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ABSTRACT 

Regime Change: Sampling Rate vs. Bit-Depth in Compressive Sensing 

by 

Jason N. Laska 

The compressive sensing (CS) framework aims to ease the burden on analog-to-digital 

converters (ADCs) by exploiting inherent structure in natural and man-made signals. 

It has been demonstrated that structured signals can be acquired with just a small 

number of linear measurements, on the order of the signal complexity. In practice, this 

enables lower sampling rates that can be more easily achieved by current hardware 

designs. The primary bottleneck that limits ADC sampling rates is quantization, i.e., 

higher bit-depths impose lower sampling rates. Thus, the decreased sampling rates 

of CS ADCs accommodate the otherwise limiting quantizer of conventional ADCs. 

In this thesis, we consider a different approach to CS ADC by shifting towards 

lower quantizer bit-depths rather than lower sampling rates. We explore the extreme 

case where each measurement is quantized to just one bit, representing its sign. We 

develop a new theoretical framework to analyze this extreme case and develop new 

algorithms for signal reconstruction from such coarsely quantized measurements. The 

1-bit CS framework leads us to scenarios where it may be more appropriate to reduce 

bit-depth instead of sampling rate. We find that there exist two distinct regimes of 

operation that correspond to high/low signal-to-noise ratio (SNR). In the measure­

ment compression (MC) regime, a high SNR favors acquiring fewer measurements 



with more bits per measurement (as in conventional CS); in the quantization com­

pression ( QC) regime, a low SNR favors acquiring more measurements with fewer bits 

per measurement (as in this thesis). A surprise from our analysis and experiments 

is that in many practical applications it is better to operate in the QC regime, even 

acquiring as few as 1 bit per measurement. 

The above philosophy extends further to practical CS ADC system designs. We 

propose two new CS architectures, one of which takes advantage of the fact that 

the sampling and quantization operations are performed by two different hardware 

components. The former can be employed at high rates with minimal costs while 

the latter cannot. Thus, we develop a system that discretizes in time, performs CS 

preconditioning techniques, and then quantizes at a low rate. 
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Chapter 1 

Introduction 

The great shift to digital processing over the last few decades has created an insa­

tiable demand for the digitization of ever wider bandwidth signals [1]. In turn, this 

has led to an increased burden on signal acquisition devices that rely on the Shan­

non sampling theorem which requires that such devices must sample at least at the 

Nyquist-rate, twice the bandwidth of the signal, for any bandlimited signal [2, 3].1 

This requirement forces analog-to-digital converters (ADCs) to sample faster to cap­

ture wideband signals for later digital processing. It is no longer feasible to build 

devices that meet our demands for size, weight, power, and bandwidth while still 

adhering to classical notions of signal acquisition [6, 7). 

Thankfully, we have come a long way in our understanding of signals since Shan­

non's original theory. The class of bandlimited signals is extremely broad, consisting 

of all signals with some maximum frequency. For example, the sampling theorem 

enables us to accurately capture an instance of bandlimited noise, even though there 

may be little utility for such a signal. In fact, most natural and man-made signals 

1While Shannon's theory of communication (ca. 1949) is perhaps the most popularly cited origin 

of this idea, similar sampling theorems were proven by Whittaker [4] in 1915 and Kotelnikov [5] in 

1933. 
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have some inherent additional structure beyond bandlimitedness. In particular, in 

this thesis we are interested in signals that when transformed into some domain (via 

a linear transformation), have energy that is primarily concentrated among just a few 

large coefficients, and all other coefficients can be approximated as zero. This partic­

ular description of signal structure is extremely practical since transforms exist that 

firmly put many natural signals such as images [8, 9] and man-made signals [10, 11] in 

this class. Indeed, the exploitation of this form of structure is the basis for transform 

coding and compression, e.g., JPEG image compression [12, 13]. 

The confluence of rigorously defined structured signal models and the desire to 

circumvent the Shannon-Nyquist limitation has prompted a new signal acquisition 

framework, compressive sensing (CS) [14, 15]. A key insight is rather than attempt­

ing to acquire all bandlimited signals, CS assumes that we are only interested in 

signals with the structure described above. By reducing the size of class of signals 

of interest, we should be able to drive down the number of samples required to ulti­

mately distinguish between the signals. The CS framework harnesses this insight via 

three fundamental components: 

1. underdetermined linear measurement systems, i.e. we obtain the measurements 

y = <Px + e, (1.1) 

of the signal x E JRN where <P is an M x N matrix with M << N that models 

the linear physical sampling system, and with measurement error e E JRM; 
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2. signal models, the most simple model being that comprising of all K-sparse 

signals, i.e., signals for which only K elements are non-zero; and 

3. algorithmic reconstruction, such as convex optimization or greedy algorithms. 

Briefly, to reconstruct a signal estimate x from y we generally ask for the sparsest 

solution such that its measurements, ~x, are the same as, or within some close 

distance of the observed measurements y. Such algorithms are non-linear and 

iterative. 

A large body of work has been devoted to the study of each of these components, 

e.g., by i) characterizing conditions on ~ that provide robust mappings of sparse 

signals to lower dimensions and designing physical sampling systems that satisfy such 

conditions [16-21]; ii) proposing more refined classes of highly structured signals [22-

24]; and iii) providing reconstruction guarantees and fast solvers for convex programs 

[25-28] as well as greedy and first order algorithms [29-31]. We will review some of 

these topics in more detail in Section 1.2. 

CS promises to lessen our sampling burden by decreasing sampling rates. The 

simple consequence of (1.1) is that when the acquisition of each measurement is 

"expensive," then we benefit by only sensing M values rather than N. For instance, 

it is possible to design a physical sampling system ~ such that y = ~x = ~(x(t)) 

where x is a vector of Nyquist-rate samples of a bandlimited signal x(t), t E R.. In 

this case, (1.1) translates to low, sub-Nyquist sampling rates. This is a potential 

boon for wideband acquisition as mentioned earlier, since it enables current ADC 
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technology to acquire larger bandwidths than was possible before, or alternatively 

enables a higher precision ADC to be used in current wideband systems. 

The significant attention given to reducing the number of acquired measurements 

only explicitly acknowledges half of the acquisition process. In practice analog-to­

digital conversion really comprises of two steps: i) discretization in time (sampling), 

and ii) discretization in amplitude (quantization). Thus, just as in any conventional 

sampling system, CS measurements are quantized, i.e., each measurement is mapped 

from a real value (over a potentially infinite range) to a discrete value over some 

finite range. For example, in scalar quantization, a measurement is mapped to one 

of 2B distinct values, where B denotes the number of bits per measurement, i.e., the 

bit-depth. The finite range of the quantizer results from a finite number of bits as well 

as physical limitations of hardware components. 

There are several interesting problems and attributes associated with quantization 

(and physical quantizers) that are not considered by the prototype CS framework 

described above: 

• The quantizer begets the dynamic range of the system: Quantization introduces 

two kinds of error: quantization error and saturation error. The former is the 

result of measurements that are within the range of the quantizer; this error is 

bounded. The latter is the result of measurements with amplitudes beyond the 

range of the quantizer, i.e., saturated measurements; this error is unbounded 

and in many case more detrimental to performance than quantization error. 
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The dynamic range of a system is typically defined as the ratio maximum am­

plitude tone to the minimum amplitude tone that can sampled with some given 

accuracy. Thus, the finite range of the quantizer places strict limits on the 

dynamic range of the ADC system. 

Dynamic range tells us how much quieter the "quietest" signal can be than 

the "loudest." This is a fundamental metric of system performance for many 

practical applications [32). 

• The quantizer is the ADC bottleneck: The ADC is beholden to the quan­

tizer [6, 7). Quantization significantly limits the maximum speed of the analog­

to-digital converter (ADC), forcing an exponential decrease in sampling rate as 

the number of bits is increased linearly [7). Furthermore, the quantizer is the 

primary power consumer in an ADC. Thus, more bits per measurement directly 

translates to slower sampling rates and increased ADC costs. 

• The quantizer is sensitive to noise: High bit-depth quantization is more sus­

ceptible to non-linear distortion in the ADC electronics [33). 

By reducing the sampling rate, the CS framework implicitly assumes we can relieve 

some of the burdens associated with the quantizer. 

In this thesis, we take a unified approach to CS ADCs, considering the sampling 

rate, finite range quantization, and signal noise when studying CS systems. A driving 

theme behind this work is that the tradeoff between sampling and quantization can 
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be manipulated in both directions; simply put, reducing the bit-depth of the quantizer 

also reduces our sampling burden and furthers the goals of CS acquisition devices. 

We develop the following main ideas (each roughly corresponding to a chapter), that 

ultimately lead to this insight. 

CS enables higher dynamic range systems. By reducing the sampling rate, 

CS enables the use of a higher bit-depth or higher dynamic-range quantizer [7]. If we 

are to claim any benefit by this fact, then it is of fundamental importance that the CS 

measurement system <P can take advantage of any additional dynamic range granted 

by a better quantizer. We rigorously study the dynamic range of CS systems and 

determine that indeed it is on the same order as conventional systems for a uniform 

quantizer at a given bit-depth. This then verifies that by reducing the sampling rate, 

we may indeed obtain an improvement in the dynamic range of the system. 

It is possible to extend the dynamic range of CS systems beyond the claims above. 

In CS systems, saturated measurements can either be rejected before reconstruction 

or included in a reconstruction algorithm. Robust signal reconstruction is possible in 

both cases [34, 35]. Intuitively then, if we increase the input signal gain (equivalent 

to increasing the scale of the measurements) such that the quantizer saturates sig­

nificantly, yet we still achieve similar reconstruction performance, then the dynamic 

range of the system has effectively been increased. The question arises: how many 

measurements are allowed to saturate? 

Saturate all measurements +-t Quantize measurements to just 1 bit. 
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Although unintuitive, it is possible to saturate all of the CS measurements. In this 

case, we effectively retain just 1 bit of information per measurement, representing its 

sign. Thus, an alternative interpretation is that we can drive the depth of quantizer 

down such that it is a simple comparator, testing for measurements above or below 

zero. Previous notions of dynamic range no longer apply since any positive scaling of 

the signal will result in the same set of measurement signs, i.e., the scale of the signal 

will be obliterated. To reconstruct we search for the sparsest signal that yields the 

same measurement signs when projected through the measurement system. We call 

this consistent reconstruction. Since the scale of the signal is unknown and arbitrary, 

we only search for signals with unit energy. We demonstrate that there are is a large 

class of 1-bit CS mappings that enable stable reconstruction in this way and we further 

demonstrate that practical algorithms can be designed to solve this reconstruction 

problem. Finally, we extend the methods for 1-bit CS to measurements that have 

been quantized at arbitrary bit-depths, or with arbitrary numbers of saturations, 

unknown a priori. We dub this reconstruction technique saturation-agnostic CS. 

Reduce the bit-depth, increase the sampling rate. 1-bit CS provides a fresh 

perspective on CS ADCs. Driving down the bit-depth to the extreme case of a single 

bit per measurement enables extremely fast hardware quantizers; now the quantizer 

is a simple comparator. Thus, in stark contrast to the typical CS assertion that we 

should reduce the sampling rate and increase the bit-depth of the quantizer we have 

demonstrated that indeed the reverse possible. We take this yet a step further to 



8 

answer the question: when should we do this? 

Signal noise subject to noise folding in CS, i.e., it is amplified by underdetermined 

linear systems [36-38]. This means that as the sampling rate decreases, we incur an 

increasing penalty due to input signal noise. Employing more bits at the quantizer 

when there is more noise means the extra precision is not being used efficiently. 

Sampling at a higher rate with an extremely low bit-depth addresses this problem. 

Noise folding either becomes less prevalent, or in the oversampled case, is not present 

at all. Meanwhile, the burdens of higher-rate sampling are still relieved by the low 

bit-depth of the quantizer. 

CS ADCs: Disconnect the sampler from the quantizer. Sampling and 

quantization are carried out by two distinct hardware components in physical ADCs. 

Specifically, the sample and hold (S /H) component discretizes in time while the hard­

ware quantizer discretizes in amplitude. As previously noted, the quantizer is the 

main ADC bottleneck. Indeed, S /H components can operate accurately at extremely 

high speeds and low power, as opposed to the quantizer. We propose two new CS 

ADC architectures that take advantage of this insight. While previous CS ADC de­

signs use an off-the-shelf ADC at a low rate, we separate the two ADC discretization 

steps. The sampling components operate at a high rate while the quantizer oper­

ates at a low rate. We demonstrate that this yields new CS ADCs that avoid many 

problems associated with earlier designs. 

In this thesis we carefully explore the ideas described above. Along the way we 
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develop new theoretical frameworks for analyzing dynamic range and 1-bit CS, we 

develop new algorithms for sparse signal reconstruction, and we perform extensive 

simulations to demonstrate the validity of our claims. We now briefly describe in ever 

so slightly more detail what topics and results can be found in each chapter. 

1.1 Roadmap and Main Contributions 

For the remainder of this chapter in Section 1.2, we review and define the key compo­

nents and results of the CS framework that will be made use of later in this thesis. We 

cover sparse signal models and undetermined linear sensing models. We then move on 

to introduce a useful property of the matrix <I>, the restricted isometry property (RIP), 

for which robust signal reconstruction from many algorithms is guaranteed. We re­

view the convex optimization formulations that can be used to reconstruct sparse 

signals as well as greedy and first order algorithms that are often used in practice and 

will be adapted for our purposes. Finally we discuss the noise folding effect in these 

systems. 

In Chapter 2 we analyze the dynamic range of CS systems with finite-range 

uniform scalar quantizers. Our new contributions are as follows. We begin by defin­

ing a rigorous and deterministic notion of dynamic range. This enables us to avoid 

more heuristic dynamic range analyses that make assumptions about the signal (or 

measurement) distribution. We then go on to derive the dynamic range of a conven­

tional system and demonstrate that it reasonably similar to the more conventional 
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dynamic range definitions. The dynamic range of conventional systems provides a 

basis for comparison against CS systems. Thus, given our definition, we next derive 

the dynamic range for a large class of CS systems (those depending on the RIP of 

~ discussed in Section 1.2). Combining these results we can then claim that the 

dynamic range of CS systems is on the same order as that of conventional sampling 

systems. We follow up with a short discussion on the peak-to-average ratio (PAR) 

and how for some CS systems this is improved on average. 

We conclude the chapter with a review of the democratic property of random ma­

trices and explain how this can be exploited to further increase the dynamic range of 

CS systems [34]. We derive an analytical expression for the improvement in terms of 

the previous analysis. We experimentally verify the claims in the chapter and demon­

strate the improvement gained by both increasing the quantizer bit-depth as a func­

tion of decreasing measurement rate as well as employing the democratic saturation­

robustness techniques. A surprising empirical result leads us towards the philosophy 

espoused in the next two chapters: we should consider decreasing bit-depth and in­

creasing measurement-rate. 

