonstrate the RIP [45]. These techniques usually demonstrate that
the cardinality of the space of all sparse signals is sufficiently small, such that the
concentration result can be applied to demonstrate that distances are preserved with

relatively few measurements.

Unfortunately, due to the non-linearity of A we cannot immediately apply
Lemma 7 using the same procedure as in [45]. To briefly summarize, [45] proceeds by
covering the set of all K-sparse signals Y i with a finite set of points (with covering
radius 6 > 0). A concentration inequality is then applied to this set of points. Since

any sparse signal lies in a d-neighborhood of at least one such point, the concentration
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property can be extended from the finite set to X by bounding the distance between
the measurements of the points within the d-neighborhood. Such an approach cannot
be used to extend (3.6) to X, because the severe discontinuity of our mapping does
not permit us to characterize the measurements A(z + s) using A(z) and A(s) and
obtain a bound on the distance between measurements of signals in a d-neighborhood.

To resolve this issue, we extend Lemma 7 to include all points within Euclidean
balls around the vectors = and s inside the (sub) sphere ©*(T) = {u € SN-1:
suppu C T} for some fixed support set T' C {1, --- , N} of size |T'| = D. Define the
6-ball Bs(z) := {a € SN~ : ||z — alla < 8} to be the ball of Euclidean distance &

around z, and let B;(z) = Bs(z) N T*(T).

Lemma 8. Given T C {1, --- ,N} of size |T| = D, let  be a matriz generated as
O ~ NMXN(0 1), and let the mapping A : RY — BM be defined as in (3.1). Fiz

€>0and0<§<1. For any z,s € L*(T), we have
P(|du(A@w),A@)) — ds(z,s)| < e+ED5) > 1—2e7%M
for alluw € Bj(z) and v € Bj(s).

The proof of this result is given in Appendix B.4.

In words, if the width ¢ is sufficiently small, then the Hamming distance between
the 1-bit measurements A(u), A(v) of any points u, v within the balls Bj(z), Bj(s),

respectively, will be close to the angle between the centers of the balls.

Lemma 8 is key for providing a similar argument to that in [45]. We now simply
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need to count the number of pairs of K-sparse signals that are euclidean distance ¢
apart. The Lemma can then be invoked to demonstrate that the angles between all of
these pairs will be approximately preserved by our mapping.® Thus, with Lemma 8

under our belt, we demonstrate in Appendix B.5 the following result.

Theorem 6. Let ® be a matriz generated as ® ~ NM*N(0,1) and let the mapping
A : RN — BM bpe defined as in (8.1). Fit 0 <n <1 ande > 0. If the number of

measurements 1is
M > 4(K log(N)+ 2K log(2) +log(2)), (3.7)

then with probability exceeding 1 — n, the mapping A is a BeSE of order K for sparse

vectors.

By choosing & ~ N'M*N(0,1) with M = O(Klog N), with high probability we
ensure that the mapping A is a BeSE. Additionally, from (3.7) we find that the error
decreases as

e = O((K/M)1=*)72 (log N)'/?), (3.8)

for arbitrarily small a > 0. Unfortunately, this decay is at a slower rate (roughly by a
factor of 4/ K /M) than the lower bound on the error given in Section 3.4.1. This error

rate results from an application of the Chernoff-Hoeffding inequality in the proof of

5 We note that the covering argument in the proof of Theorem 5 also employs é-balls in similar

fashion but only considers the probability that dg = 0, rather than the concentration inequality.
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Theorem 6. An open question is whether it is possible to obtain a tighter bound

(with optimal error rate) for this robustness property.

As mentioned in Section 3.3, it may be advantageous to reconstruct a signal
from the signs of the differences of the measurements. As suggested by (3.2), in
this case we interested in applying the sparse consistent reconstruction algorithm to
the measurement matrix D®, where D is a difference matrix and & is the original
measurement matrix. When & is a Gaussian matrix, this is indeed possible with the
number of measurements on the same order as before, as explained by the following

Corollary.

Corollary 2. Let ® be a matriz generated as ® ~ NM*N(0,1), let D be an M—1x M
difference matriz, and let the mapping A : RYN — BM be defined as in (3.1) with the

matric D® instead of ®. Fix 0 <n <1 and e > 0. If the number of measurements is

M > 5(K log(N) + 2K log(®) + log(2)), (3.9)
then with probability exceeding 1 —n, the mapping A is a BeSE of order K for sparse

veclors.

Proof. Let the (M —1)/2 x M matrix E be obtained by selecting every other row of
the matrix D. Then the matrix £® has i.i.d. Gaussian entries, since it is obtained by
summing disjoint sets of independent Gaussian entries in ®. Note that the entries of
E® will no longer have unit variance but are still zero mean, i.e., they are just scaled

Gaussians. As previously discussed, scaling the entries of @ has no effect on BeSE
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property (or its probability of occurance). Thus, if given the signs of the measure-
ments from D®, we can perform reconstruction with a subset of measurements and
E®. To obtain the final result, we note that we have half as many valid measurements

as in Theorem 6. O

Note that the only difference between (3.9) and (3.7) is that the minimum number
of required measurements is now double of what was required in Theorem 6, and thus
is on the same order as in (3.8). This is because there are half as many independent

measurements in this case.

Besides robustness to non-linearities as discussed in Section 3.3, this technique
can also be used for 1-bit quantization of measurements that are all positive, such as

those acquired by the single-pixel-camera [19].

As with Theorem 5, Gaussian matrices provide a universal mapping, i.e., the result
remains valid for sparse signals in a basis ¥ € RV*"¥. Moreover, Theorem 6 can also
be extended to rows of ® that are drawn uniformly on the sphere, since the rows of
® in Theorem 6 can be normalized without affecting the outcome of the proof. Note
that by normalizing the Gaussian rows of ®, is is as if they had been drawn from a

uniform distribution of unit-norm signals.

We have now established a large class of robust BeSEs: 1-bit quantized Gaussian
projections. We now make use of this robustness by considering an example where

the measurements are corrupted by Gaussian noise.
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3.5.3 Noisy measurements and compressible signals

In practice, hardware systems may be inaccurate when taking measurements; this is
often modeled by additive noise. The mapping A is robust to noise in an unusual way.
After quantization, the measurements can only take the values —1 or 1. Thus, we can
analyze the reconstruction performance from corrupted measurements by considering
how many measurements flip their signs. For example, we analyze the specific case

of Gaussian noise on the measurements prior to quantization, i.e.,
Ap(z) = sign (®z + n), (3.10)

where n € RM has i.i.d. elements n; ~ N(0,0?). In this case, we demonstrate, via
the following lemma, a bound on the Hamming distance between the corrupted and

ideal measurements with the BeSE from Theorem 6 (see Appendix B.6).

Lemma 9. Let ® be a matriz generated as ® ~ NMXN(0,1), let the mapping A :
RN — BM be defined as in (3.1), and let A, : RV — BM be defined as in (3.10).
Let n € RM be a Gaussian random vector with i.i.d. components n; ~ N(0,0?%). Fiz

v > 0. Then for any z € RN, we have

E (du(An(z), A(z))) < e(o, ||zll2),

P (du(An(2), A()) > e(o, |lall2) +7) < M7,

_1 1
where e(o, ||z]|2) = ax/llwﬁng < Tl

If 7, is the estimate from a sparse consistent reconstruction algorithm

AP A, (z),®, K) from the measurements A,(z), then it immediately follows from
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Lemma 9 and Theorem 6 that
ds(Tn,2) < du(An(z), A(x)) +€ < 375+ +6 (3.11)

with high probability (depending on M and 7). Given alternative noise distributions,
e.g., Poisson noise, a similar analysis can be carried out to determine the likely number

of sign flips and thus provide a bound on the error due to noise.

Another practical consideration is that real signals are not always strictly K-
sparse. Indeed, it may be the case that signals are compressible; i.e., they can be
closely approximated by a K-sparse signal. Lemma 9 can be extended to compress-
ible signals. To do this, we consider the small coefficients, i.e., the “tail” of the
residual of a best K-term approximation of x, to be a source of Gaussian noise on the
measurements and then apply Lemma 9. This is possible due to our particular Gaus-
sian choice of ® and the fact that for binary measurements, we are only concerned

with the number of measurements that change sign.

Corollary 3. Let ® be a matriz generated as ® ~ NM*N(0,1) and let the mapping
A : RN — BM bpe defined as in (3.1). Furthermore, let ® have RIP constant 6. Let

v > 0. Then for any x € SV~ we have

where Ty 1s the best K-term approximation of x.
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The proof is given in Appendix B.7. In similar fashion to (3.11), this result implies
that with high probability (depending on M and <), the angular reconstruction error
of T = A™*(A(z), ®, K) for any signal z (sparse or compressible) is bounded as

1|z — zkll2

ds(z,z) < 1L —ZKl2
2 =l

+v+e,

Much like conventional CS results, the reconstruction error on the order of the best

K-term approximation error of the signal.

Thus far we have demonstrated a lower bound on the reconstruction error from 1-
bit measurements (Theorem 5) and introduced a condition on the mapping A that en-
ables stable reconstruction in noiseless, noisy, and compressible settings (Definition 2).
We have furthermore demonstrated that a large class of random matrices—specifically
matrices with coefficients draw from a Gaussian distribution and matrices with rows
drawn uniformly from the unit sphere—provide good mappings (Theorem 6). We now
demonstrate how the above ideas can be extended to perform saturation-agnostic (and

multi-bit) reconstruction.

3.6 Saturation-Agnostic Sensing

It is possible to use the sparse consistent reconstruction algorithm AM™*(y,, @, K)
to recover measurements that have been quantized at bit depths higher than one
and with arbitrary numbers of saturation events. To do this, we extend the idea
that signals can be recovered from the signs of the pair-wise differences of the mea-

surements as in Corollary 2. However, instead of considering only the relationship
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between any two consecutive pairs, we consider the unique relationships between all
pairs of measurements. We can represent this by an overdetermined difference matrix

Dy € {-1,0, 1}(1‘24)"M. For example, for M = 4 we would have the 6 x 4 matrix

1 -1 0 0
1 0 -1 0
1 0 0 -1
Dy = , (3.12)
01 -1 0
01 0 -1
00 1 -1

and the measurements y = [1, —4, 3, 6]7 would quantize to [1,—1,—1,—1,—1,-1]T =

sign(Dpsy). Thus, we can perform the following procedure:

1. Acquire real-valued measurements;

2. Quantize the measurements (this may induce an unknown amount of satura-

tion);

3. Apply Dy to the quantized, saturated measurements and compute the resulting

signs.

We can then perform reconstruction via A (sign(Dysy), Dy®, K). A similar idea
has been proposed for quantization of frame coefficients in a non-CS context [99].
This can also be thought of as a specific application of some of the ideas presented

in [33].
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The key benefits of this technique are that it ¢) provides a simple way to perform
consistent® reconstruction from multi-bit quantized measurements; and i) is agnostic
to the number of saturations. Indeed, when all measurements saturate, this technique
reduces to the signed differences reconstruction problem with guarantees given in
Corollary 2 and problem formulation given by (3.2), i.e., for all practical purposes it
is equivalent to the 1-bit CS case. It is thus expected that we can maintain robust
reconstruction performance regardless of how many measurements saturate. We will
see empirical validation of this idea in Section 4.2. This may be useful in situations
where the saturation rate may be hard to control or the gains of the input signals are

unpredictable.

3.7 1-bit CS Reconstruction Algorithms
3.7.1 Trust, but Verify: Restricted-step shrinkage (RSS)
Background on trust-region algorithms

One approach to solving optimization problems like (¢;-min;g) and (3.2) is to adapt
standard CS optimization algorithms to seek a solution on the sphere. However, since
these algorithms are intended to solve convex problems and the sphere constraint is

non-convex, computational performance may suffer. In particular, the choice of an ap-

6In this case consistency is defined in terms of the signs of the differences of the measurements,

not the absolute quantization intervals in which the measurements lie.
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propriate step-size is elusive. Common methods for choosing adaptive step-sizes, such
as Barzilai-Borwein (BB) steps, do not necessarily perform well with a unit sphere
constraint, since they were designed for unconstrained convex optimization [100]. In
addition, to enforce the sphere constraint, many approaches must introduce an ad-
ditional step that renormalizes intermediate solutions. It is not obvious that such

approaches will converge.

The methods used in this section are inspired by a particular class of restricted
step-size algorithms called trust-region methods [101]. Given the unconstrained non-
linear programming problem

min f(x), (3.13)

xeRN

trust-region methods compute the next trial point iteratively by finding the minimizer
of the approximation ms(z) of f(x) within a trust-region defined by a ball centered

at the current point z° with radius A®;” that is,
min my(z) s.t. ||z — x| < A°. (3.14)
zeRN

The size of the trust-region A® is increased or decreased automatically according
to the performance of the model (3.14) during previous iterations. These methods
choose step directions and lengths simultaneously, and they have been proven to be
reliable for solving difficult non-convex problems [101]. Additionally, these algorithms

often have provable convergence guarantees. These algorithms can also be used for

In this section A® refers to the trust region radius, not the quantization width or 1-bit recon-

struction algorithm.
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constrained optimization, for example, by linearizing the constraints and applying a
conventional constrained optimization technique. For more details on trust region
methods and their adaptation for constrained optimization, we refer the reader to
[101, 102].