In Chapter 3 we study 1-bit quantization for CS measurements. We begin by 

explaining how saturating all measurements corresponds precisely to 1-bit quanti­

zation. We then formally define the 1-bit framework as in [39] and explain several 

benefits of this framework. Our new contributions are as follows. First we provide 

optimal reconstruction bounds from 1-bit measurements from any mapping. We then 
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demonstrate that Gaussian <P (among a few others) will enable us to satisfy the pre­

vious bounds in the noiseless case. We next introduce a new property for 1-bit CS 

systems that we dub the Binary f.-Stable Embedding (BESE) and demonstrate how 

if a system satisfies this property, then robust reconstruction is guaranteed. We fur­

ther demonstrate that again Gaussian sensing systems satisfy this property with high 

probability and we derive the number of measurements required for this to hold. We 

then apply our results to formulate guarantees from noisy measurements and signals 

that are not strictly sparse. We next derive a new reconstruction formulation that 

extends the framework to be used not only in the fully saturated case, but can be 

applied to problems with arbitrary saturations, i.e., saturation-agnostic sensing. 

We continue on to more practical aspects of the 1-bit framework by introduc­

ing two new algorithms for signal reconstruction: Restricted-Step Shrinkage (RSS) 

and Binary Iterative Hard Thresholding (BIHT). For the former algorithm we give 

convergence guarantees and for the latter algorithm we discuss what problem it is at­

tempting to solve and why the reconstruction error performance may differ between 

the two. We additionally motivate the formulation of several convex reconstruction 

algorithms. We conclude the chapter and our contributions with an extensive suite of 

simulations, comparing the 1-bit algorithms against previously proposed algorithms 

and studying the performance in comparison with higher bit-depth uniformly quan­

tized CS systems. We also verify the validity of the saturation-agnostic approach. 

In Chapter 4 we explore the tradeoff between bit-depth and measurement rate. 



12 

We find that by considering signal noise, we expose a regime where 1-bit CS out­

performs more conventional CS systems. Our new contributions are as follows. We 

study the scenario where there is a fixed bit-budget, a scalar quantizer, and input 

signal noise. We begin by developing a theoretical bound on the reconstruction er­

ror from quantized CS measurements. We then show numerically that the minimum 

of of this bound is attained for lower bit-depths as the input measurement noise is 

increased. In fact, these simulations demonstrate that 1-bit CS outperforms con­

ventional CS when the input SNR is low enough. Thus, we can categorize CS into 

two compression regimes, corresponding to the input SNR: measurement compression 

(MC) when input SNR is high, and quantization compression (QC) when input SNR 

is low. The former finds application when measurements are expensive to sense and 

high bit-depths are inexpensive, while the latter finds application when measurements 

are inexpensive to sense and high bit-depths are expensive. 

In Chapter 5 we introduce two new CS architectures. First, we introduce the 

Compressive Multiplexer ( CMUX) that can be used to acquire signals from a multi­

channel signal model. We discuss the benefits of this design over previous designs. 

We also discuss several algorithms that can be used with this system due to its unique 

structure. Second, we introduce the Polyphase Random Demodulator (PRD), a new 

take on a more "classical" system the Random Demodulator (RD) [18]. The key 

insight driving this design is that the S /H hardware can be separated from the quan­

tizer, providing significant gains over the RD in calibration and computer modeling 
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for reconstruction. We also discuss the relationship between the CMUX and the PRD. 

We conclude this chapter with simulations demonstrating the validity of the CMUX 

and PRD designs. 

Without further delay, we now throw down a plain introduction to vanilla CS. 

1.2 Compressive Sensing ( CS) Toolkit 

1.2.1 Signal and sensing models 

In the CS framework [14, 15), we acquire a signal x E ~N via the linear measurements 

y = q>x + e, (1.2) 

where the underdetermined matrix q> E ~MxN models the physical sampling system, 

y E ~M is the vector of measurements acquired, and e E ~M is a measurement noise 

vector. 

In the most basic CS setup, we are interested in K-sparse signals, i.e., x E EK 

where EK := {x E ~N : llxllo := lsupp(x)l ::::; K}.2 However in practice, signals 

may not be strictly sparse but rather may contain many small coefficients that do 

not contribute considerable energy to the signal, or when sorted by magnitude, the 

signal coefficients decay with some power law, i.e., have elements such as Xn <X lni-I/p 

for p > 1. Such signals that can be well-approximated by just K largest in mag­

nitude coefficients are called compressible signals. We will denote the best K-term 

2 ll·llo denotes the lo quasi-norm, which simply counts the number of nonzero entries of a vector. 
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approximation of x as XK· Finally, in many cases x will not be canonically sparse; 

instead it can be sparse is some orthonormal transform basis W. In this case we write 

x = Wa where a E ~K· Since we still sense x, the measurements can be written as 

y = <I>\lla + e, and thus the matrix <I>\11 is used in reconstruction when solving for a 

sparse estimate a. Unless otherwise noted, for the remainder of this thesis without 

the loss of generality, we fix W =I, the identity matrix, implying that x =a. 

Recently there has been significant interest in exploiting stronger signal models. 

In some cases, there is additional structure known a priori about the non-zero coef­

ficients. For instance, model-based signal reconstruction algorithms have been pro­

posed for the case when some explicit relationship between the support of the non-zero 

coefficients is known [24]. This has been used for recovery of spectrally sparse sig­

nals [22] and neural spike trains [23]. Another popular signal model has been that of 

group-sparsity where the non-zero coefficients are clustered together [40, 41]. These 

stronger models further empower the CS framework to produce more accurate esti­

mates with the same set of measurements but are primarily beyond the scope of this 

thesis. We only mention these models since it is possible that many of the methods 

described in this thesis can be extended to make use of these models and could be 

considered in practical instantiations. 
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1.2.2 The restricted isometry property (RIP) 

Not all underdetermined sensing systems ci> are admissible. For instance, it is clear 

that if any signal x E ~K lies in the nullspace of ci>, then it can never be recovered 

with bounded error. While ci> can sometimes be analyzed in conjunction with a 

reconstruction algorithm to provide theoretical guarantees (16, 18, 42, 43], we can 

study a more generic property of ci>, the so-called restricted isometry property (RIP); 

the sufficient condition that the norm of the measurements is close to the norm of 

the signal for all sparse x, i.e., 

(1- 8)llxll~::; llci>xll~ ::; (1 + 8)llxll~, (1.3) 

for all x E ~K (44]. As a minimal sanity check, notice that under this definition no 

sparse signal will be in the nullspace of ci>. In words, the RIP requires ci> to act as 

an approximate isometry on the set of K-sparse vectors. Remarkably, it has been 

shown that if we set M ~ C6Klog(N/K) (where C6 is some constant) and draw the 

elements of ci> from a sub-Gaussian distribution, then these matrices will indeed satisfy 

the RIP with high probability (45, 46]. Indeed, practical measurement systems with 

significantly more structure may also be admissible. For instance, hardware inspired 

designs have also been shown to hold this property (18, 47-50]. We will discuss some 

of these systems as well as some new architectures in Chapter 5. 

The RIP can be expressed in general terms, as a 8-stable embedding. Let 8 E (0, 1) 
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and X, S c JRN. We say the mapping cp is a 8-stable embedding of X, S if 

(1.4) 

for all x E X and s E S. The RIP requires that (1.4) holds for x ± s E EK; it 

is a stable embedding of sparse vectors. Expressing the RIP in this way enables 

further interpretation of this property. Specifically, it is clear from (1.4) that the RIP 

ensures that the distance between any two length-N K -sparse vectors is preserved 

when they are mapped down to the lower dimensional space. This interpretation will 

be important whenwe study 1-bit quantized CS measurements in Chapter 3. 

1.2.3 Signal reconstruction via convex optimization 

To reconstruct an estimate x from y when there is no noise, i.e., llell2 = 0, we could 

naively solve for the sparsest signal that satisfies (1.2), 

x +- argmin llxllo s.t. y = cpx; (£0-min) 
xEJRN 

however, this non-convex program exhibits combinatorial complexity in the size of 

the problem [51]. Instead, we solve Basis Pursuit (BP) by relaxing the objective in 

(£0-min) to the £1-norm 

x +- argmin llxll1 s.t. y = cpx; (BP) 
xEJRN 

the result is a convex, polynomial-time algorithm [52]. A key realization is that, under 

certain conditions on cp (e.g., the RIP), the BP solution will be equivalent to that 
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of (fo-min) [14]. This is remarkable since we seemingly have solved a combinatorial 

problem in polynomial time. Indeed, this is a key result that generated significant 

interest during the nascent years of CS. 

The RIP suffices to ensure that a variety of other convex optimization algorithms 

can successfully recover any sparse or compressible signal from noisy measurements. 

In particular, for bounded errors of the form llelb ~ €, the convex program Basis 

Pursuit Denoising (BPDN) 

x +- argmin llxlh s.t. II<Px - Yll2 ~ € 
xeJRN 

(BPDN) 

can recover a sparse or compressible signal x with bounded error. The following 

theorem makes this notion precise by bounding the recovery error of x with respect 

to the measurement noise norm, denoted by €, and with respect the best K-term 

approximation x K. 

Theorem 1 (Theorem 1.2 of [44]). Suppose that <P satisfies the RIP of order 2K 

with 8 < J2- 1. Given measurements of the form y = <Px + e, where llell2 < €, the 

solution to (BPDN} obeys 

(1.5) 

where 

G - 4v'"f+1 
o-1-(J2+1)8' 

1+(J2-1)8 
c1 = 2 ( 10 ) . 1- v2+1 8 

(1.6) 

Many other convex formulations for reconstruction from noisy measurements have 

been proposed with different robustness guarantees depending on the noise model of 
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e. [53, 54]. Furthermore, many fast algorithms have been developed to solve these 

problems [26-28, 55]. 

We conclude this subsection on convex reconstruction algorithms by mentioning 

another extremely popular reconstruction formulation, known as the LASSO [56], 

x +-- argmin ~IIY- <Pxll~ + .AIIxlh· 
xEJRN 2 

(LASSO) 

For any E in (BPDN), there is an appropriate choice of .A such that the solutions to 

(BPDN) and (LASSO) are equivalent [57, 58]. A wide range of algorithms have been 

design to solve this problem rather than (BPDN) [25, 59]. 

Although (LASSO) can be thought of as a relaxation of (BPDN) where the con-

straints have been moved into the objective function, the LASSO actually has its 

roots in statistical regression and is often interpreted as solving the least squares 

problem with a sparse penalty, or .e1-regularizer. It has long been known in the statis-

tics community that the .e1 penalty biases in favor of sparse solutions, but a complete 

analytical framework for signal reconstruction with deterministic guarantees such as 

those given in Theorem 1.5 are a new result of the CS framework. 

1.2.4 Signal reconstruction via greedy and first order algorithms 

While convex optimization programs such as (BPDN) are powerful methods for CS 

signal recovery, there also exist a variety of alternative algorithms that are commonly 

used in practice and for which performance guarantees comparable to that of Theorem 

1 can be established. In particular, greedy algorithms such as CoSaMP [29] and first 
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Algorithm 1: Prototype CS greedy algorithm 
so Initialize 

Set initial solution x0 := 0 

Set iterations:= 0 

while not converged do 

s1 Form signal proxy 

s2 Update coefficient support set n 

e.g., add location of largest element in hs+l to 0 (in OMP [16, 61]) 

S3 Update coefficient estimate 

e.g., via pseudo-inverse :rs+IIn := <l>by8 

S3 Subtract current estimate from measurements 

S4 Update iteration count 

Sets:= s + 1 

order optimization algorithms such as iterative hard thresholding (IHT) [30, 60] are 

known to satisfy similar guarantees under slightly stronger assumptions on the RIP 

constants. We briefly describe a prototypical greedy CS algorithm and IHT since 

algorithms in later chapters will inspired by these methods. 

Greedy Algorithms. We call an algorithm greedy if it makes decisions that are 

locally optimal in each iteration. While greedy algorithms are popular because they 
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are fast and effective in practice, under certain circumstances these algorithms can 

produce solutions that are also globally optimal [61]. Algorithm 1 summarizes the 

general steps employed by a CS greedy algorithm, such as CoSaMP. The basic steps 

are as follows. Form a signal proxy, usually by computing hs+l = 4>T y8 at iteration s. 

This vector looks like a noisy version of the signal and enables fairly accurate detection 

of signal support, of course depending on llell2 and K. We next refine our support set 

estimate n. In orthogonal matching pursuit (OMP) [16, 61] this is done by simply 

selecting the support of the single largest in magnitude element of hs+l and adding 

it to the support set, while in CoSaMP, 2K elements are selected simultaneously and 

added to support set. In the case of CoSaMP this set is later pruned. After updating 

the support estimate, we refine the coefficient amplitude estimates. Typically to do 

this, the optimal linear estimator, least squares is performed 

xln f- min~ IIY - 4>nxln II~, 
xlo 2 

(1.7) 

where 4>n denotes the submatrix of 4> formed by selecting the columns of 4> according 

to the index set n and similarly xln represents the corresponding subvector of x. 

Thus, the estimator is only applied to the non-zero coefficients and the resulting 

linear system is overdetermined. This can be computed via 

xslnc = 0, (1.8) 

where 4>n denotes the submatrix of 4> formed by selecting the columns of 4> according 

to the index set n, X8 ln is the corresponding subvector of X8 ' nc is the complement 
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Algorithm 2: Iterative Hard Thresholding (IHT) [30, 60) 
so Initialize 

Set initial solution x0 := 0 

Set iterations:= 0 

while not converged do 
s1 Update estimate 

s2 Hard threshold - select largest K 

sa Update iteration count 

Sets:= s + 1 

set ton, and t denotes the Moore-Penrose pseudo-inverse. This can also be computed 

using an algorithmic technique such as the conjugate-gradient method [62). Finally, 

once the coefficients supports and values are estimated, we subtract their contribution 

from the measurements, ys+l = Y8 - <I>nx5 1n· 

Iterative Hard Thresholding (IHT). Algorithm 2 summarizes the IHT algo-

rithm. In the first step we add the proxy h (from the greedy algorithm) to the current 

signal estimate resulting in a8+1 = x 8 + cpT(y- Cflx8 ), at iterations. We then simply 

threshold this estimate by setting all elements of as+l to zero except for the largest 

K elements via the function rJK(·). The first step is effectively a gradient descent for 

the function ~IIY- iPxll~· Thus, IHT for CS can be thought of as trying to solve the 
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problem 

x ~ argmin ~IIY- «Pxll~ s.t. llxllo = K. 
xEJRN 

(1.9) 

Other first order algorithms such as approximate message passing (AMP) proceed in 

a similar manner, sometimes adding additional terms to the first step and adapting 

how many coefficients are selected in each iteration [31]. 

1.2.5 Oracle-assisted signal reconstruction 

As we saw in the greedy algorithm, CS reconstruction can be thought of as consisting 

of two steps: first finding the non-zero coefficient locations (the support) and then 

estimating the coefficient values. If we can correctly identify the true signal support, 

then the optimal linear estimate for coefficient values can be computed via least 

squares. Indeed, if an oracle were to provide the true support n, then no linear 

CS reconstruction algorithm can perform better than (1.8). Thus, reconstruction 

with known signal support is sometimes called oracle-assisted reconstruction [38, 53]. 

Some of our analysis will be primarily in terms of the performance of this best-case 

reconstruction algorithm. 