To motivate the use of trust-region methods in 1-bit CS, consider the following

simple example program:
min ||z||; st. z3 <zp and ||z]2 = 1. (3.15)
z€S1

The behavior of the method can be best explained by examining both a successful
iteration and a failure iteration of the algorithm applied to (3.15). Examples of these
cases are depicted in Figure 3.3. The first constraint is depicted by the shaded area.
The initial point is denoted by z*, where s is the iteration number. The algorithm
will take a step in a direction specified by an approximation ms(z) (not depicted) to
point w and then project the result onto the unit sphere. The light dashed sphere
depicts the trust region at iteration s while the dark dashed sphere depicts the trust
region at iteration s+ 1. Depending on the success of the trial point, the trust region

will expand or contract.

During a successful iteration, as depicted in Figure 3.3(a), the algorithm takes a
step to point w® and projects the point onto the sphere. This is depicted by the red
dashed line. Since the result is within the feasible region, the point is accepted and
denoted by z°*!. The trust region radius is expanded and the procedure repeats.

During a failure iteration, as depicted in Figure 3.3(b), the trust region radius is too






84

iteratively solve a sequence of problems of the form

min ms(x) + %Hx — z°||3, (3.16)

zeSN-1
where the parameter \* essentially plays a role like the trust-region radius A® in model
(3.14). In fact, the solutions of (3.14) and (3.16) are the same under some properly
chosen A\° and A°. We will show that our adaptation of this algorithm indeed also

has guaranteed convergence, as with conventional trust region algorithms.

The restricted step shrinkage algorithm for 1-bit CS

In this section, we derive an algorithm for the generalized formulation of (¢;-min;g)
and (3.2)

min ||z|l; st. Az >b and |z||; = 1. (3.17)
zeSN-1

Our strategy is as follows. First, using the augmented Lagrangian framework, we
formulate an algorithm that solves (3.17) and denote it as RSS-outer. We choose
the augmented Lagrangian framework since many state-of-the-art CS reconstruction
algorithms are formulated this way [26, 103, 104]. Second, a step within RSS-outer

requires that we solve a non-convex subproblem of the form

min (,(z) = ||lz|l; + pf(z) st. ||zl =1, (3.18)

zeSN-1

where f(z) : RN — R is differentiable and p > 0. We solve (3.18) with a trust-region-
like subroutine, denoted as RSS-inner. The total procedure obtained by combining

RSS-outer and RSS-inner is called the RSS algorithm.



85

The RSS-inner subroutine is the main contribution of this section. Thus, we choose
to describe RSS-inner in terms of the general program (3.18). Algorithm frameworks
other than the augmented Lagrangian can be used to formulate an algorithm for
(3.17), and in some cases may employ the RSS-inner subroutine. As an example,
the quadratic penalty formulation to this problem is given in Appendix C.1. This

formulation is simpler to implement, but does not perform as fast in practice.

For the remainder of this section, we will use the following terms. A stationary
point of an optimization problem is a point that satisfies the Karush-Kuhn-Tucker
(KKT) first-order optimality conditions [102]. By convergence we mean that an
algorithm converges to a stationary point of the objective from any starting point,
but not necessarily to a global minimizer of the objective. We say a point z is a
cluster point of sequence {z;}sen if for any € > 0 there exist an infinite number of
points of {zs} lying in the e-ball of z. Note that the sequence {z;} may not converge.
A feasible solution is a solution such that all constraints are satisfied. The subgradient

Of of function f(z) at point z, is defined as any vector z such that

f(z) = f(zo0) 2 z(x — o). (3.19)

Augmented Lagrangian formulation of (3.17) (RSS-outer) We first formu-
late an algorithm to solve (3.17) using augmented Lagrangian framework. Starting

from \° = 0, at each iteration s we solve the Lagrangian function

min L(z, A%, p°) s.t. ||z|l2 = 1, (3.20)

xeSN-1
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for z°*1, where A € RM and p > 0. We then set p**! := ku®, with k > 0, and updates

the Lagrangian multipliers A*+! according to
A**! = max {A°* — p°(Az*t — b),0}.

The augmented Lagrangian function for (3.17) is

£($7 An“) = ||x“1 + Zp((ASL‘ - b)i1 Ai, M)? (3'21)
i=1
where
—ot + %utz, ift — % <0,
p(t,o,p) = (3.22)
——ia{ otherwise.

Thus, the intermediate problem (3.20) is of the form of (3.18) and will be solved with
RSS-inner. The complete augmented Lagrangian procedure, and how it relies on the

RSS-inner subroutine is summarized in Algorithim 3.

Restricted-step subroutine to solve (3.18) (RSS-inner) The RSS-inner sub-
routine finds the solution to the subproblem (3.18) and proceeds as follows. We begin
with an initial signal estimate z° and an initial step-size 7°. At iteration s, from the
point z°, we compute a smooth approximation ms(x) to the original objective func-
tion (,(z) in (3.18). The approximation is formed by adding the first-order Taylor

expansion of uf(z) and a proximal term with respect to z* to the ¢;-norm of z
T T°
ms(z) = |zl + pf (@) + 1(9°)" (@ — =) + Flle - 2°|,

where the step size 7° > 0 and ¢° is the gradient of f(z). Next, we find the optimal
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Algorithm 3: RSS-outer

So

S1

S2

S3

Initialize
Given initial solution z°
Choose initial step-size u° and k > 0

Set iteration s := 0, Lagrangian multiplier \° = 0

while not converged do

Compute next estimate (via RSS-inner)
Set 8t = min L(x, X%, p°) s.t. ||z|]2 = 1,
where the objective is given by (3.21).

Update multiplier and p
Set At := max {\* — p*(Az*t! —b),0}

s

Set p*tl = ku

Update iteration count

Set s :=s+1

solution to the smoothed approximation

S

2% = arg;rel]iRryll ms(z) s.t. ||z]j2 = 1.

(3.23)

The relationship between the optimal solution z° of the subproblem (3.23) and its sub-

gradient 0||2°||1, together with the norm constraint, implies that 2® can be expressed

explicitly. In fact, z° can be expressed in terms of the shrinkage (“soft threshold”)

operator, defined for any o € RV, as

S(a,T) :=sgn(a) ©® max {|a| — T, 0},

(3.24)
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where ® denotes the element-wise product between two vectors and | - | denotes
the magnitude of each element in the vector. This is demonstrated in the following

Lemma.

Lemma 10. Suppose that z° is not a stationary point of (,.

1. If 8% := S (1°2° — pg®, 1) # 0, then the closed-form solution of the subproblem
(3.23) is
88

zZ = M. (325)

2. If |m°xf —pgf| < 1 fori=1,...,n, then z§ = 0 for all i except that z{ =
sgn(rxz® — pgs), where i = argmaxg=1,. n |7z — ugi| (select only one % if

there are multiple solutions).

3. Otherwise, the optimal Lagrangian multiplier A with respect to ||z||2 = 1 satisfies
75— A =0, |7°2° — pg®| <1, and the set {i | |75z — pgf| = 1} is not empty

and the closed-form solutions of the subproblem (3.23) satisfy ||z°]|2 =1 and

,

z; € (07 +OO)1 2:fTs:I::is - /J’gf =1,

S

1€ (~00,0), i 7'zl gl =1, (3.26)

z; =0, otherwise.

The proof of this Lemma can be found in Appendix C.2. The Lemma implies that

the next trial point z® can be computed in closed form via the ratio (3.25).

We now present our strategy for choosing the step-size 7° and updating the new

iterate %! from z°. We first calculate the difference between the actual reduction of
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the objective function ¢,(z) and predicted reduction
8(z%,2%) = ll2°[ly = [|2°[ls — ulg®) T (2° — z°)

and then compute the ratio

G -G
* o(zs, 28)

(3.27)

to decide whether to accept the trial point 2° as well as if the step-size should be

updated. Specifically, if r¢ > n; > 0, then the iteration was successful and we set

z°t! = 2%; otherwise, the iteration was not successful and we set z°*! = z°. Finally,

the step-size 7° is updated as

[717-37 727-8]7 if Ts Z 2,

7t e (3.28)

[727-37 Ts]) lf Ts S [771, 772)7

L[’Y3Ts’ Tmax|, if 75 <My,

where 0 <y <2 < land 0 < 7, < 72 <1 < ~3. The parameters 11,72, 71, Y2, V3
determine how aggressively the step-size is increased when an iteration is successful
and how aggressively it is decreased when an iteration was unsuccessful. In practice,

the performance of RSS-inner is not sensitive to the actual values of the parameters.

The complete RSS-inner procedure to solve subproblem (3.18) is summarized in

Algorithm 4.

Convergence We next demonstrate that the RSS algorithm converges. Recall

that by convergence we mean that the algorithm will converge to a stationary point
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of (3.18). Before proceeding, we first note that there exists A € R such that the

first-order optimality conditions of (3.18) hold; that is,
p+pug(r) —Az =0, |zll2=1, pedlz, (3.29)
where g(z) = V f(z). In addition, we make the following assumption on g(z),

Assumption 1. The gradient g(z) of f(x) is Lipschitz continuous with constant L:
lg(z) — g2 < Lz -yl

Note that this assumption is valid for the objective function in (3.18).

We are now ready to establish convergence of the RSS-inner algorithm.

Theorem 7. Suppose that for (3.18) S (7°z° — ug®) # 0 for every iteration. If the
RSS-inner algorithm has finitely many successful iterations, then it converges to a
stationary point. If the RSS-inner algorithm has infinitely many successful iterations,
then there exists at least one cluster point of the sequence {z°} and every cluster point

1$ a stationary point.

To prove this, we first demonstrate that an iteration is successful if the step size at
that iteration is sufficiently large. The remainder of the proof is by contradiction, by
checking how much the objective function value of (3.18) decreases, for the successful
iterations. The detailed proof can be found in Appendix C.2. The convergence of

RSS-outer follows from the standard theory for non-smooth optimization [102].

In summary, in this section our goal was to solve (3.17). To do this, we formu-

lated an algorithm for (3.17) using the augmented Lagrangian framework as given by
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Algorithm 3. Within the algorithm, we must solve the subproblem (3.20). Because
(3.20) is of the form (3.18), it can be efficiently solved by the RSS-inner subroutine,

as given by Algorithm 4, with provable convergence.

3.7.2 Binary iterative hard thresholding (BIHT)
Problem formulation and algorithm definition

We now introduce a simple first-order algorithm for the reconstruction of sparse sig-
nals from 1-bit compressive measurements. Our algorithm, Binary Iterative Hard
Thresholding (BIHT), is a simple modification of IHT, the real-valued algorithm from
which is takes its name [30]. The IHT algorithm has recently been extended to handle
measurement non-linearities [105]; however, these results do not apply to quantized

measurements since quantization does not satisfy the requirements in [105].

We briefly recall that the IHT algorithm consists of two steps that can interpreted
as follows. The first step can be thought of as a gradient descent to reduce the
least squares objective ||y — ®z||2/2. Thus, at iteration s, IHT proceeds by setting
a’t! = 5+ @7 (y—®zx°). The second step imposes a sparse signal model by projecting
a**! onto the “y ball”, i.e., selecting the K largest in magnitude elements. Thus,

IHT for CS can be thought of as trying to solve the problem

T « argmin i|ly — ®z|} st. |zl = K. (3.30)
zeRN

The BIHT algorithm simply modifies the first step of IHT to instead minimize
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a consistency-enforcing objective. Specifically, given an initial estimate z° = 0 and

1-bit measurements y,, at iteration s BIHT computes

ot =2° 4 %@T (ys — A(z?)), (3.31)

:L,s+1 — 77K((18+1)7 (332)

where A is defined as in (3.1), 7 is a scalar that controls gradient descent step-size, and
the function nx(v) computes the best K-term approximation of v by thresholding.
Once the algorithm has terminated (either consistency is achieved or a maximum
number of iterations have been reached), we then normalize the final estimate to
project it onto the unit sphere. Section 3.7.2 discusses several variations of this
algorithm, each with different properties. A quick summary is given in Algorithm 5.

The key to understanding BIHT lies in the formulation of the objective. The
following Lemma shows that the term 7 (y, — A(z®)) in (3.31) is in fact the negative
subgradient of a convex objective J. Let []- denote the negative function, i.e.,
([u]-)s = [wi]- with [u;]- = u; if u; < 0 and 0 else, and v ® v denote the Hadamard

product, i.e., (u ® v); = u;v; for two vectors u and v.

Lemma 11. The quantity 1 ®7(A(z) — ys) in (3.81) is a subgradient of the convex

one-sided £1-norm

JI(z) = lllys © (@)} |1,

Thus, BIHT aims to decrease J at each step (3.31).
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Proof. We first note that J is convex. We can write J(z) = ¥; Ji(z) with each

convex function J; given by

(s, z)|, if Ai(z) (ys5)i <O,
Ji(z;ys, @) =
0, else,

where ¢; denotes a row of ® and A;(x) = sign (p;, ). Moreover, if (p;,z) # 0, then

the gradient of 7; is

Ai(z) pi if (ys)i Ai(z) <0,
VIi(2;ys, @) = 5(Ai(z) — (¥s)i) i =

0, else

while if (¢;, z) = 0, then the gradient is replaced by the subdifferential set

VIi(%;9s, @) = {5(Ai(z) — (ys):) @i : £ €[0,1]} > L(Ailz) — (s):) s
Thus, by summing over i we conclude that 1 ®7(A(z) — ys) € VJ(z;ys, ®). O

Consequently, the BIHT algorithm can be thought of as trying to solve the prob-

lem:

*

z* = argmin 7||ly; © (22)]-; st |lzlo = K, |lz]|z = 1.