1.2.6 Noise folding 

Signal noise is amplified by underdetermined linear measurement systems [36]. Specif-

ically, it has been shown that if n is white Gaussian noise with variance a~, then for 

CS measurement systems, «Pn is also white, Gaussian, and each noise measurement 
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has increased variance u~n ~ ~u;_ [37, 38]; this increase in noise power is often called 

noise folding. It can be shown that for Gaussian noise, the oracle reconstruction error 

is proportional to u~n' thus the reconstruction incurs a penalty due to the noise fold-

ing. Roughly speaking, this result implies that during reconstruction we lose about 

3dB of signal-to-noise ratio (SNR) as the number of measurements decreases by half. 

The key series of results that make this so are as follows. 

Suppose that z = Cf>x-y, where z is a zero-mean random vector with uncorrelated 

(white) entries, each having variance u;. Furthermore suppose that if> has the RIP 

of order K, and that x is K-sparse. Then Theorem 4.1 of [38] demonstrates that 

oracle-assisted reconstruction will have expected error 

Ku; < JE(IIx- xll2) < Ku;. 
1+8- 2 -1-8 (1.10) 

A key component of our analysis in Chapter 4 will be understanding the variance 

of the noise term z that arises from quantized noisy measurements. The expression 

(1.10) then gives the intuition that the expected reconstruction error behaves on the 

order of the variance of the error per measurement u;. 

The variance u;_ of the signal noise can be easily related to the variance of the mea-

sured noise u~n. If n is white with mean zero and variance u;_, and if> has orthonormal 

rows, i.e., cpcpT = ~IM,3 then it is straightforward to show that the measured noise 

3The so-called tight frame condition q,q,T = fc!M is not overly restrictive, since for any RlP 

matrix U, a matrix that has both the same row-space as U and the tight frame condition can be 

derived from U (38). 



24 

is also white and zero mean and has variance 

(1.11) 

Note that the measured noise is only uncorrelated (i.e., white) when M < N; indeed, 

the condition <I><I>T = ~IM can only hold when M ~ N. 

In [38], the authors combine the results of (1.10) and (1.11) to obtain a bound on 

the oracle-assisted reconstruction error due to noise folding. In Chapter 4 we will take 

a similar approach, however we will additionally include the effects of quantization. 

Furthermore, because our quantization error is not necessarily uncorrelated, we also 

generalize (1.10) to obtain an upper bound on the oracle reconstruction error with 

correlated measurement noise. 
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Chapter 2 

Quantization and Dynamic Range in Compressive 
Sensing 

Practical, finite range quantization imposes a finite dynamic range on a system, i.e., 

there is an intimate relationship between the scale and the precision of the signal 

that can be represented. A fundamental advantage of CS is that it enables a sig-

nificantly lower sampling rate for sparse signals, which in turn enables the use of 

higher-resolution ADCs [7). By exploiting this fact, a CS acquisition system should 

be able to provide a significantly larger dynamic range than a conventional system. 

In this chapter,1 we justify this claim in two ways. First, we define and review finite 

range scalar quantization. Second, we provide a theoretical justification that the dy-

namic range of a conventional CS systems is on the same order as for a conventional 

ADC. We can then conclude that using a lower rate ADC enables higher bit-depth 

quantizers and thus the dynamic range is increased. Third, we demonstrate that be-

cause a large class of randomized CS systems are democratic, we can in fact increase 

the dynamic range of some CS systems in unconventional ways. 

1This chapter includes work done in collaboration with Mark Davenport, John Treichler, Petros 

Boufounos, and Richard Baraniuk [34, 38]. 
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Figure 2.1 : (a) Midrise scalar quantizer. (b) Finite-range midrise scalar quantization 
function QB with saturation level G and quantization interval .6. = 2-B+lG. 

2.1 Finite-Range Scalar Quantization 

In practice CS measurements are mapped to bits via a physical quantizer. A more 

precise model of the CS acquisition step {1.2) might be written as 

YQ = QB(~(x + n) +e), {2.1) 

where QB : R ~ 2l is a B-bit scalar quantization function {applied element-wise 

in {2.1)) that maps real-valued CS measurements to the discrete alphabet 2l with 

l2tl = 2B. We have additionally included signal noise n E JRN that we will discuss 

in more detail in Chapter 4 and will be assumed to be zero unless otherwise noted. 

Since in a well-designed hardware system the primary source of measurement noise 

derives from quantization and for clarity of exposition, we will also assume llell 2 = 02 

for the remaining chapters. 

2The general trends presented in this thesis remain unchanged when llell2 > 0, unless otherwise 

noted. 
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In practice, quantizers have a finite dynamic range, dictated by hardware con­

straints such as the voltage limits of the devices and the finite number of bits per 

measurement of the quantized representation. Thus, a finite-range quantizer repre­

sents a symmetric range of values lgl < G, where G > 0 is known as the saturation 

level [63]. Values of g between -G and G will not saturate, thus, the quantization 

interval is defined by these parameters as .6. = 2-B+lG. In this chapter, without 

loss of generality we assume a midrise B-bit uniform quantizer, i.e., the quantization 

levels are Qk = .6./2 + k..!l, where k = -2B-l, ... , 2B-l -1. Note that if lgl :::; G, then 

we have that lg- QB (g) I :::; .6./2, but if lgl > G then lg- QB (g) I= lgl- (G- .6./2). 

Figure 2.1(a) depicts the mapping performed by a midrise quantizer with interval .6. 

and Figure 2.1(b) depicts a finite range variant with saturation level G. 

The quantizer induces two forms of error on the measurement: quantization and 

saturation (or clipping) error. The former is due to the finite precision ofthe quantizer 

and the latter is due to the finite range of the quantizer. One way to account for 

quantization error is to treat it as bounded noise and employ robust reconstruction 

algorithms. Alternatively, we might try to reduce the error by choosing the most 

efficient quantizer for the distribution of the measurements. Several reconstruction 

techniques that specifically address CS quantization have also been proposed [34, 64-

69]. Saturation error is usually avoided by scaling the measurements such that few or 

no saturations occur. We will see shortly that in CS there are alternative techniques 

for dealing with saturations. 
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2.2 Dynamic Range of CS-Based Acquisition Systems 

We begin our analysis by first providing a rigorous and general definition of dynamic 

range. Roughly, we define the dynamic range as the ratio of the maximum to the 

minimum signal power levels that can be handled with "full fidelity" . 3 In order to 

make this notion precise, as previously stated, we will ignore the effects of any noise 

or nonlinearities from the other ADC components and examine only the impact of 

quantization. This is a fair assumption, since a key goal in the design of an ADC is 

that the quantizer be the only component that limits the device's dynamic range. 

Our definition of dynamic range has two properties that aid us in the analysis of 

CS systems: ( i) the dynamic range does not depend on a stochastic quantization error 

model, and ( ii) any reduction of quantization error yields a corresponding improve­

ment in dynamic range, i.e., the dynamic range of the quantizer effectively determines 

the dynamic range of the system. With this definition in hand, we examine quantiza­

tion in both conventional and CS systems and provide lower bounds on the dynamic 

range of each. Our key finding in this section will be that, all things being equal, 

the dynamic range of a CS acquisition system is generally no worse than that of a 

conventional system. Thus, since CS enables lower sampling rates for sparse signals, 

we can employ a higher-resolution ADC and attain a larger dynamic range. 

3In this section we are analyzing the CS-based receiver's dynamic range as a system. This should 

not be confused with the dynamic range of a signal, which in our framework could be quantified as 

the ratio of the largest to smallest entry in x. 
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2.2.1 A deterministic approach to dynamic range 

To formulate our definition of dynamic range, we first analyze the error induced by 

the quantization of x. For a given x, we define the reconstruction SNR (RSNR) as 

(2.2) 

where xis the output of our CS reconstruction algorithm and the signal-to-quantization 

noise ratio (SQNR) of the quantizer as 

(2.3) 

We make the dependence of the SQNR on x explicit, since our definition of dynamic 

range will be based on how the scaling of x affects the SQNR. First, however, we 

establish a practical bound on the best SQNR attainable for a given G, ~'and x. 

Lemma 1. Let x E JRN be arbitrary. There always exists a f3 > 0 such that 

1 (2G) 2 

SQNR(f3x) ~ 'Y(x)2 --;:;: , (2.4) 

where 

(2.5) 

The proof of this lemma can be found in Appendix A.l. 

The quantity 'Y in (2.5) is known as the peak-to-average ratio (PAR) of x. Also 

known as the crest factor or loading factor [70], it is a measure of the ratio between 

a signal's "average energy" to its peak. 
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While the expression in (2.4) may look foreign to some, this bound is similar to 

standard results for peak SQNR. Recall that 2G/!}. = 2B. Thus, if we express (2.4) 

in dB, then we observe that by setting {3 appropriately we can obtain 

SQNR(f3x) > 20Blog10(2)- 20log10('y(x)) ~ 6.02B- 20log10('y(x)). (2.6) 

This corresponds to the well-known result that the peak SQNR grows by approxi­

mately 6dB per quantizer bit [70]. Furthermore, although the SQNR bound in (2.6) 

provides only a lower bound on the SQNR, it generally agrees with the results in the 

literature that assume probabilistic models on the signal x and/ or the quantization 

noise. For example, a more conventional probabilistic analysis would assume that 

the quantization noise has a uniform distribution. In this case, one can derive the 

expression 

SQNR({3x) ~ 6.02B- 20log10('y(x)) +4.77, 

where the additive constant 4. 77 reflects the improvement made possible over our 

worst-case bound by placing a uniform distribution on the quantization noise [70]. 

For our purposes below, a lower bound on the SQNR is sufficient. We view the de­

terministic nature of our bound as a strength allowing us to avoid any questionable 

assumptions concerning the quantization noise distribution. It is important to note 

that by considering only the deterministic, worst-case error as in (2.6), the result­

ing expressions will generally differ from more standard results based on uniformly 

distributed quantization noise by 4.77dB. 

We now show how we can use the SQNR to offer a concrete definition for dynamic 
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range. Specifically, suppose that we are given a target SQNR C to achieve. 4 We aim 

to identify the range of scalings f3 of a given signal x for which SQNR(f3x) 2::: C. More 

formally, we can always ensure that SQNR(f3x) 2::: C for all f3 E [f3cin(x),f3cax(x)], 

where f3cin(x) and f3cax(x) are scalars satisfying 

(2.7) 

In words, f3cax(x) and f3cin(x) define a range of scalings over which we achieve the 

desired SQNR C. 

We define the dynamic range of a conventional acquisition system as 

(2.8) 

Hence, the dynamic range of a conventional ADC is the ratio of the maximum input 

scaling to the minimum input scaling of x such that for both scalings the SQNR is 

at least C. 

At first sight, (2.8) may appear to be a rather complicated way of describing what 

is at heart an elementary concept - dynamic range is often simply quantified as the 

4In our analysis we consider C E (1,(2G/D.)2h(x)2] to ensure that our definition leads to a 

meaningful notion of dynamic range. Specifically, once we fix D. and G, there is an upper limit 

on the SQNR we can hope to achieve, and for C beyond that limit the dynamic range will be ill-

defined. Similarly, if we set C = 1 then one can easily achieve infinite dynamic range by quantizing 

all signals to zero. However, for the range of C considered we can always set {3 = G/ llxlloo will 

satisfy SQNR({Jx) ;::: C (see the proof of Lemma 1). 
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ratio of the largest to smallest quantization levels. However, the strength of this def­

inition is that it can easily be extended to quantify the dynamic range of a CS-based 

ADC in which the measurement and reconstruction processes obscure the impact of 

finite-range quantization on the final RSNR as given by (2.2). Specifically, given an 

input signal x we apply a reconstruction algorithm to the quantized CS measurements 

QB (y) = QB (<Px) to obtain a reconstruction x. We wish to understand the impact 

of this quantization on the resulting RSNR of x. While it might not otherwise be im­

mediately apparent, (2.8) suggests a natural way to extend the definition of dynamic 

range to the CS setting by simply replacing RSNR with SQNR, i.e., defining {:J(Jin(x) 

and {:J(Jax(x) by considering the range of scalars {3 such that RSNR(f:Jx) 2: C. Note 

that for a conventional ADC, since RSNR = SQNR, the definition remains unchanged 

from (2.8). We now analyze the dynamic range of a conventional acquisition system 

in Section 2.2.2 and then extend this analysis to the CS setting in Section 2.2.3. 

2.2.2 Dynamic range of a conventional ADC 

We now provide a simple bound on the dynamic range DRc(x) for a conventional 

ADC. 

Theorem 2. The dynamic range of a quantizer as defined by {2.8} is bounded by 

DRc(x) 2: C{(x~2 _ 1 ( (2:) 2 - 1) , (2.9) 

where {(x) is defined as in {2.5}. 
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The proof of this Theorem can be found in Appendix A.2. 

For large B, the "-1" term in (2.9) will be negligible, and so by expressing (2.9) 

in dB we obtain 

DRc(x) ~ 6.02B -10log10 (Cf'(x)2 -1). (2.10) 

This coincides with the familiar rule of thumb that just like the SQNR in (2.6), ADC 

dynamic range increases by 6dB per quantizer bit [70]. Note, however, that we again 

have an additive constant that here depends both on the targeted SQNR C as well 

as the PAR l'(x). This is again expected, since a more ambitious required SQNR is 

more difficult to achieve and since a signal with higher PAR is harder to quantize, 

which both lead to a more limited dynamic range. We revisit the issue of PAR below 

in Section 2.2.4. 

In summary, our definition of dynamic range (2.8) yields a reasonable expression 

(2.9) for a conventional ADC that coincides with the traditional "folk wisdom" on 

dynamic range. 

2.2.3 Dynamic range of a CS-based acquisition system 

Thus far we have proposed a rigorous and general definition of dynamic range and 

analyzed a conventional ADC in this context. We now extend the dynamic range 

analysis to the CS case. Our argument proceeds by first showing that we can always 

relate RSNR(,Bx) to SQNR(,By) and then relate SQNR(,By) to SQNR(,Bx). This allows 

us to argue that whenever SQNR(,Bx) > C, we have that RSNR(,Bx) > C' for some 
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C'. In other words, whenever we can achieve a certain SQNR C by directly quantizing 

x, a CS-based system can also achieve the RSNR C' (where C' is typically comparable 

to C). Thus, the dynamic range of these systems will be essentially the same. We 

begin by relating RSNR(,Bx) to SQNR(,By). 

Lemma 2. Suppose that y = <Px, where x is K -sparse and <P satisfies the RIP of order 

K with constant 8. Let x denote the output of applying a reconstruction algorithm 

to the quantized measurements Q 8 (y) which satisfies a reconstruction guarantee like 

that given in Theorem 1, i.e., 

Then 

RSNR(,Bx) > SQNR(,By) 
- (1 + 8)~~ 

(2.11) 

(2.12) 

Proof. Without loss of generality, suppose that ,8 = 1. From the RIP we have that 

llxll2 > II<Pxll;. 
2 - 1+8 

Combining this with (2.11), we obtain the bound 

RSNR(x) = llxll; > IIYII; = SQNR(y) 
llx- xll; - (1 + 8)~~ IIQs (y)- Yll; (1 + 8)~~' 

which completes the proof. 0 

In words, the RSNR(,Bx) is lower bounded by a constant multiple of the SQNR(,By). 

This means that we can expect the RSNR to follow the same trend as the SQNR of 



35 

the measurements. Thus, we can restrict our analysis and comparisons to the mea-

surement SQNR. 

We next aim to compare SQNR(,By) here to SQNR(,Bx) from Section 2.2.1. The 

following lemma shows that we can bound SQNR(,By) in a manner similar to how 

Lemma 1 bounds SQNR(,Bx). 

Lemma 3. Suppose that y = ~x, where x is K -sparse and ~ satisfies the RIP of 

order K with constant 8. Then there exists a ,B such that 

SQNR(,By) > (1 - 8) N llx1!!,_1_ (2G) 2
• 

- M IIYII!, 'Y(x) 2 D.. 

Proof. We begin by noting that from Lemma 1 we have that for ,B = Gl IIYIIoo we 

have that 

Since ~ satisfies the RIP we have that 

Thus we have that 

IIYII~ I M > (1 - 8) llxll~ = (1 _ 8) N llxll!, ( llxll~ IN) = (1 _ 8) N llxll!, _1_ 
IIYII!, - IIYII!, M IIYII!, llxll!, M IIYII!, f'(X) 2' 

which establishes the lemma. 0 

Thus, CS has the same 6dB per quantier bit behavior as in (2.6) with 

( ../(1- 8)! llxlloo) 
SQNR(,By) ~ 6.02B- 20log10('Y(x)) + 20log10 I!YIIoo , (2.13) 
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the only difference being an additional additive constant that we will analyze in more 

detail in Section 2.2.4. 

We are now ready to compute the dynamic range of the CS acquisition system. We 

retain the same definition of dynamic range as in (2.8), but with {3(gax(x) and /3(gin(x) 

defined by substituting the SQNR constraint with the requirement that RSNR(/3x) > 

C. In this setting, we can repeat the same analysis as in Theorem 2 to obtain 

where 

DRc(x) ~ C''Y(x~2 _ 1 ( ( 2~) 2 - 1) , 

C' = 1-8 N !lxll!, 
(1 + 8)K~ M IIYII!, 

Thus, when measured in dB the dynamic range is affected by CS only through an 

additive constant. 

In practice, we can take significant advantage of the fact that, all things being 

equal, a CS system has the same dynamic range as a conventional Nyquist ADC. 

Moreover, because the ADC employed in a CS-based system operates at a significantly 

lower rate than would be required in a conventional system, a slower quantizer with 

higher bit-depth can be employed [7]. If the gain in effective bits is large, then the 

6dB per bit improvement in dynamic range will dominate the additive constant and 

result in a substantial increase in the CS system's dynamic range as compared to a 

conventional ADC. We explore this idea empirically in Section 2.4. 
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2.2.4 Impact of CS on the PAR 

We conclude this section on dynamic range with one last note regarding the mollifying 

effect of a CS acquistion system on the PAR. All of our expressions for the SQNR or 

RSNR as well as the dynamic range of a system depend in some way on the PAR of 

the signal x or the measurements y, depending on the context. In practice, the PAR 

has a significant impact on the resulting expressions. However, the PAR of a signal 

x can vary widely in the range 

1 ~ 1(x) ~ VN, (2.14) 

which follows from standard norm inequalities. As an example, combining (2.14) 

with the lower bound on the SQNR of a conventional ADC in (2.6) means that in the 

best case (which corresponds to an all-constant vector x) the bound in (2.6) reduces 

to 6dB per bit growth in SQNR with no offset, whereas in the worst case (which 

corresponds to a K = 1 sparse x) we incur an additive penalty of -10log10(N) dB. 

As the dimension N grows this penalty can become large, reflecting the fact that 

as the number of samples grows it becomes possible to construct a signal that has 

ever larger PAR. This translates to a similarly wide range of possible values for the 

additive penalty in the bound on dynamic range in (2.10). 

Our aim here is to understand how CS impacts PAR. Clearly, we expect the 

PAR of the CS measurements y to differ from that of the signal x since each mea­

surement typically consists of a weighted sum of the entries of x. Intuitively, such 
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measurements have the potential to average out some of the "spikes" in x resulting 

in a potentially improved PAR. This appears in the analysis in the expression for 

SQNR(f3y) in (2.13), which shows that SQNR(f3y) can be improved over SQNR(.Bx) 

in (2.6) if ~ llxll!, I IIYII!, is somewhat larger than 1. 

In the worst-case, the quantity ~ llxll!, I IIYII!, can be a great deal smaller than 

1; however, on average we are likely to do significantly better. As an illustration, 

we describe what can be said when <I> is a matrix with i.i.d. ±11.../M (Rademacher) 

entries. 

We begin with the worst-case. By combining the the Cauchy-Schwartz inequality 

with standard lp-norm inequalities, we have that for all j, IYil ::; ~ llxlloo. Thus we 

obtain 

N llxll!, M ---->-
M IIYII!,- N" 

Hence, in the worst-case 

( vf(l- <>)~ llxlloo) (N) 
20log10 IIYIIoo ~ -10log10 M , 

which corresponds to an SQNR loss of 3dB per octave increase in the subsampling 

factor. However, this bound will be achieved only when xis both constant magnitude 

and has elements with signs exactly matching one of the (randomly chosen) rows of <I> 

- a highly unlikely scenario. Furthermore, this bound makes no use of the "dithering" 

effect promoted by the randomized measurements; a grave omission indeed. Towards 

this end, we next consider a probabilistic bound to see that we can typically obtain 

better performance. 
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Lemma 4. Suppose that <P is chosen with i.i.d. entries with variance 1/M drawn 

according to any strictly sub-Gaussian distribution. Then 

N llxll!, > l(x) 2 

M IIYII!, - 4log(M) 

with probability at least 1- 2/M. 

(2.15) 

Proof. By combining the union bound (over M measurements) with standard tail 

bounds on a strictly sub-Gaussian distribution, we obtain 

( Mt2 ) lP (IIYIIoo > t) ::; 2M exp - 2 . 
2llxll2 

Thus, the probability that (2.15) does not hold is bounded by 

2M ex (- 4M~log(M) llxll!,) = 2M ex (- 2log(M) llxll!,) 
p 2{(x)2 llxll~ p l(x)2 llxll~ /N 

which establishes the lemma. 

2 
= 2exp (log(M)- 2log(M)) = M' 

D 

Thus, in practice we expect our bound for SQNR(y) in (2.13) to differ from our 

bound for SQNR(x) in (2.6) only by a factor of 1(x)2 /4log(M). Recalling our bound 

on 1(x) we have that 

1 1(x)2 N 
4log(M)::; 4log(M)::; 4log(M). 

Hence, for x with small PAR, we can expect a potential loss in SQNR when compared 

to direct quantization of x, while for x with moderate or large PAR we can actually 

expect a significant improvement. 



40 

Finally, we can use Lemma 4 to approximate (2.13) with high probability as 

SQNR(,By) ~ 6.02B- 20log10 (4log(M)/V'f=8), 

which implies that CS allows us to essentially eliminate the negative impact of high 

PAR signals. This is because the randomized measurement procedure of CS will, 

with high probability, produce measurements having a PAR that is completely inde­

pendent of the input signal's PAR. For high PAR signals, this results in a substantial 

improvement. 

2.3 Liberating Dynamic Range via Democracy 

As previously explained, the limited dynamic range of the system is induced by both 

the precision and the finite range of the quantizer. An example of how limited dynamic 

range presents a design challenge in practice is as follows. Error due to saturation 

is typically considered more detrimental than the error due to quantization. Thus 

the naive approach to dealing with saturation is to scale down the amplitude of the 

signal or its measurements so that saturation never or very rarely occurs. This is 

the approach pursued in many conventional sensor systems; a typical rule of thumb 

used with communication system ADCs suggests that one reduce the signal amplitude 

until only 63 in one million samples saturates [32]. Unfortunately, scaling down the 

signal amplitude proportionately scales up the amount of quantization noise. 

Fortunately, we can exploit the so-called democracy property exhibited by many 

CS systems. Roughly, this property explains that each measurement contains about 
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the same amount of information as any other measurement. Said another way, it 

is possible to reconstruct sparse signals from any subset of measurements, subject 

to only a small penalty in reconstruction error. This means that if a measurement 

saturates with significant error, we may incur less reconstruction error by simply 

discarding it. 

In [34, 71], the authors demonstrated that indeed rejecting saturated measure­

ments can lead to improved performance. Interestingly, these results concluded that 

the best performance in these systems is achieved when the quantizer range is set 

low enough to induce a significantly non-zero saturation rate. This is due to the fact 

that as the quantizer range G decreases (and thus saturation rate increases), the error 

due to quantization on the remaining measurements decreases since the quantization 

interval decreases, as expressed by .6. = 2-B+IG. Furthermore, the authors found 

that the amount of saturation allowed is determined by the sparsity of signal. The 

implication is clear: the dynamic range of these democratic systems is limited by the 

complexity of the signal, not the range of the quantizer. 

In this section we review the democracy property and some of its implications. We 

review two reconstruction approaches for dealing with saturation. We then discuss 

how these approaches lead to increased dynamic range. The approaches detailed in 

this section will provide significant motivation the ideas and methods found in the 

next chapter. 

We briefly establish some notation that will prove useful for the remainder of this 
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chapter. Let r C {1, 2,, ... , M}. By cpr we mean the 1r1 x M matrix obtained by 

selecting the rows of cp indexed by r. Alternatively, if A c {1, 2, ... , N}, then we use 

cpA to indicate theM x IAI matrix obtained by selecting the columns of cp indexed by 

A. Denote the vector of unsaturated measurements as yu of length rot. The matrix 

cpU is created by selecting the rows of cp corresponding to the elements of yu. 

2.3.1 The democratic caucus of random matrices 

We begin by establishing a strong notion of the democratic property of a matrix cp 

as in [34, 35, 46]. 

Definition 1. Let cp be an M x N matrix, and let rot ~ M be given. The matrix cp 

is (rot, K, 8)-democratic if, for all r such that lr! ~ rot, the matrix cpr satisfies the 

RIP of order K with constant 8. 

In words, this definition explains that for any RIP matrix cp, any subset of rows 

of cp will satisfy the RIP, with perhaps a different constant 8. 

It is possible to show that certain randomly generated matrices will be (rot, K, b)­

democratic. The following theorem restates a result of [34, 35, 46] for democratic 

Gaussian matrices, but the analysis can be extended (with different constants) to the 

more general class of sub-Gaussian matrices (see methods in [46]). 

Theorem 3. Let cp be an M x N matrix with elements ¢ii drawn according to 
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N(O, 1/M) and let VJl:::; M, K < VR, and o E (0, 1) be given. DefineD= M- VR. If 

(N+M) M = C1(K +D)log K +D , (2.16) 

then with probability exceeding 1 - 3e-C2 M we have that ~ ~s (VR, K, 8/(1 - o))-

democratic, where C1 is arbitrary and C2 = (8/8)2 -log(42e/8)/C1 . 

Observe that we require roughly O(Dlog(N)) additional measurements to ensure 

that ~ is (VR, K, a)-democratic compared to the number of measurements required to 

simply ensure that ~ satisfies the RIP of order K (recall that D = M- VR). This 

seems intuitive; if we wish to be robust to the loss of any D measurements while 

retaining the RIP of order K, then we should expect to take at least D additional 

measurements. 

Theorem 3 further guarantees the graceful degradation of CS recovery due to loss 

of measurements. Specifically, the theorem implies that recovery from any subset of 

CS measurements is stable to the loss of a potentially larger number of measurements 

than anticipated. To see this, suppose that an M x N matrix~ is (M-D, K, o)-

democratic, but consider the situation where D + 1> measurements are dropped. It 

is clear from the proof of Theorem 3 that if 1) < K, then the resulting matrix ~r 

will satisfy the RIP of order K -1> with constant o. Thus, from [72], if we define 

.ft = (K -1>)/2, then the signal recovery error is bounded by 

II _ ~II < C llx - X.~tlh 
X X 2_ 3 ~ ' (2.17) 

where X.~t denotes the best .ft-term approximation of x and C3 is an absolute constant 
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depending on <P that can be bounded using the constants derived in Theorem 3. 

Thus, if 1J is small enough, then the additional error incurred by dropping too many 

measurements will also be relatively small. 

This property and its implications are key to enabling the rejection of saturated 

measurements. 

2.3.2 Saturation rejection signal recovery 

A simple and intuitive way to handle saturated measurements is to simply discard 

them and then run a standard CS recovery algorithm [71]. Using, for instance, 

(BPDN) for reconstruction yields the program: 

x t- argmin llxll1 s.t. II<Pu x- yull2 < €. (2.18) 
xEJRN 

Since the democracy property implies that any rot x N submatrix of <P has RIP, 

it immediately follows from Theorem 1 that the saturation rejection program (2.18) 

yields a signal estimate with the stability guarantee (1.5). By the same argument, it 

is straightforward to demonstrate that other algorithms such as CoSaMP applied to 

<Pu and yu will achieve performance given by Theorem A in [29], as long as they rely 

on the RIP for performance guarantees. 

2.3.3 Saturation rejection signal processing 

Saturation rejection is also useful in conjunction with processing and inference tech-

niques that work directly on the compressive measurements. For example, in the 
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smashed filter for signal detection and classification the key calculation is the inner 

product (~x, ~v) between the compressive measurements of a test signal x and a 

target template signal v [73]. If x and v are sparse then, thanks to the RIP, this 

low-dimensional inner product can be used as a proxy for the inner product between 

x, and v; that is (~x, ~v) ~ (x, v). Unfortunately, if any of the elements of ~x or ~v 

are saturated, then the approximation no longer holds and the performance of the 

smashed filter deteriorates. 

Consider QB(~x) and QB(~v) and let rx and rv be the supports of the mea­

surements that do not saturate on each vector, respectively. Then we have that for 

r = rx n rv that IIQB(~rx)- ~rxlloo ~ !:J./2 and IIQB(~rv)- ~rvlloo < !:J./2. Thus, 

it is straightforward to show that 

I(QB(~rx), QB(~rv))- (~rx,~rv)l ~ ~2 + ~ ~~(~rx)nl + ~ ~~(~rv)nl· (2.19) 

Furthermore, the two sums in (2.19) are likely to concentrate around zero. The 

democracy of~ furthermore implies that (~r x, ~r v) ~ (x, v). Thus, discarding the 

corresponding entries of ~x and ~v when one of them saturates makes considerable 

practical sense. 

2.3.4 Saturation consistency signal recovery via convex optimization 

Clearly saturation rejection discards potentially useful signal information, since we 

know that saturated measurements are large (we just do not know how large). It 

is possible to augment a standard convex optimization-based CS recovery algorithm 
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with a set of inequality constraints that enforce signal consistency with the saturated 

measurements. By consistency we mean that the magnitudes of the values of <.t>x 

corresponding to the saturated measurements are larger than G- ~' i.e., they are 

consistent with what we observed. 