Observe that since y; © (Pz) simply scales the elements of &z by the signs ys,

minimizing the one-sided ¢, objective enforces a positivity requirement,
Ys © (®z) > 0, (3.33)

that, when satisfied, implies consistency.
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Previous 1-bit CS algorithms (such as the RSS algorithm of the previous section)
have used a one-sided /;-norm to impose consistency [33, 39, 75, 76]. Specifically,
they have applyied a constraint or objective that takes the form ||[ys © (®z)]-||2/2-
Both the one-sided ¢, and ¢, functions imply a consistent solution when they evaluate
to zero, and thus, both approaches are capable of enforcing consistency. However,
the choice of the ¢; vs. ¢, penalty term makes a significant difference in performance
depending on the noise conditions. We explore this difference in the experiments in

Section 4.2.

BIHT shifts

Several modifications can be made to the BIHT algorithm that may improve certain
performance aspects, such as consistency, reconstruction error, or convergence speed.
We believe that such variations exhibit interesting and useful properties that should

be mentioned.

Projection onto sphere at each iteration. We can enforce that every inter-
mediate solution have unit £, norm. To do this, we modify the “impose signal model”
step (3.32) by normalizing after choosing the best K-term approximation, i.e., we

compute

2t = U(nx(a*)), (3.34)

where U(v) = v/||lv||2. While this step is necessary for previous algorithms such

as [39, 75, 76], it is in general not necessary in the BIHT case.
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If we choose to impose the projection, ® must be appropriately normalized or,
equivalently, the step size of the gradient descent must be carefully chosen. Other-
wise, the algorithm will not converge. Empirically, we have found that for a Gaussian
matrix, an appropriate scaling is 1/(v/M||®||3), where the 1/||®||» controls the am-
plification of the estimate from ®7 in the gradient descent step (3.31) and the 1/v/M
ensures that ||y, — A(z®)||2 < 2. Similar gradient step scaling requirements have been
imposed in the conventional IHT algorithm and other sparse recovery algorithms as
well (e.g., [25]).

Minimizing hinge loss. The one-sided ¢;-norm is related to the hinge-loss
function in the machine learning literature, which is known for its robustness to
outliers [106]. Binary classification algorithms seek to enforce the same consistency
function as in (3.33) by minimizing a function Y[k — y; ® (®x)]4, where [], sets
negative elements to zero. When x > 0, the objective is both convex and has a non-
trivial solution. Further connections and interpretations are discussed in Section 4.2.
Thus, rather than minimizing the one-sided #; norm, we can instead minimize the
hinge-loss. The hinge-loss can be interpreted as ensuring that the minimum value
that an unquantized measurement (®z); can take is bounded away form zero, i.e.,
|(®x);] > x. This requirement is similar to the sphere constraint in that it avoids a
trivial solution; however, will perform differently than the sphere constraint. In this

case, in the gradient descent step (3.31), we instead compute

a**! = z° — 797 (sign(¥z° — k) — 1)/2
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where ¥ = (ys; © @) scales the rows of ® by the signs of y,. Again, the step size must
be chosen appropriately, this time as Cy/||®||2, where C, is a parameter that depends

on K.

Minimizing other one-sided objectives. In general, any function R(z) =
S"Ri(z;), where R; is continuous and has a negative gradient for z; < 0 and is 0
for z; > 0, can be used to enforce consistency. To employ such functions, we simply

compute the gradient of R and apply it in (3.31).

As an example, the previously mentioned one-sided Zo-norm has been used to

enforce consistency in several algorithms. We can use it in BIHT by computing
a® = 2° + 1797y, © z°],

in (3.31). We compare and contrast the behavior of the one-sided ¢; and ¢, norms in

Section 4.2.

As another example, in similar fashion to the Huber norm [107], we can combine
the ¢; and ¢, functions in a piecewise fashion. One potentially useful objective is

S Ri(x), where R; is defined as follows:

,

01 Z; 2 0)

Ri(z) =1 |m|, -1<mz<0, (3.35)

2 1
x; +Z’ T < —=.

\

While similar, this is not exactly a one-sided Huber norm. In a one-sided Huber-

norm, the square (¢2) term would be applied to values near zero and the magnitude
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(41) term would be applied to values significantly less than zero, the reverse of what

we propose here.

This objective can provide different robustness properties or convergence rates
than the previously mentioned objectives. Specifically, during each iteration it may
allow us to take advantage of the shallow gradient of the one-sided ¢, cost for large
numbers of measurement sign discrepancies and the steeper gradient of the one-sided
¢, cost when most measurements have the correct sign. This objective can be applied

in BIHT as with the other objectives, by computing its gradient and plugging it into

(3.31).

3.7.3 Convex 1-bit reconstruction formulations

The world is flat: From hyperspheres to hyperplanes

The RSS and BIHT algorithms adhere closely to the theoretical 1-bit framework
(Sections 3.2-3.5) in that they attempt to find a solution that lies on the unit sphere.
As previously described, this problem is not convex and therefore at best we can
hope to prove that the algorithm converges to some local minimum as in the RSS
algorithm, but not guarantee that we have found a feasible (i.e., consistent) solution.
In these algorithms, we can only check if the solution is feasible.

However, it is possible to formulate the 1-bit reconstruction problem as a convex

program. The key insight is that we want to find any non-trivial sparse solution

inside the feasible region and the solution does not necessarily have to live on the
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The presence of the linear constraint w’z = 1 in (¢1-min;p 1p) ensures that we
avoid a trivial solution. The constraint furthermore defines a plane of possible solu-
tions. Figure 3.4 depicts the geometry of the components of (¢;-min;g 1p) formulation
in two dimensions. Specifically, the elements of the diagram are the same as in Fig-
ure 3.1 with the addition of the vector w (which is exact in (a) and approximated
in (b)), denoted by the solid red line and the hyperplane w?z = 1 denoted by the
dashed red line. In this example, due to the orientation of the vectors ¢; and ¢a,
the true centroid w aligns with the z,-axis exactly. Since the centroid is on the
same axis as the sparsest solution, the plane lies tangent to the unit sphere, i.e.,

wle = 2T

z = ||z||2 = 1. In general this need not be the case. To see this, suppose
we could only approximate w, as in Figure 3.4(b). Because it is convex, this program

is guaranteed to return a feasible, and thus consistent solution.