More specifically, let s+ and s- correspond be the index sets of the positive 

saturated measurements and negative saturated measurements, respectively. Define 

the matrix <1>8 as 

(2.20) 

We estimate x via the program 

x +--- argmin llxll1 s.t. (2.21a) 
xEJRN 

and (2.21b) 

where 1 denotes an ( M- VR) x 1 vector of ones. In words, we seek the x with the mini-

mum £1 norm such that the measurements that do not saturate have bounded £2 error 

and the measurements that do saturate are consistent with the saturation constraint. 

The program (2.21) obeys the same reconstruction error bounds as (2.18) [34]. Alter-

native regularization terms that impose the consistency requirement on the unsatu-

rated quantized measurements can be used on yu, such as those proposed in [64, 65], 

or alternative techniques for the unsaturated quantized measurements can be used 

such as those proposed in [66]. 
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In addition to the convex optimization program (2.21), the authors in [34) pro­

posed a greedy algorithm, saturation consistent CoSaMP (SC-CoSaMP) to impose 

saturation consistency during reconstruction. Some of our simulations will make use 

of this algorithm since it is fast and has been shown empirically to improve perfor­

mance from finite range quantized measurements. 

We note that a saturation rejection algorithm and a saturation consistency algo­

rithm will not necessarily yield the same signal estimate. This is because the solution 

from the rejection approach may not lie in the feasible set of solutions of the consis­

tency approach (2.21). However, the reverse is true. The solution to the consistent 

approach does lie in the feasible set of solutions of the rejection approach. While 

we do not provide a detailed analysis that compares the performance of these two 

algorithm classes, one should expect that the consistency approach will outperform 

the rejection approach in general, since it incorporates additional information about 

the signal. 

2.4 Experimental Performance of CS Dynamic Range 

In this section, we conduct an experiment that demonstrates how the dynamic range of 

a CS system can be increased. We are interested in demonstrating two main points: i} 

as we decrease the sample rate of a system, we can apply a higher bit-depth quantizer. 

This should improve performance even though the number of measurements is fewer; 

and ii} the saturation consistent approach that utilizes the democracy of CS systems 
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Figure 2.2 : RSNR for an environment consisting of a noise-free single unmodulated voice 
channel and quantized measurements starting at a bit-depth of 4 bits per measurement 
when log2(N/M) = 0. We increased the bit-depth as a function of the sample rate accord­
ing to the trends outlined in [7]. We see a marked improvement in RSNR as a direct result 
of the sampling rate being decreased. We see further improvement when the gain is tuned 
to maximize the performance of a saturation consistent algorithm, SC-CoSaMP. Interest­
ingly, the best saturation consistent CS performance occurs when no subsampling has been 
performed, but when significantly many measurements saturate (even though the quantizer 
precision is at its lowest). This suggests that it may be beneficial to sample at a high rate 
and increase the dynamic range by exploiting the democratic nature of CS systems, rather 
than applying a higher bit-depth quantizer at a lower rate. 

can be used to increase the performance further, by extending· the dynamic range of 

the system. 

Any improvement in the SQNR of the CS measurements will translate to an 

improved dynamic range. Thus, in our experiments, we compute the average RSNR 

obtained after recovery from quantized CS measurements as a proxy for the dynamic 

range. Furthermore, we make use of the trends outlined in [7) that show that the 

number of bits per measurement grows according to B = .A-lOlog lO(M)/2.3 where..\ 

is a constant that determines the bit-depth of a Nyquist-rate sampler. The number of 

bits per measurements then grows linearly with the octaves of subsampling, with slope 



49 

of about 1.3. This relationship between sample rate and bit-depth is fundamental to 

understanding the dynamic range benefits of CS systems. 

Our experiment proceeds as follows and is depicted in Figure 2.2. The signal to 

be acquired consists of a single 3.1 kHz-wide unmodulated voice signal single-side­

band-upconverted to a frequency within the 1 MHz input bandwidth of the receiver. 

The signals are noise-free so that we can isolate the impact of quantization noise. 

Additionally, we employ an ideal random demodulator [18) (discussed in Chapter 5) 

to measure the signals. Performance is measured as a function of the subsampling 

factor N / M. In each trial we generate a single voice-like signal and compute mea­

surements with the CS receiver. The measurements are further quantized utilizing 

the full scale of the quantizer in the oracle and conventional CoSaMP cases. In the 

saturation consistent case, the scale of the signal (and thus measurements) is tuned 

to maximize the RSNR performance. This optimal performance occurs when a sig­

nificant number of measurements have saturated. The measurements were quantized 

to 4 bits each, and then recovered using CoSaMP (solid line), the oracle recovery al­

gorithm (dashed line), and SC-CoSaMP (dash-dotted). We report the average RSNR 

for each subsampling factor. 

From this experiment we see that in both the oracle and conventional CS cases, 

the RSNR grows significantly, achieving a 20dB gain at 4 octaves of subsampling 

over Nyquist sampling. Conventional CS performance then decreases as we move to 

an undersampled regime where CS recovery is no longer sustainable (too few mea-



50 

surements for the given sparsity). The oracle performance continues to improve as 

subsampling is further increased. This experiment highlights the very real benefit of 

reduced sampling rates; easing the sampling rate requirements can allow us to use 

higher fidelity hardware components, such as high bit-depth quantizers. 

The saturation consistent case provides further insight. When the number of 

measurements is decimated, even by half (log2(N/M) = 1), the saturation consistent 

approach achieves about a 5dB to lOdB gain over the conventional CS approach, 

but follows the same performance trend. However, when there is no decimation, the 

saturation consistent algorithm exhibits a 40dB gain over conventional CS and the 

oracle. Indeed the SC-CoSaMP performance at the Nyquist rate is as good as the 

oracle performance at more than 6 octaves of decimation (i.e., better than using an 

ADC that is 26 times as slow). The implication of this result is that it might be better 

to take many measurements and drive up the gain such that most of them saturate, 

rather than attempting to reduce the sampling rate and applying a higher bit-depth 

quantizer. Abusing the quantizer by saturating most of the measurements leads to 

the theme of the following chapters- can we saturate all of the measurements? Can 

we expand CS methods to include scenarios where we drive up the sampling rate and 

drive down the bit-depth of the quantizer? 



51 

Chapter 3 

Single Bit Compressive Sensing 

3.1 Supersaturated Sensing 

One question that arises from the previous chapter is how many measurements can 

saturate in practice? The saturation rejection reconstruction approach of Section 2.3.2 

will fail when the number of non-saturated measurements is too few; unfortunately 

the constants for the democratic property of random matrices are not tight enough 

to predict the precise number of measurements at which this transition occurs. It has 

been shown that the saturation consistent reconstruction approach of Section 2.3.4 

can achieve reasonable performance in the face of significantly more saturation than 

in the rejection approach; however, even this technique appears to fail when too many 

measurements have saturated [34]. 

In this chapter,1 we consider the most extreme case when all measurements have 

saturated, i.e., the measurements are supersaturated. We ask the question: is signal 

reconstruction possible in this regime? In supersaturated sensing, the measurements 

take the value G or -G and information about the true scale of the signal is lost. 

1This chapter includes work done in collaboration with Laurent Jacques, Petros Boufounos, 

Zaiwen Wen, Wotao Yin, and Richard Baraniuk [74, 75]. 
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Indeed, we are only able maintain a single bit of information about each measurement 

and a lower bound on the signal energy. In fact, if we intend to operate only in the 

supersaturated regime, the quantizer can be reduced to a simple comparator that 

tests if values are above or below zero, enabling extremely simple, efficient, and fast 

quantization. 

It is not obvious that the signs of the CS measurements retain enough information 

for signal reconstruction. For instance, as just explained, we have lost information 

about the scaling of the signal. Nonetheless, there has been recent empirical evidence 

that signal reconstruction is possible from just the signs of the measurements, via 

the 1-bit compressive sensing framework established in [33, 39, 76]. This framework 

suggests that signals can be reconstructed, up to a scale factor, from only the signs 

of their CS measurements. 

The primary contribution of this chapter is a rigorous analysis of the 1-bit CS 

framework. We provide two flavors of results. First, we determine the best achievable 

performance of this 1-bit CS framework. We further demonstrate that if the elements 

of measurement system ~ are drawn randomly from Gaussian distribution or its rows 

are drawn uniformly from the unit sphere, then it is possible to pose a reconstruction 

formulation that will have bounded error on the order of the optimal lower bound. 

Second, we provide conditions on the measurement system that enable us to char­

acterize the reconstruction performance even when some of the measurement signs 

have changed (e.g., due to noise in the measurements). In other words, we derive 
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the conditions under which robust reconstruction from 1-bit measurements can be 

achieved. We do so by demonstrating that 1-bit CS systems can be stable embed­

dings of sparse signals, in similar fashion to the RIP systems of conventional CS. We 

apply these stable embedding results to the cases where we have noisy measurements 

and signals that are not strictly sparse. Our guarantees demonstrate that the 1-bit 

CS framework is on sound footing. 

To develop robust reconstruction guarantees, we propose a new tool, the binary 

f.-stable embedding (BESE), to characterize 1-bit CS systems. The BESE implies that 

the normalized angle between any sparse vectors on the unit sphere is close to the 

normalized Hamming distance between their 1-bit measurements. We demonstrate 

that again the quantized measurements from Gaussian measurement matrices exhibit 

this property when M 2::: CeKlog N (where Ce is some constant). Thus remarkably, 

there exist systems such that the BESE holds when both the number of measurements 

M is smaller than the dimension of the signal N and the measurement bit-depth is 

at minimum. 

As a complement to our theoretical analysis, we introduce two algorithms to solve 

the non-convex reconstruction problem originally posed in this context, as well as 

several new convex formulations of the reconstruction problem. We present extensive 

numerical simulations to prove the validity of this framework and these algorithms. 

Finally, we demonstrate that the 1-bit reconstruction algorithms can be extended to 

perform consistent reconstruction of multibit quantized measurements with arbitrary 
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numbers of saturations. We thusly provide a complete solution for handling finite 

range quantized measurements. 

This chapter is organized as follows. In Section 3.2 we formally summarize the 

1-bit CS framework. In Section 3.3 we describe some additional benefits of 1-bit 

quantized measurements beyond those described above. In Section 3.4 we provide 

reconstruction bounds on the performance from noiseless measurements and demon­

strate that a large class of measurements matrices will yield such performance. In 

Section 3.5, we introduce the B€SE property that ensures robust recovery guaran­

tees. We then prove that such mappings exist and give an example of a class of these 

matrices. This section also provides reconstruction bounds for noisy measurements 

and compressible signals. In Section 3.6 we demonstrate how the 1-bit framework 

can be extended to handle multibit quantized measurements as well as an arbitrarily 

large or small number of saturations. In Section 3. 7 we introduce two new algorithms 

for solving the reconstruction problem and also pose some convex formulations. In 

Section 4.2 we perform numerical simulations to validate and characterize the ideas 

presented in this chapter. We conclude by reviewing some alternative 1-bit frame­

works in Section 3.9. 
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3.2 The 1-bit CS framework 

We briefly describe the 1-bit CS framework proposed in [39]. Measurements of a 

signal x ERN are computed via 

Ys = A(x) :=sign (<I>x). (3.1) 

Thus, the measurement operator A(·) is a mapping from RN to the Boolean cube2 

BM := { -1, 1}M. At best, we hope to recover signals x E :E:K := {x E sN-1 : llxllo ~ 

K} where sN-1 := {x E RN : llxll2 = 1} is the unit hyper-sphere of dimension N. 

We restrict our attention to sparse signals on the unit sphere since, as previously 

mentioned, the scale of the signal has been lost during the quantization process. 

To reconstruct, we enforce consistency on the signs of the estimate's measurements, 

i.e., that A(x) = A(x). Specifically, we define a general non-linear reconstruction 

algorithm .6.1bit(Ys, <I>, K) such that, for x = .6.1bit(y8 , <I>, K), the solution xis 

(i} sparse, i.e., satisfies llxllo ~ K = llxllo; and 

(ii} consistent, i.e., satisfies A(x) = Ys = A(x). 

With (£0-min) from CS as a guide, one candidate program for reconstruction is of 

course 

x +-- argmin llxllo s.t. Ys =sign (<I>x). (fo-min1a) 
xESN-l 

2 Generally, theM-dimensional Boolean cube is defined as {0, l}M. Without loss of generality, 

we use { -1, l}M instead. 
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Y~x>O 

Figure 3.1 : The geometry of the components of the 1-bit CS reconstruction formualtion in 
two dimensions. The hyperplanes (lines) <(JI and <p2 correspond to the first and second rows 
of ~, respectively. The green shaded region between the planes denotes the feasible region. 
The circle denotes the unit sphere. The red dot denotes the sparsest feasible solution on 
the unit sphere. 

Although the parameter K is not explicit in (f0-rnin1B), the property (i} above holds 

because x is a feasible point of the constraint. 

Since (lo-miniB) is cornputationally intractable, [39] proposes a relaxation that 

replaces the objective with the frnonn and enforces consistency via a linear convex 

constraint. Specifically, let the rnatrix Y have the elements of Ys along the diagonal 

and zero elsewhere. Then we can try to solve 

x +- min llxlh s.t. Y<I?x 2:: 0 and llxl12 = 1, 
xESN-l 

rather than (fo-minlB). The el objective favors sparse solutions \Vhile the first con-

straint enforces consistency between the 1-bit quantized measurements and the solu-

tion. However, (f1-min1B) remains non-convex due to the the unit-sphere requirement. 
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Be that as it may, an algorithm has been developed for the relaxation, as well as a 

greedy algorithm inspired by the same ideas [39, 76]. The program (£1-miniB) can 

also be posed in a convex way as will be discussed in Section 3. 7.3, but for the sake 

of theory we proceed with the unit energy constraint. 

Figure 3.1 depicts the geometry of the components of (£1-miniB) in two dimensions. 

The hyperplanes (lines) cp1 and cp2 correspond to the first and second rows of 4>, 

respectively. In this figure they are drawn to be perfectly orthogonal but in general 

this may not be the case. Indeed, if these rows were drawn randomly from a Gaussian 

distribution, they will be approximately orthogonal. Furthermore, in this example 

we choose 4> to be square to clearly depict the relevant concepts in two dimensions. 

The green shaded region depicts the feasible region, i.e., the set where all x satisfy 

Y4>x ~ 0, and thus have measurement signs that are consistent with the diagonal of 

Y. The unit sphere is represented by the circle labelled llxll 2 = 1 and thus the only 

unit norm sparse solution in the feasible region lies at [0, 1], denoted by the red dot. 

The key feature of this picture is that each row of 4> defines some hyperplane and 

each measurement sign determines on which side of the hyperplane the solution lies. 

The feasible region can be though of as a "cone3" and our goal during reconstruction 

is to find the sparsest solution within that region. A major goal of this chapter is 

to show that all sparse unit norm solutions in this cone are within some small error 

tolerance of each other. 

3This is not a true cone in the geometrical sense. 
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3.3 Immediate Benefits of 1-bit CS 

There are several benefits to obtaining 1-bit quantized measurements. First, effi­

cient hardware quantizers can be built to operate at high speeds, since the quantizer 

can be a simple comparator that merely tests if a measurement is above or below 

zero. Indeed, as previously discussed there is an inverse relationship between sample 

rate and quantization bit-depth, such that the sample rate increases exponentially 

as the bit-depth is decreased linearly. Second, it has been shown that the program 

(£1-minlB) can be used to recover signals with gross non-linearities applied to the 

measurements [33]. In particular, suppose a non-linearity f(·) is applied to the mea­

surements. If the f(·) preserves the sign of the measurements, then clearly (£1-minlB) 

can be still be used to recover x with the same performance as using the non-linearity­

free measurements. Additionally, if we assume that the non-linearity preserves the 

relationship 

then the program 

x f- ~1bit(sign(diff(f(~x))), D~, K), (3.2) 

can be used to recover x with similar guarantees as (£1-minlB), where D is a differ­

ence matrix with 1 's along the diagonal and -1 's along the first sub-diagonal, with 

diff(x) = Xi+l- Xi, fori= 1, ... , N- 1 [33]. 
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3.4 Noiseless Reconstruction Performance 

3.4.1 Reconstruction performance lower bounds 

In this section, we seek to provide guarantees on the reconstruction error from 1-

bit CS measurements. Before analyzing this performance from a specific mapping A 

with the consistent sparse reconstruction algorithm .6_lbit(y8 , <I>, K), it is instructive 

to determine the best achievable performance from measurements acquired using any 

mapping. Thus, in this section we seek a lower bound on the reconstruction error. 

We develop the lower bound on the reconstruction error based on how well the 

quantizer exploits the available measurement bits. A distinction we make in this 

section is that of measurement bits, which is the number of bits acquired by the 

measurement system, versus information bits, which represent the true amount of 

information carried in the measurement bits. Our analysis follows similar ideas to 

that in [77, 78], adapted to sign measurements. 

We first examine how 1-bit quantization operates on the measurements. Specifi­

cally, we consider the orthants of the measurement space. An orthant in RM is the 

set of vectors such that all the vector's coefficients have the same sign pattern 

Os ={xI signx = s}, 

where s is a vector of ±1. Any M-dimensional space is partitioned to 2M orthants. 

Figure 3.2(a) shows the 8 orthants of R3 as an example. Since 1-bit quantization 

only preserves the signs of the measurements, it encodes in which measurement space 
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+ 

(a) (b) 

Figure 3. 2 : (a) The 8 orthants in JR3 . (b) Intersection of orthants by a 2-dimensional 
subspace. At most 6 of the 8 available orthants are intersected. 

orthant the measurements lie. Thus, each available quantization point corresponds 

to an orthant in the measurement space. Any unquantized measurement vector <I>x 

that lies in an orthant of the measurement space will quantize to the corresponding 

quantization point of that orthant and cannot be distinguished from any ot her mea-

surement vector in the same orthant. To obtain a lower bound on the reconstruction 

error, we begin by bounding the number of quantization points (or equivalently the 

number of orthants) that are used to encode the signal. 

While there are generally 2M orthants in the measurement space, the space formed 

by measuring all sparse signals occupies a small subset of the available orthants. We 

determine the number of available orthants that can be intersected by the measure-

ments in the following lemma: 

Lemma 5. Let x E S uf=l si belong to a unzon of L subspaces si c ffi.N of 
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dimension K, and let M 1-bit measurements Ys be acquired via the mapping A : 

JRN-+ BM as defined in {3.1}. Then the measurements Ys can effectively use at most 

L (~) 2K quantization points, i.e., carry at most K log2 (eLM/ K) information bits. 

Proof A K-dimensional subspace in an M dimensional space cannot lie in all the 2M 

available octants. For example, as shown in Fig. 3.2(b), a 2-dimensional subspace of a 

3-dimensional space can intersect at most 6 of the available octants. In Appendix B.1, 

we demonstrate that one arbitrary K-dimensional subspace in an M-dimensional 

space intersects at most (~)2K orthants of the 2M available. Since <P is a linear 

operator, any K-dimensional subspace si in the signal space JRN is mapped through 

<P to a subspace SI = <PSi C JRM that is also at most K-dimensional and therefore 

follows the same bound. Thus, if the signal of interest belongs in a union S := Uf=1 Si 

of L such K -dimensional subspaces, then <Px E S' := Uf=1 s:, and it follows that at 

most L(~)2K orthants are intersected. This means that at most L(~)2K effective 

quantization points can be used, i.e., at most Klog2 (eLM/K) information bits can 

be obtained. 0 

Since K-sparse signals in any basis W E JRNxN belong to a union of at most (Z) 

subspaces in JRN, using Lemma 5 we can obtain the following corollary. 

Corollary 1. Let x = Wa E JRN be K-sparse in a certain basis W E JRNxN, z.e., 

a E :EK. Then the measurements Ys = A(x) can effectively use at most (Z)(~)2K 

1-bit quantization points, i.e, carry at most 2Klog2 (ev'NM/K) information bits. 
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The set of signals of interest to be encoded is the set of unit-norm K-sparse signals 

E:K. Since unit-norm signals of a K-dimensional subspace form a K-dimensional unit 

sphere in that subspace, Ek is a union of(~) such unit spheres. The Q = (~)(~)2K 

available quantization points partition Ek into Q smaller sets, each of which contains 

all the signals that quantize the same point. 

To develop the lower bound on the reconstruction error we examine the optimal 

such partition, with respect to the worst-case error, given the number of quantization 

points used. The measurement and reconstruction process maps each signal in Ek to 

a finite set of quantized signals Q C Ek, IQI = Q. At best this map ensures that the 

worst case reconstruction error is minimized, i.e., 

(3.3) 

where Eopt denotes the worst-case quantization error and q each of the available quanti-

zation points. The optimal lower bound is achieved by designing Q to minimize (3.3) 

without considering whether the measurement and reconstruction process actually 

achieve this design. Thus, designing the set Q becomes a set covering problem. 

Using this intuition and Lemma 5, Appendix B.2 proves the following statement 

about a set of unit-norm signals in a union of L, K-dimensional subspaces, specifically 

Theorem 4. Let the mapping A : JRN -+ BM and measurements Ys be defined 

as in {3.1} and let x E E:K. Then the estimate from the reconstruction algorithm 
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.D,.lbit(y8 , 4>, K) has error defined by (3.3} of at least 

Eopt ~ 2~M = n (!) . 
Thus, the worst-case error cannot decay at a rate faster than n(l/M) as a function 

of the number measurements, no matter what reconstruction algorithm is used. The 

bound in the theorem is independent of L, but similarly to the relation between 

Lemma 5 and Corollary 1, K -sparse signals are a special case with L = (~). 

This result assumes noiseless acquisition and provides no guarantees of robust­

ness and noise resiliency. This is in line with existing results on scalar quantization 

in oversampled representations and CS that state that the distortion due to scalar 

quantization of noiseless measurements cannot decrease faster than the inverse of the 

measurement rate [77-81]. To improve the rate vs. distortion trade-off, alternative 

quantization methods must be used, such as Sigma-Delta quantization [82-88] or 

non-monotonic scalar quantization [89]. 

Theorem 4 bounds the best possible performance of a consistent reconstruction 

over all possible mappings A. However, it is straightforward to construct mappings A 

that do not behave as the lower bound suggests. In the next section we identify one 

class of matrices such that the mapping A admits an almost optimal upper bound on 

the reconstruction error from a general algorithm .D,.lbit. 
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3.4.2 Achievable performance via random projections 

In this section we describe a class of matrices <P such that the consistent sparse re-

construction algorithm b.1bit(y8 , <P, K) can indeed achieve error decay rates of optimal 

order, described by Theorem 4, with the number of measurements growing linear in 

the sparsity K and logarithmically in the dimension N, as is required in conventional 

CS. We first focus our analysis on Gaussian matrices, i.e., <P such that each element 

4>i,j is randomly drawn i.i.d. from the standard Gaussian distribution, N(O, 1). We 

use the short notation <P rv NMxN(O, 1) for characterizing such matrices, and we write 

cp rv NNx 1(0, 1) for describing equivalent random vectors in JRN (e.g., the rows of <P). 

For these matrices <P, we prove the following in Appendix B.3. 

Theorem 5. Let <P be matrix generated as <P rv NMxN(O, 1), and let the mapping 

A : JRN --+ BM be defined as in {3.1}. Fix 0 ~ rJ ~ 1 and €0 > 0. If the number of 

measurements is 

M?. 1.. (2K log(N) + 4Kloge6 ) +log 1), 
fo fo ~ 

(3.4) 

then for all x, s E ~K we have that 

llx- sll2 >Eo =} A(x) =f A(s), (3.5) 

or equivalently 

A(x) = A(s) =* llx- sll2 ~Eo, 

with probability higher than 1- rJ· 
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The Theorem demonstrates that if we use Gaussian matrices in the mapping A, 

then, given a fixed probability level f!, the reconstruction algorithm ~lbit(Ys, <P, K) 

will recover signals with optimal error order 

for arbitrarily small a > 0; the presence of the log(l/Eo) term in (3.4) prevents us 

from setting a= 0. 

A similar result has been very recently shown for sign measurements of non-sparse 

signals in the context of quantization using frame permutations [90]. Specifically, it 

has been shown that reconstruction from sign measurements of signals can be achieved 

(almost surely) with a 0((1/M)1-o:) error rate decay for arbitrarily small a> 0. Our 

main contribution here is extending this result to K-sparse vectors in :JRN. Our results, 

in addition to introducing the almost linear dependence on K, also show that if the 

signal is sparse then we pay a logarithmic penalty inN. This is consistent with results 

in CS, but seems not to be necessary from the lower bound in the previous section. 

We will see in Section 4.2 that for Gaussian matrices, the optimal error behavior is 

empirically exhibited on average. Finally, we note that for a constant Eo, the number 

of measurements required to guarantee (3.5) isM= O(KlogN/K), nearly the same 

as order in conventional CS. 

We note a few minor extensions of the Theorem. We can multiply the rows of <P 

with a positive scalar without changing the signs of the measurements. By normalizing 

the rows of the Gaussian matrix, we obtain a matrix with rows drawn uniformly 
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from the unit £2 sphere in JRN. It is thus straightforward to extend the Theorem to 

such matrices with such rows as well. Furthermore, note that these projections are 

"universal," meaning that the theorem remains valid for sparse signals in W, i.e., for 

x,s belonging to :E~K := {u = wa E JRN: a E :EK-}. This is true since for any , 

orthonormal basis wE JRNxN, <P' = <Pw rv NMxN(o, 1) when <P rv NMXN(o, 1). 

We can also view the binary measurements as a hash or a sketch of the signal. 

With this interpretation of the result we guarantee with high probability that no 

sparse vectors with Euclidean distance greater than €0 will "hash" to the same binary 

measurements. In fact, similar results play a key role in locality sensitive hashing 

(LSH), a technique that aims to efficiently perform approximate nearest neighbors 

searches from quantized projections [91-94]. Most LSH results examine the perfor-

mance on point-clouds of a discrete number of signals instead of the infinite subspaces 

that we explore in this chapter. Furthermore, the primary goal of the LSH is to pre-

serve the structure of the nearest neighbors with high probability. Instead, in this 

chapter we are concerned with the ability to reconstruct the signal from the hash, as 

well as the robustness of this reconstruction to measurement noise and signal model 

mismatch. To enable these properties, we require a property of the mapping A that 

preserves the structure (geometry) of the entire signal set. Thus, in the next section 

we seek an embedding property of A that preserves geometry for the set of sparse 

signals and thus ensures robust reconstruction. 
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3.5 Robust 1-bit CS via Binary Stable Embeddings 

3.5.1 Binary €-stable embeddings 

In this section we establish an embedding property for the 1-bit CS mapping A that 

ensures that the sparse signal geometry is preserved in the measurements, analogous 

to the RIP for real-valued measurements. This robustness property enables us to 

upper bound the reconstruction performance even when some measurement signs 

have been changed due to noise. Conventional CS achieves robustness via the a­

stable embeddings of sparse vectors (1.4) discussed in Section 1.2. This embedding is 

a restricted quasi-isometry between the metric spaces (IRN, dx) and (JRM, dy ), where 

the distance metrics dx and dy are the £2-norm in dimensions Nand M, respectively, 

and the domain is restricted to sparse signals.4 We seek a similar definition for our 

embedding; however, now the signals and measurements lie in the different spaces 

sN-l and BM, respectively. Thus, we first consider appropriate distance metrics in 

these spaces. 

The Hamming distance is the natural distance for counting the number of unequal 

bits between two measurement vectors. Specifically, for y, v E BM we define the 

4A function A: X-+ Y is called a quasi-isometry between metric spaces {X,dx) and (Y,dy) 

if there exists C > 0 and D :?:: 0 such that !Jdx(x, s)- D :=:; dy(A(x), A(s)) :=:; Cdx(x, s) + D for 

x,s E X, and E > 0 such that dy(y,A(x)) < E for ally E Y [95]. Since D = 0 for 8-stable 

embeddings, they are also called hi-Lipschitz mappings. 
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normalized Hamming distance as 

where EB is the XOR operation such that a EBb equals 0 if a = b and 1 otherwise. 

The distance is normalized such that dH E [0, 1]. In the signal space we only consider 

unit-norm vectors, thus, a natural distance is the angle formed by any two of these 

vectors. Specifically, for x, s E sN-1, we consider 

1 
ds(x, s) := - arccos(x, s). 

7r 

As with the Hamming distance, we normalize the true angle arccos(x, y) such that 

ds E [0, 1]. Note that since both vectors have the same norm, the inner product (x, s) 

can easily be mapped to the £2-distance using the polarization identity. 

Using these distance metrics we define the binary stable embedding. 

Definition 2 (Binary €-Stable Embedding). Let € E (0, 1). A mapping A: JRN ~ BM 

is a binary €-stable embedding {BESE) of order K for sparse vectors if 

ds(x, s) - € ::; dH(A(x), A(s )) ::; ds(x, s) + € 

for all X, S E SN-1 with X± S E :EK. 

Our definition describes a specific quasi-isometry between the two metric spaces 

(SN-1,d8 ) and (BM,dH), restricted to sparse vectors. While this mirrors the form 

of the 8-stable embedding for sparse vectors, one important difference is that the 
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sensitivity term E is additive, rather than multiplicative, and thus the BtSE is not hi­

Lipschitz. This is a necessary side-effect of the loss of information due to quantization. 

A stated in the next Lemma, the BtSE enables robustness guarantees on any 

reconstruction algorithm extracting a sparse signal x from the mapping A(x). 

Lemma 6. Let A : JRN -+ BM be a BtSE of order 2K for sparse vectors and let 

x E ~K· A sparse, unit norm estimate x of x with Hamming error dH(A(x), A(x)) 

from any reconstruction algorithm has angular error bounded by 

ds(x,x) s dH(A(x),A(x)) +t. 