If the LP returns a strictly sparse solution, then it can be normalized (projected
onto the unit sphere) and thus if @ is a BeSE, then we can guarantee stable recovery
by Lemma 6. However, this program solves for the minimum ¢;-norm and thus will

not necessarily return a strictly K-sparse solution.

Doors opened by the hinge-loss

As we saw in the introduction of the BIHT algorithm, we can use the hinge-loss or
square-loss to enforce consistency. This can be applied as a constraint in a convex

optimization problem. Specifically, the hinge loss reconstruction would be formulated
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ure 3.5 depicts geometry of the hinge-loss inspired formulation in two dimensions.
We see from the figure that the addition of the term « is akin to “lifting” the feasible
region away from the intersection with the trivial solution (the origin). In practice
the minimum amplitude assumption is not precisely true, however, if there is noise
present on the measurement before quantization, it may be a reasonable assumption
that measurements below the noise floor had quantized to the wrong values anyway.

Thus, by tweaking x we can adjust the tolerance to noise before quantization.

3.8 Empirical Verification

In this section we explore the performance of the RSS and BIHT algorithms and
compare them to the performance of previous algorithms for 1-bit CS. We also explore
the performance of the convex formulations as well as the multi-bit formulations

decribed earlier.

The experimental setup is as follows. For each data point, we draw a length-IV, K-
sparse signal with the non-zero entries drawn uniformly at random on the unit sphere,
and we draw a new M x N matrix ® with each entry ¢;; ~ N (0,1). We then compute
the binary measurements ys according to (3.1). Reconstruction of Z is performed from
ys with three algorithms: matching sign pursuit (MSP) [76], restricted-step shrinkage
(RSS), and BIHT; the algorithms will be depicted by dashed, dotted, and triangle
lines, respectively. Each reconstruction in this setup is repeated for 1000 trials and

with a fixed N = 1000 and K = 10 unless otherwise noted. Furthermore, we perform
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signal-to-noise ratio (SNR)® in Figure 3.6(b), to demonstrate that the performance of
these techniques is practical (since the angular error is unintuitive to most observers),
and i) the inverse of the angular error squared, i.e., €5 in Figure 3.6(c), to compare

with the performance predicted by Theorem 5.

We begin by comparing the performance of the algorithms. While the angular
error of each algorithm appears to follow the same trend, BIHT obtains smaller error
(or higher SNR) than the others, significantly so when M/N is greater than 0.35. The
discrepancy in performance could be due to difference in the algorithms themselves, or
perhaps, differences in their formulations for enforcing consistency. This is explored

later in this section.

We now consider the actual performance trend. We see from Figure 3.6(c) that,
above M/N = 0.35 each line appears fairly linear, albeit with a different slope,
implying that with all other variables fixed, €5, = O (1/M). This is on the order of
the optimal performance as given by the bound given in Theorem 4 and predicted by

Theorem 5 for Gaussian matrices.

Misses and false alarms. We dig a little deeper into the source of errors by
examining the reconstruction “misses,” i.e., those coefficients that were identified
as zero that are non-zero in the true signal, as well as the “false-alarms”, i.e., those

coefficients that were identified as non-zero that are zero in the true signal. The results

9We define the reconstruction SNR in decibels as SNR(z) := 10log,o(]|z||3/||z — Z||3). Note that

this metric uses the standard euclidean error and not angular error.
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different, according to the previously discussed experiments.

To test the hypothesis that this term is the key differentiator between the algo-
rithms, we implemented BIHT-/,, a one-sided ¢5 variation of the BIHT algorithm that
enabled a fair comparison of the one-sided objectives (see Section 3.7.2 for details).
We compared both the angular error and Hamming error performance of BIHT and
BIHT-¢,. Furthermore, we implemented oracle assisted variations of these algorithms
where the true support of the signal is given a priori, i.e., 9 in (3.32) is replaced by
an operator that always selects the true support, and thus the algorithm only needs
to estimate the correct coefficient values. The oracle assisted case can be thought
of as a “best performance” bound for these algorithms. Using these algorithms, we

perform the same experiment detailed at the beginning of the section.

The results are depicted in Figure 3.9. The angular error behavior of BIHT-¢; is
very similar to that of MSP and RSS and underperforms when compared to BIHT.
We see the same situation with regards to Hamming error: BIHT finds consistent
solutions for the majority of trials, but BIHT-¢5 does not. Thus, the results of this
simulation suggest that the one-sided term plays a significant role in the quality of

the solution obtained.

One way to explain the performance discrepancy between the two objectives comes
from observing the deep connection between our reconstruction problem and binary
classification. As explained previously, in the classification context, the one-sided ¢,

objective is similar to the hinge-loss, and furthermore, the one-sided ¢2 objective is
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Figure 3.10 : Enforcing consistency with noise: One-sided ¢; vs. one-sided ¢, BIHT.
When BIHT attempts to minimize a one-sided £2 instead of the one-sided ¢, objective, the
algorithm is more robust to flips of measurement signs. *Note that the Hamming error
in (b) is measured with regard to the noisy measurements, e.g., a Hamming error of zero
means that we reconstructed the signs of the noisy measurements exactly.

similar to the so-called square-loss. Previous results in machine learning have shown
that for typical convex loss functions, the minimizer of the hinge loss has the tightest
bound between expected risk and the Bayes optimal solution [109] and good error
rates, especially when considering robustness to outliers [109, 110]. Thus, the hinge
loss is often considered superior to the square loss for binary classification.!® One
might suspect that since the one-sided ¢;-objective is very similar to the hinge loss,
it too should outperform other objectives in our context. Understanding why in our
context, the geometry of the ¢; and ¢; objectives results in different performance is

an interesting open problem.

We probed the one-sided ¢, /¢, objectives further by testing the two versions of

10 Additional “well-behaved” loss functions (e.g., the Huber-ized hinge loss) have been proposed [56]
and a host of classification algorithms related to this problem exist [56, 110-113], both of which may

prove useful in the 1-bit CS framework in the future.
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Performance with a fixed bit-budget. In some applications we are interested
in reducing the total number of bits acquired due to storage or communication costs.
Thus, given a fixed total number of bits, an interesting question is how well 1-it CS
performs in comparison to conventional CS quantization schemes and algorithms. For
the sake of brevity, we give a simple comparison here between the 1-bit techniques
and uniform quantization with Basis Pursuit DeNoising (BPDN) [72] reconstruction.
While BPDN is not the optimal reconstruction technique for quantized measurements,
it (and its variants such as the LASSO [56]) is considered a benchmark technique
for reconstruction from measurements with noise and furthermore, is widely used in

practice.