Proof If xis K-sparse (llxllo s K) and unit norm, then the result follows from the 

lower bound in Definition 2. D 

In other words, the reconstruction error is bounded by a small quantity more 

than the Hamming error. Thus, if an algorithm returns a unit norm sparse solution 

with measurements that are not consistent (i.e., dH(A(x), A(x)) > 0), as is the case 

with several algorithms [39, 75, 76], then the the worst-case angular reconstruction 

error is close to Hamming distance between the estimate's measurements' signs and 

the original measurements' signs. Section 4.2 verifies this behavior with simulation 

results. Furthermore, in Section 3.5.3 we use the BtSE property to guarantee that 

if measurements are corrupted by noise or if signals are not exactly sparse, then the 

reconstruction error is bounded. 

Note that if A is a BtSE, then the angular error of any b,.lbit(y8 , <I>, K) algorithm 
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is bounded by € since in that case dH(A(x),A(x)) = 0. As we have seen earlier this is 

to be expected because, unlike conventional noiseless CS, quantization fundamentally 

introduces uncertainty and exact recovery cannot be guaranteed. This is an obvious 

consequence of the mapping of the infinite set L::K to a discrete set of quantized values. 

We next identify a class of matrices <I> for which A is a BESE. 

3.5.2 Binary €-stable embeddings via random projections 

As is the case for conventional CS systems with RIP, designing a <I> for 1-bit CS such 

that A has has the BESE property is a computationally intractable task. Fortunately, 

an overwhleming number of "good" matrices do exist. Specifically we again focus our 

analysis on Gaussian matrices, i.e., <I> "'NMxN(O, 1) such that each element ¢i,j is 

randomly drawn i.i.d. from N(O, 1), as in as in Section 3.4.2. As motivation that this 

choice of <I> will indeed enable robustness, we begin with a classical concentration of 

measure result for binary measurements from a Gaussian matrix. 

Lemma 7. Let <I> be a matrix generated as <I> "'NMxN(O, 1), and let the mapping 

A: JRN---+ BM be defined as in {3.1}. Fix € > 0. For any x, s E sN-I, we have 

where the probability is with respect to the generation of <I>. 

Proof This lemma is a simple consequence of Lemma 3.2 in [96] which shows that, for 

one measurement, JI.D[Ai(x) f. Ai(s)] = ds(x, s). The result then follows by applying 
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Hoeffding's inequality to the binomial random variable MdH(A(x),A(s)) with M 

trials. 0 

In words, Lemma 7 implies that the Hamming distance between two binary mea­

surement vectors A(x), A(s) tends to the angle between the signals x and s as the 

number of measurements M increases. In [96] this fact is used in the context of ran­

domized rounding for max-cut problems; however, this property has also been used 

in similar contexts as ours with regards to preservation of inner products from binary 

measurements [97, 98]. 

The expression (3.6) indeed looks similar to the definition of the BESE, however, it 

only holds for a fixed pair of arbitrary (not necessarily sparse) signals, chosen prior to 

drawing <1>. Our goal is to extend (3.6) to cover the entire set of sparse signals. Indeed, 

concentration results similar to Lemma 7, although expressed in terms of norms, have 

been used to demonstrate the RIP [45]. These techniques usually demonstrate that 

the cardinality of the space of all sparse signals is sufficiently small, such that the 

concentration result can be applied to demonstrate that distances are preserved with 

relatively few measurements. 

Unfortunately, due to the non-linearity of A we cannot immediately apply 

Lemma 7 using the same procedure as in [45]. To briefly summarize, [45] proceeds by 

covering the set of all K-sparse signals :EK with a finite set of points (with covering 

radius 8 > 0). A concentration inequality is then applied to this set of points. Since 

any sparse signal lies in a 8-neighborhood of at least one such point, the concentration 
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property can be extended from the finite set to ~K by bounding the distance between 

the measurements of the points within the 8-neighborhood. Such an approach cannot 

be used to extend (3.6) to ~K, because the severe discontinuity of our mapping does 

not permit us to characterize the measurements A(x + s) using A(x) and A(s) and 

obtain a bound on the distance between measurements of signals in a 8-neighborhood. 

To resolve this issue, we extend Lemma 7 to include all points within Euclidean 

balls around the vectors x and s inside the (sub) sphere ~*(T) = {u E sN-1 : 

suppu c T} for some fixed support set T c {1, · · · , N} of size ITI =D. Define the 

8-ball B6(x) := {a E SN-1 : llx- all2 < 8} to be the ball of Euclidean distance 8 

around x, and let B6(x) = B6(x) n ~*(T). 

Lemma 8. Given T C {1, · · · , N} of size ITI = D, let <P be a matrix generated as 

<I> rv NMxN(O, 1), and let the mapping A : JRN ---* BM be defined as in {3.1}. Fix 

E > 0 and 0:::; 8:::; 1. For any x, s E ~*(T), we have 

for all u E B6(x) and v E B6(s). 

The proof of this result is given in Appendix B.4. 

In words, if the width 8 is sufficiently small, then the Hamming distance between 

the 1-bit measurements A(u), A(v) of any points u, v within the balls B6(x), B6(s), 

respectively, will be close to the angle between the centers of the balls. 

Lemma 8 is key for providing a similar argument to that in [45]. We now simply 
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need to count the number of pairs of K -sparse signals that are euclidean distance 8 

apart. The Lemma can then be invoked to demonstrate that the angles between all of 

these pairs will be approximately preserved by our mapping. 5 Thus, with Lemma 8 

under our belt, we demonstrate in Appendix B.5 the following result. 

Theorem 6. Let <P be a matrix generated as <P rv NMxN(O, 1) and let the mapping 

A : JRN -+ BM be defined as in {3.1}. Fix 0 ~ 'f/ ~ 1 and E > 0. If the number of 

measurements is 

M > ~ (K log(N) + 2K log( 5€0 ) +log(~)), (3.7) 

then with probability exceeding 1- 'f/, the mapping A is a BESE of order K for sparse 

vectors. 

By choosing <P rv NMXN(o, 1) with M = O(KlogN), with high probability we 

ensure that the mapping A is a BESE. Additionally, from (3. 7) we find that the error 

decreases as 

(3.8) 

for arbitrarily small a> 0. Unfortunately, this decay is at a slower rate (roughly by a 

factor of vf K / M) than the lower bound on the error given in Section 3.4.1. This error 

rate results from an application of the Chernoff-Hoeffding inequality in the proof of 

5 We note that the covering argument in the proof of Theorem 5 also employs 8-balls in similar 

fashion but only considers the probability that dH = 0, rather than the concentration inequality. 
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Theorem 6. An open question is whether it is possible to obtain a tighter bound 

(with optimal error rate) for this robustness property. 

As mentioned in Section 3.3, it may be advantageous to reconstruct a signal 

from the signs of the differences of the measurements. As suggested by (3.2), in 

this case we interested in applying the sparse consistent reconstruction algorithm to 

the measurement matrix D~, where D is a difference matrix and ~ is the original 

measurement matrix. When ~ is a Gaussian matrix, this is indeed possible with the 

number of measurements on the same order as before, as explained by the following 

Corollary. 

Corollary 2. Let~ be a matrix generated as~,....., NMxN(o, 1), let D be an M -1 xM 

difference matrix, and let the mapping A: JRN 4- BM be defined as in (3.1} with the 

matrix D~ instead of~- Fix 0 ~ rJ ~ 1 and € > 0. If the number of measurements is 

M ~ e~ (K log(N) + 2K log( 5~) +log(~)), (3.9) 

then with probability exceeding 1- rJ, the mapping A is a BESE of order K for sparse 

vectors. 

Proof Let the (M -1)/2 x M matrix E be obtained by selecting every other row of 

the matrix D. Then the matrix E~ has i.i.d. Gaussian entries, since it is obtained by 

summing disjoint sets of independent Gaussian entries in~- Note that the entries of 

E~ will no longer have unit variance but are still zero mean, i.e., they are just scaled 

Gaussians. As previously discussed, scaling the entries of ~ has no effect on BESE 
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property (or its probability of occurance). Thus, if given the signs of the measure­

ments from Dif>, we can perform reconstruction with a subset of measurements and 

Eif>. To obtain the final result, we note that we have half as many valid measurements 

as in Theorem 6. 0 

Note that the only difference between (3.9) and (3. 7) is that the minimum number 

of required measurements is now double of what was required in Theorem 6, and thus 

is on the same order as in (3.8). This is because there are half as many independent 

measurements in this case. 

Besides robustness to non-linearities as discussed in Section 3.3, this technique 

can also be used for 1-bit quantization of measurements that are all positive, such as 

those acquired by the single-pixel-camera [19]. 

As with Theorem 5, Gaussian matrices provide a universal mapping, i.e., the result 

remains valid for sparse signals in a basis WE JRNxN. Moreover, Theorem 6 can also 

be extended to rows of if> that are drawn uniformly on the sphere, since the rows of 

if> in Theorem 6 can be normalized without affecting the outcome of the proof. Note 

that by normalizing the Gaussian rows of if>, is is as if they had been drawn from a 

uniform distribution of unit-norm signals. 

We have now established a large class of robust BESEs: 1-bit quantized Gaussian 

projections. We now make use of this robustness by considering an example where 

the measurements are corrupted by Gaussian noise. 
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3.5.3 Noisy measurements and compressible signals 

In practice, hardware systems may be inaccurate when taking measurements; this is 

often modeled by additive noise. The mapping A is robust to noise in an unusual way. 

After quantization, the measurements can only take the values -1 or 1. Thus, we can 

analyze the reconstruction performance from corrupted measurements by considering 

how many measurements flip their signs. For example, we analyze the specific case 

of Gaussian noise on the measurements prior to quantization, i.e., 

An(x) :=sign (~x + n), (3.10). 

where n E JRM has i.i.d. elements ni rv N(O, cr2). In this case, we demonstrate, via 

the following lemma, a bound on the Hamming distance between the corrupted and 

ideal measurements with the BtSE from Theorem 6 (see Appendix B.6). 

Lemma 9. Let~ be a matrix generated as~ rv NMxN(o, 1), let the mapping A : 

JRN -t BM be defined as in (3.1}, and let An : JRN -t BM be defined as in (3.10}. 

Let n E JRM be a Gaussian random vector with i.i.d. components ni rv N(O, cr2). Fix 

'Y > 0. Then for any x E JRN, we have 

lE ( dH(An(x),A(x))) :s; e(cr, llxll2), 

JP>(dH(An(x),A(x)) > e(cr,llxlb)+'Y) :s; 

If Xr; is the estimate from a sparse consistent reconstruction algorithm 

i\_lbit(An(x), ~' K) from the measurements An(x), then it immediately follows from 
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Lemma 9 and Theorem 6 that 

(3.11) 

with high probability (depending on M and 1). Given alternative noise distributions, 

e.g., Poisson noise, a similar analysis can be carried out to determine the likely number 

of sign flips and thus provide a bound on the error due to noise. 

Another practical consideration is that real signals are not always strictly K-

sparse. Indeed, it may be the case that signals are compressible; i.e., they can be 

closely approximated by a K-sparse signal. Lemma 9 can be extended to compress-

ible signals. To do this, we consider the small coefficients, i.e., the "tail" of the 

residual of a best K-term approximation of x, to be a source of Gaussian noise on the 

measurements and then apply Lemma 9. This is possible due to our particular Gaus-

sian choice of ~ and the fact that for binary measurements, we are only concerned 

with the number of measurements that change sign. 

Corollary 3. Let~ be a matrix generated as~ rv NMxN(o, 1) and let the mapping 

A: JRN---+ BM be defined as in {3.1}. Furthermore, let <P have RIP constant 8K. Let 

1 > 0. Then for any x E §N-l we have 

lE ( d (A( ) A( )) ) < lllx-xKII2 
H X ' X K - 2 llxll2 ' 

where XK is the best K -term approximation of x. 
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The proof is given in Appendix B.7. In similar fashion to (3.11), this result implies 

that with high probability (depending on M and 'Y), the angular reconstruction error 

of x = ~lbit(A(x), ~' K) for any signal x (sparse or compressible) is bounded as 

Much like conventional CS results, the reconstruction error on the order of the best 

K-term approximation error of the signal. 

Thus far we have demonstrated a lower bound on the reconstruction error from 1-

bit measurements (Theorem 5) and introduced a condition on the mapping A that en-

abies stable reconstruction in noiseless, noisy, and compressible settings (Definition 2). 

We have furthermore demonstrated that a large class of random matrices-specifically 

matrices with coefficients draw from a Gaussian distribution and matrices with rows 

drawn uniformly from the unit sphere-provide good mappings (Theorem 6). We now 

demonstrate how the above ideas can be extended to perform saturation-agnostic (and 

multi-bit) reconstruction. 

3.6 Saturation-Agnostic Sensing 

It is possible to use the sparse consistent reconstruction algorithm ~lbit(y8 , ~' K) 

to recover measurements that have been quantized at bit depths higher than one 

and with arbitrary numbers of saturation events. To do this, we extend the idea 

that signals can be recovered from the signs of the pair-wise differences of the mea-

surements as in Corollary 2. However, instead of considering only the relationship 
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between any two consecutive pairs, we consider the unique relationships between all 

pairs of measurements. We can represent this by an overdetermined difference matrix 

DM E {-1,0, 1}(~)xM_ For example, for M = 4 we would have the 6 x 4 matrix 

1 -1 0 0 

1 0 -1 0 

1 0 0 -1 
DM= (3.12) 

0 1 -1 0 

0 1 0 -1 

0 0 1 -1 

and the measurements y = [1, -4, 3, 6]T would quantize to [1, -1, -1, -1, -1, -1JT = 

sign(DMy). Thus, we can perform the following procedure: 

1. Acquire real-valued measurements; 

2. Quantize the measurements (this may induce an unknown amount of satura­

tion); 

3. Apply DM to the quantized, saturated measurements and compute the resulting 

signs. 

We can then perform reconstruction via .6_lbit(sign(DMy), DM<P, K). A similar idea 

has been proposed for quantization of frame coefficients in a non-CS context [99). 

This can also be thought of as a specific application of some of the ideas presented 

in [33). 
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The key benefits of this technique are that it i) provides a simple way to perform 

consistent6 reconstruction from multi-bit quantized measurements; and ii) is agnostic 

to the number of saturations. Indeed, when all measurements saturate, this technique 

reduces to the signed differences reconstruction problem with guarantees given in 

Corollary 2 and problem formulation given by (3.2), i.e., for all practical purposes it 

is equivalent to the 1-bit CS case. It is thus expected that we can maintain robust 

reconstruction performance regardless of how many measurements saturate. We will 

see empirical validation of this idea in Section 4.2. This may be useful in situations 

where the saturation rate may be hard to control or the gains of the input signals are 

unpredictable. 

3. 7 1-bit CS Reconstruction Algorithms 

3.7.1 Trust, but Verify: Restricted-step shrinkage {RSS) 

Background on trust-region algorithms 

One approach to solving optimization problems like (.e1-minm) and (3.2) is to adapt 

standard CS optimization algorithms to seek a solution on the sphere. However, since 

these algorithms are intended to solve convex problems and the sphere constraint is 

non-convex, computational performance may suffer. In particular, the choice of an ap-

6In this case consistency is defined in terms of the signs of the differences of the measurements, 

not the absolute quantization intervals in which the measurements lie. 
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propriate step-size is elusive. Common methods for choosing adaptive step-sizes, such 

as Barzilai-Borwein (BB) steps, do not necessarily perform well with a unit sphere 

constraint, since they were designed for unconstrained convex optimization [100]. In 

addition, to enforce the sphere constraint, many approaches must introduce an ad-

ditional step that renormalizes intermediate solutions. It is not obvious that such 

approaches will converge. 