The experiment proceeds as follows. Given a total number of bits and a (uniform)
quantization bit-depth B (i.e., number of bits per measurement), we choose the num-
ber of measurements as M = total bits/B, N = 2000, and the sparsity K = 20.
The remainder of the experiment proceeds as described earlier (in terms of drawing
matrices and signals). For bit depth greater than 1, we reconstruct using BPDN with
an optimal choice of noise parameter and we scale the quantizer to such that signal

can take full advantage of its dynamic range.

The results of this experiment are depicted in Figure 3.11. We see a common trend
in each line: lackluster performance until “sufficient” measurements are acquired,
then a slow but steady increase in performance as additional measurement are added,

until a performance plateau is reached. Thus, since lower bit-depth implies that
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a larger number of measurements will be used, 1-bit CS reaches the performance
plateau earlier than in the multi-bit case (indeed, the transition point is achieved at
a higher number of total bits as the bit-depth is increased). This enables significantly
improved performance when the rate is severely constrained and higher bit-rates per
measurements would significantly reduce the number of available measurements. For
higher bit-rates, as expected from the analysis in [78], using fewer measurements with

refined quantization achieves better performance.

It is also important to note that, regardless of trend, the BIHT algorithm performs
strictly better than BPDN with 4 bits per measurement and uniform quantization
for the parameters tested here. This gain is consistent with similar gains observed
in [39, 76]. A more thorough comparison of additional CS quantization techniques

with 1-bit CS is a subject for future study.

Comparison to quantized Nyquist samples. In our next experiment, we
compare the performance of the 1-bit CS technique to the performance of a conven-
tional uniform quantizer applied to uniform Nyquist-rate samples. Specifically, in
each trial we draw a new Nyquist-sampled signal in the same way as in our previous
experiments and with fixed N = 2000 and K = 20; however, now the signals are
sparse in the discrete cosine transform (DCT) domain. We consider four reconstruc-
tion experiments. First, we quantize the Nyquist-rate signal with a bit-depth of g
bits per sample (and optimal quantizer scale) and perform linear reconstruction (i.e.,

we just use the quantized samples as sample values). Second, we apply BPDN to the
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Comparison of BIHT, BIHT-/,, RSS, and the LP. In our next experiment,
we compare the performance of several 1-bit CS reconstruction algorithms for a fixed
bit budget. Specifically, we compare the BIHT, BIHT-¢,, and RSS algorithms with
the convex (¢;-minigrp) formulation. The LP formulation was implemented using
MATLAB’s built-in LP solver. Additionally, we include the performance when the
true signal support is known a priori for both BIHT and the LP. Our choice of

extending these two algorithms will become clear shortly.

We choose the number of measurements as M = total bits, N = 2000, and the
sparsity K = 20. The experiment proceeds in the same fashion as in Figure 3.11,
however, now we only consider 1-bit measurements and performance across differ-
ent algorithms. The BIHT, BIHT-¢;, RSS algorithms, and LP are denoted by solid
(black), dotted triangle (black), dash-dotted (blue), and dashed (red) lines, respec-
tively. The known support enhanced variations of the algorithms are marked with

circles.

As in the previous noiseless experiments, we find that BIHT significantly outper-
forms the other non-oracle-assisted algorithms, in this case, when the total number
of bits is greater than 400. As a general trend, beyond 500 total bits, we find that in
order of decreasing performance we have the LP, RSS, and BIHT-/,.

Since the LP formulation and BIHT performed the best, we compared them when

the support is known a priori. Doing so measurements the best performance we

can hope to achieve with these algorithms (in similar fashion to the oracle-assisted
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reconstruction of Section 1.2). These additional experiments are denoted by the lines
with hollow circles on them. Although both algorithms perform with the same general
trend, we see that even when the support is known, BIHT still outperforms the convex
program. Also note that the convex program will always return a consistent solution
and that BIHT returns a consistent solution most of the time. Thus, we can draw
the conclusion that in the noiseless case, on average, BIHT provides a solution closer
to the true solution inside the feasible region than does the LP, and that perhaps
consistency isn’t everything. It could be possible that the improved performance of
BIHT in this case has to do with the distribution of the signals that were drawn in

these experiments.

Comparison of BIHT, BIHT-/,, RSS, and the LP in noise. We also
compare the performance with noisy measurements between the different algorithms
and formulations proposed earlier. We performed an experiment where in each trial,

we add zero-mean Gaussian noise e to the measurements before quantization, i.e.,
ys = sign(Pz + e). (3.37)

We use the parameters N = 1000, K = 10, M = 2N and scale the noise so that
the measurement SNR varies between 0 dB and 40 dB. Once the measurements are
quantized, we perform reconstruction. The same algorithms are compared as in the
previous experiment and again, the LP was implemented using MATLAB’s built-in

tools.

Figure 3.14 depicts the results of this experiment. As we have seen before, the
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i) the saturation-agnostic reconstruction formulation of Section 3.6 with the BIHT
algorithm, and i) the greedy saturation consistent CoSaMP (SC-CoSaMP) used in
the democratic method and detailed in Chapter 2. SC-CoSaMP is known to break
down when too much saturation is incurred on the measurements. We chose the
BIHT algorithm to implement the saturation-agnostic approach since it produced
the best noiseless reconstruction performance in the previous experiments. Results
are expressed in RSNR and reflect the average over 100 trials. We chose the signal

to have unit norm for the sake of comparison but this is not required in general.

Figure 3.15 depicts the results of this experiment. The dashed (blue) line de-
picts the average reconstruction performance obtained by the multibit technique and
the solid (black) line depicts the performance obtained when applying SC-CoSaMP.
For large quantizer range G, little saturation occurs and the SC-CoSaMP algorithm
slightly outperforms the BIHT algorithm. However, this may be due to the differences
in the algorithms and not the formulation itself. When G is decreased significantly,
in this case below 0.02, the SC-CoSaMP algorithm drops steeply in performance,
eventually obtaining an SNR of 0 when G = 0. However, the multibit BIHT algo-
rithm, although it moderately decreases in performance around the same G = 0.02,
maintains a significantly non-zero SNR, even at G = 0. Indeed, G = 0 corresponds

to the “supersaturated” case, i.e., 1-bit CS.

The conclusion of this experiment, and indeed this chapter, is that we are in fact

able to stably recover signals regardless of saturation level (or even bit-depth). The
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algorithm is agnostic to the number of saturations and provides reasonable perfor-

mance where previous algorithms fail.

3.9 A Note on Alternative 1-Bit Frameworks

Two alternative approaches have been introduced to acquire 1-bit measurements and
recover sparse signals. In [114], the authors propose a convolution-based imaging sys-
tem with 1-bit measurements. Reconstruction is performed using total variation (TV)
minimization and a gradient descent algorithm. In addition, the authors introduce a
convex regularization parameter that simultaneously enforces both sign consistency
and non-zero signal norm. In [98], the authors propose both non-adaptive and adap-
tive 1-bit sensing schemes. The non-adaptive scheme, which most closely relates to
the framework presented here, relies on knowledge of the dynamic range of the sig-
nal, as well as an assumption about the distribution of the values of the nonzero

coeflicients.
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Algorithm 4: RSS-inner (subroutine)

so Initialize
Given initial solution z° and initial step-size 7°
Choose 0 < <M <land0<ym <7<l
Set iteration s :=0

while not converged do
s1 Compute step

Compute a new trial point z° via (3.25)
Compute the ratio 7, via (3.27)

S2 Accept or reject the trial point

If 7, > m;, then set 51 = 2°

otherwise, set z°*! = z*

S3 Adapt step-size

Update 7° according to (3.28)

S4 Update iteration count

Set s:=s5+1
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Algorithm 5: Binary Iterative Hard Thresholding (BIHT)
so Initialize

Set initial solution z° := 0
Set iteration s := 0

while not converged do

S1 Update estimate (note that this is quite different from IHT proper)
astl =25 + 3 @T(ys — A(ms))

S2 Hard threshold and project onto unit sphere

s+l = U(nK(a.H-l))

S3 Update iteration count

Set s :=s5+1




122

Chapter 4

Regime Change

We now return to the multibit scalar quantizer (2.1) from Chapter 2:
Yo = Qp(®(z +n) +e), (4.1)

where the signal noise is denoted by n € RY, and Qp : R — 2 is a B-bit scalar
quantization function (applied element-wise in (2.1)) that maps real-valued CS mea-

surements to the discrete alphabet 2 with |2/| = 25.

Since the quantizer is scalar, we can write the bit-budget constraint as
B = MB. (4.2)

This fixed bit-budget 8 = M B and the signal noise n impose a competing perfor-
mance tradeoff as a function of M. On the one hand, since B = B/M, we can
increase the bit-depth as we decrease the number of measurements, thereby increas-
ing the precision of each measurement. On the other hand, signal noise is amplified
due to noise folding as we decrease the number of measurements, thereby decreasing
the precision of each measurement [36]. Thus, we find ourselves in somewhat of a co-
nundrum: as we take fewer measurements we can allocate more bits per measurement
(good), but noise folding increases the risk of wasting these bits on already imprecise

measurements (bad).



123

We can gain more insight into this conundrum through a back-of-the-envelope
calculation of the optimal total acquisition error, which comprises the expected mean-
squared distortion due to a scalar quantizer for Gaussian measurements O(||z||22728)

and the expected reconstruction error due to measurement noise O (%ag) Equating

these noise levels to minimize the total mean square error (MSE) leads to

1 |zll3 M
B~ -1 — .
20g2( o2 N)

This expression can also be found using classical rate-distortion bounds in terms of
the signal-to-noise ratio (SNR) [115, 116]. Imposing the fixed bit-budget B = B/M

and rearranging terms, we find that the MSE is minimized when

z||2 28
log, (M;) ~ 22 1og, (M), (4.3)

The term on the left is the logarithm of the SNR of the input signal. For fixed 8 and
N, (4.3) implies that there are two operational regimes that correspond roughly to
“high” input SNR and “low” input SNR. At high input SNR, the MSE is minimized
by taking a small number of measurements M with large bit-depth; we call this the
measurement compression (MC) regime. At low input SNR, the MSE is minimized
by taking a large number of measurements M with small bit-depth; we call this
the quantization compression (QC) regime. The exact SNR at which the transition

between the two regimes occurs is a function of the total bit-budget.

In this chapter,! we argue for the distinction between the MC and QC regimes in

1This chapter includes work done in collaboration with Richard Baraniuk [117].
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two ways. First, we formalize the back-of-the-envelope calculation in (4.3) by ana-
lyzing the reconstruction MSE that results from the combined effects of quantization
and signal noise folding. Specifically we provide an upper bound on this MSE for an
optimal non-uniform scalar quantizer that roughly predicts the trends of the optimal
bit-depth for different signal noise powers and bit-budgets. Second, we provide a suite
of simulations for a specific setup frequently encountered in practice: the acquisition
of sparse signals from uniformly quantized measurements. Surprisingly, at certain
practical SNRs, our simulations suggest that a 1-bit quantizer (using the reconstruc-
tion techniques developed in [74]) exhibits better performance than larger bit-depth

quantizers.

4.1 Analysis of Quantized CS Systems with Signal Noise

In this section we derive a new upper bound on the oracle-assisted reconstruction error
due to both noise and quantization, making the back of the envelope calculation
(4.3) more rigorous. This bound enables us to argue that, for a fixed bit-budget
B = M B, it may be better to quantize to fewer bits per measurement B than take

fewer measurements M. The following theorem is proved in Appendix D.

Theorem 8. Suppose that yg = Qp(®(z+n)). Let the signal z € RN be sparse with
support Q € {1,...,N} and || = K, where the elements 2 are chosen uniformly
at random and the amplitudes of the non-zero coefficients are drawn according to

zj € Q ~ N(0,02). Let the signal noise n € RM be a random, white, zero-mean
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vector with variance o2. Furthermore, let the M x N matriz ® satisfy the RIP

.
of order K with constant §, ®®T = %IM, and M < N. Choose Qp to be the
optimal scalar quantizer with B > 1 that minimizes the MSE for the distribution of
the measurements ®(x +mn). Then for a fized bit-budget of B = M B, the MSE of the

oracle-assisted reconstruction estimate T satisfies

a2 < 2K (go2po-2B 2 ~2B K (B8
E (||l x||2)§%(1_5)(KazB2 +NoZB(1+2 ))+(1—6)(B 1)6,

(4.4)
where 6 = max;x; |[E(Qp(Pz + ®n);Qp(Px + Pn);)| is the correlation between the

quantized measurements.

Each component of the bound (4.4) is fairly intuitive. The term Ko2B2725 re-
flects the error due to quantizing the measurements. The term No2B (2728 + 1)
reflects both the error due to measured signal noise as well as the quantization of
that noise. The reconstruction error is effectively proportional to these two terms.
The final term (% - 1) G reflects an additional error due to the correlation between
" the quantized measurements. In many CS scenarios we expect this term to be close to
zero, and furthermore for large B it has been shown that this term can be accurately

approximated as zero [118]. Thus, choosing the optimal B primarily comes down to
balancing the terms inside the parentheses.
The bound in (4.4) applies to strictly sparse signals immersed in signal noise.

However, it may also be of interest to consider so-called compressible signals, i.e., sig-

nals that are not strictly sparse but that can be reasonably approximated by retaining
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their K largest magnitude coefficients. For such signals, the “tail” part of the signal
that we do no expect to recover, i.e., the subset of the smallest N — K entries, is also
subject to noise folding. Theorem 8 can be extended to handle compressible signals
by inflating the second term to acco<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>