The methods used in this section are inspired by a particular class of restricted 

step-size algorithms called trust-region methods [101]. Given the unconstrained non-

linear programming problem 

min f(x), 
xeJR.N 

(3.13) 

trust-region methods compute the next trial point iteratively by finding the minimizer 

of the approximation m8 (x) of f(x) within a trust-region defined by a ball centered 

at the current point X 8 with radius D.. 8 ; 7 that is, 

(3.14) 

The size of the trust-region D..8 is increased or decreased automatically according 

to the performance of the model (3.14) during previous iterations. These methods 

choose step directions and lengths simultaneously, and they have been proven to be 

reliable for solving difficult non-convex problems [101]. Additionally, these algorithms 

often have provable convergence guarantees. These algorithms can also be used for 

7In this section D..8 refers to the trust region radius, not the quantization width or 1-bit recon-

struction algorithm. 
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constrained optimization, for example, by linearizing the constraints and applying a 

conventional constrained optimization technique. For more details on trust region 

methods and their adaptation for constrained optimization, we refer the reader to 

[101, 102]. 

To motivate the use of trust-region methods in 1-bit CS, consider the following 

simple example program: 

(3.15) 

The behavior of the method can be best explained by examining both a successful 

iteration and a failure iteration of the algorithm applied to (3.15). Examples of these 

cases are depicted in Figure 3.3. The first constraint is depicted by the shaded area. 

The initial point is denoted by X 8 , where s is the iteration number. The algorithm 

will take a step in a direction specified by an approximation m8 (x) (not depicted) to 

point w and then project the result onto the unit sphere. The light dashed sphere 

depicts the trust region at iteration s while the dark dashed sphere depicts the trust 

region at iterations+ 1. Depending on the success of the trial point, the trust region 

will expand or contract. 

During a successful iteration, as depicted in Figure 3.3(a), the algorithm takes a 

step to point W 8 and projects the point onto the sphere. This is depicted by the red 

dashed line. Since the result is within the feasible region, the point is accepted and 

denoted by x 8+1. The trust region radius is expanded and the procedure repeats. 

During a failure iteration, as depicted in Figure 3.3(b), the trust region radius is too 
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(a) successful iteration example (b) failure iteration example 

Figure 3.3 : Example scenarios of trust region algorithm iterations to solve (3.15). The 
goal is find an x with the minimum i\-norm such that x has unit £2-norm and x1 ::; x2 . The 
shaded region denotes the feasible constraint region and the iteration number is denoted by 
s, with initial point x 8

• The light dashed circle denotes trust region at iteration s and the 
dark dashed circle denotes trust region at iteration s + 1. w 8 and ws+l denote steps taken 
before projecting onto the unit circle. (a) During a successful iteration, the trial point falls 
within the feasible region and thus is accepted, denoted by xs+l, and the radius of the trust 
region is enlarged. (b) During a failure iteration, the trust region radius is too large and the 
trial point falls outside the feasible region. In this case, the trust region radius is reduced 
and a new trial step is taken from the initial point x 8

• 

large and the trial point on the circle is not within the feasible region. Thus, we do 

not accept this trial point and take a new step from the initial point X 8
, this time 

with a smaller trust region radius. In this example, the new step results in a feasible 

point. 

The program (3.14) is generally not solvable in closed form. This includes the 

case studied in this section where f(x) is the .€rnorm. However, by relaxing the 

problem, a closed form optimal solution can often be obtained, resulting in lower 

cost computation at each iteration. In this section, rather than solving (3.14), we 
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iteratively solve a sequence of problems of the form 

(3.16) 

where the parameter A8 essentially plays a role like the trust-region radius .6.8 in model 

(3.14). In fact, the solutions of (3.14) and (3.16) are the same under some properly 

chosen A8 and .6.8 • We will show that our adaptation of this algorithm indeed also 

has guaranteed convergence, as with conventional trust region algorithms. 

The restricted step shrinkage algorithm for 1-bit CS 

In this section, we derive an algorithm for the generalized formulation of (£1-minm) 

and (3.2) 

min llxlh s.t. Ax~ b and llxll2 = 1. 
xeSN-1 

(3.17) 

Our strategy is as follows. First, using the augmented Lagrangian framework, we 

formulate an algorithm that solves (3.17) and denote it as RSS-outer. We choose 

the augmented Lagrangian framework since many state-of-the-art CS reconstruction 

algorithms are formulated this way [26, 103, 104]. Second, a step within RSS-outer 

requires that we solve a non-convex subproblem of the form 

min (~'(x) = llxll1 + J-tf(x) s.t. llxll2 = 1, 
xeSN-1 

(3.18) 

where f(x) : JRN-+ lR is differentiable and J-t > 0. We solve (3.18) with a trust-region-

like subroutine, denoted as RSS-inner. The total procedure obtained by combining 

RSS-outer and RSS-inner is called the RSS algorithm. 
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The RSS-inner subroutine is the main contribution of this section. Thus, we choose 

to describe RSS-inner in terms of the general program (3.18). Algorithm frameworks 

other than the augmented Lagrangian can be used to formulate an algorithm for 

(3.17), and in some cases may employ the RSS-inner subroutine. As an example, 

the quadratic penalty formulation to this problem is given in Appendix C.l. This 

formulation is simpler to implement, but does not perform as fast in practice. 

For the remainder of this section, we will use the following terms. A stationary 

point of an optimization problem is a point that satisfies the Karush-Kuhn-Tucker 

(KKT) first-order optimality conditions [102]. By convergence we mean that an 

algorithm converges to a stationary point of the objective from any starting point, 

but not necessarily to a global minimizer of the objective. We say a point x is a 

cluster point of sequence {xs}seN if for any E > 0 there exist an infinite number of 

points of { x 8 } lying in the €-ball of x. Note that the sequence { x 8 } may not converge. 

A feasible solution is a solution such that all constraints are satisfied. The subgradient 

8 f of function f ( x) at point x0 is defined as any vector z such that 

f(x)- f(xo) ~ z(x- xo). (3.19) 

Augmented Lagrangian formulation of (3.17) (RSS-outer) We first formu-

late an algorithm to solve (3.17) using augmented Lagrangian framework. Starting 

from A 0 = 0, at each iteration s we solve the Lagrangian function 

(3.20) 
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for xs+I, where >. E ~M and J.L > 0. We then set J.L8 +1 := KJ.L8 , with K > 0, and updates 

the Lagrangian multipliers >,s+l according to 

The augmented Lagrangian function for (3.17) is 

m 

.C(x, >., J.L) := llxlh + LP((Ax- b)i, >.i, J.L), (3.21) 
i=l 

where 

p( t, u, J.L) := 
ift-.!!:<0 Jl.- , 

(3.22) 

otherwise. 

Thus, the intermediate problem (3.20) is of the form of (3.18) and will be solved with 

RSS-inner. The complete augmented Lagrangian procedure, and how it relies on the 

RSS-inner subroutine is summarized in Algorithim 3. 

Restricted-step subroutine to solve (3.18) (RSS-inner) The RSS-inner sub-

routine finds the solution to the subproblem (3.18) and proceeds as follows. We begin 

with an initial signal estimate x0 and an initial step-size T 0 . At iterations, from the 

point X 8
1 we compute a smooth approximation m8 (x) to the original objective func-

tion (p.(x) in (3.18). The approximation is formed by adding the first-order Taylor 

expansion of J.L f ( x) and a proximal term with respect to X8 to the .e 1- norm of x 

where the step size T 8 > 0 and g8 is the gradient of f(x). Next, we find the optimal 
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Algorithm 3: RSS-outer 
so Initialize 

Given initial solution x0 

Choose initial step-size ~-t0 and K, > 0 

Set iterations:= 0, Lagrangian multiplier A.0 = 0 

while not converged do 
Sl Compute next estimate (via RSS-inner) 

where the objective is given by (3.21). 

s2 Update multiplier and 1-£ 

sa Update iteration count 

Sets:= s + 1 

solution to the smoothed approximation 

z8 := arg min ms(x) s.t. llxlb = 1. 
xEJRn 

(3.23) 

The relationship between the optimal solution z 8 of the subproblem (3.23) and its sub-

gradient 8llz8 1h, together with the norm constraint, implies that z8 can be expressed 

explicitly. In fact, z 8 can be expressed in terms of the shrinkage ("soft threshold") 

operator, defined for any a E JRN, as 

S(a, T) := sgn(a) 0 max{lal- T, 0}, (3.24) 
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where 0 denotes the element-wise product between two vectors and I · I denotes 

the magnitude of each element in the vector. This is demonstrated in the following 

Lemma. 

Lemma 10. Suppose that X8 is not a stationary point of (w 

1. If S 8 := S (r8 X8 - J-tg 8 , 1) =1- 0, then the closed-form solution of the subproblem 

(3.23) is 

ss 
s_ 

z -ussu2· (3.25) 

2. If 1-rsxi - J-tgfl < 1 fori = 1, ... , n, then zf = 0 for all i except that zf = 

sgn(rtxs - J-tgi), where i = argmaxk=l, ... ,n lr8 Xk - J-tgZI {select only one i if 

there are multiple solutions). 

3. Otherwise, the optimal Lagrangian multiplier A with respect to llxll 2 = 1 satisfies 

and the closed-form solutions of the subproblem (3.23) satisfy llz8 11 2 = 1 and 

zf E (0, +oo ), if T 8 Xi - J-tgf = 1, 

zf E ( -oo, 0), if T 8 Xi- J-tgf = -1, (3.26) 

zf = 0, otherwise. 

The proof of this Lemma can be found in Appendix C.2. The Lemma implies that 

the next trial point Z 8 can be computed in closed form via the ratio (3.25). 

We now present our strategy for choosing the step-size 7 8 and updating the new 

iterate xs+I from z 8 • We first calculate the difference between the actual reduction of 
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the objective function (~.~(x) and predicted reduction 

and then compute the ratio 

(3.27) 

to decide whether to accept the trial point z8 as well as if the step-size should be 

updated. Specifically, if r s ~ ry1 > 0, then the iteration was successful and we set 

xs+l = z 8 ; otherwise, the iteration was not successful and we set xs+l = x 8 • Finally, 

the step-size 7 8 is updated as 

(3.28) 

where 0 < f/1 :::; f/2 < 1 and 0 < 11 :::; 12 < 1 < 13· The parameters f/1! f/2, 11712,13 

determine how aggressively the step-size is increased when an iteration is successful 

and how aggressively it is decreased when an iteration was unsuccessful. In practice, 

the performance of RSS-inner is not sensitive to the actual values of the parameters. 

The complete RSS-inner procedure to solve subproblem (3.18) is summarized in 

Algorithm 4. 

Convergence We next demonstrate that the RSS algorithm converges. Recall 

that by convergence we mean that the algorithm will converge to a stationary point 
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of (3.18). Before proceeding, we first note that there exists A E lR such that the 

first-order optimality conditions of (3.18) hold; that is, 

p + p,g(x)- AX= 0, llxll2 = 1, p E Bllxlh, (3.29) 

where g(x) = "\lf(x). In addition, we make the following assumption on g(x), 

Assumption 1. The gradient g(x) of f(x) is Lipschitz continuous with constant L: 

Note that this assumption is valid for the objective function in (3.18). 

We are now ready to establish convergence of the RSS-inner algorithm. 

Theorem 7. Suppose that for (3.18) S (T8 X8 - p,g8 ) =I 0 for every iteration. If the 

RSS-inner algorithm has finitely many successful iterations, then it converges to a 

stationary point. If the RSS-inner algorithm has infinitely many successful iterations, 

then there exists at least one cluster point of the sequence { X 8 } and every cluster point 

is a stationary point. 

To prove this, we first demonstrate that an iteration is successful if the step size at 

that iteration is sufficiently large. The remainder of the proof is by contradiction, by 

checking how much the objective function value of (3.18) decreases, for the successful 

iterations. The detailed proof can be found in Appendix C.2. The convergence of 

RSS-outer follows from the standard theory for non-smooth optimization [102]. 

In summary, in this section our goal was to solve (3.17). To do this, we formu­

lated an algorithm for (3.17) using the augmented Lagrangian framework as given by 
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Algorithm 3. Within the algorithm, we must solve the subproblem (3.20). Because 

(3.20) is of the form (3.18), it can be efficiently solved by the RSS-inner subroutine, 

as given by Algorithm 4, with provable convergence. 

3.7.2 Binary iterative hard thresholding (BIHT) 

Problem formulation and algorithm definition 

We now introduce a simple first-order algorithm for the reconstruction of sparse sig-

nals from 1-bit compressive measurements. Our algorithm, Binary Iterative Hard 

Thresholding (BIHT), is a simple modification of IHT, the real-valued algorithm from 

which is takes its name [30]. The IHT algorithm has recently been extended to handle 

measurement non-linearities [105]; however, these results do not apply to quantized 

measurements since quantization does not satisfy the requirements in [105]. 

We briefly recall that the IHT algorithm consists of two steps that can interpreted 

as follows. The first step can be thought of as a gradient descent to reduce the 

least squares objective IIY- <I>xiiV2. Thus, at iteration s, IHT proceeds by setting 

a8 +1 = x 8 +<l>T(y-<l>x8 ). The second step imposes a sparse signal model by projecting 

a8+1 onto the "fo ball", i.e., selecting the K largest in magnitude elements. Thus, 

IHT for CS can be thought of as trying to solve the problem 

x +- argmin ~IIY- <Pxll~ s.t. llxllo = K. 
xEJRN 

(3.30) 

The BIHT algorithm simply modifies the first step of IHT to instead minimize 
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a consistency-enforcing objective. Specifically, given an initial estimate x0 = 0 and 

1-bit measurements y8 , at iterations BIHT computes 

asH= Xs + ~<PT(Ys- A(xs)), 

xs+l = 17K(as+1), 

(3.31) 

(3.32) 

where A is defined as in (3.1), Tis a scalar that controls gradient descent step-size, and 

the function 17K(v) computes the best K-term approximation of v by thresholding. 

Once the algorithm has terminated (either consistency is achieved or a maximum 

number of iterations have been reached), we then normalize the final estimate to 

project it onto the unit sphere. Section 3. 7.2 discusses several variations of this 

algorithm, each with different properties. A quick summary is given in Algorithm 5. 

The key to understanding BIHT lies in the formulation of the objective. The 

following Lemma shows that the term <PT(Ys -A(x8 )) in (3.31) is in fact the negative 

subgradient of a convex objective ,J. Let (·]- denote the negative function, i.e., 

((u]_)i = (ui]- with (ui]- = ui if ui < 0 and 0 else, and u 0 v denote the Hadamard 

product, i.e., (u 0 v)i = uivi for two vectors u and v. 

Lemma 11. The quantity ~ <PT(A(x)- Ys) in {3.31} is a subgradient of the convex 

one-sided £1-norm 

.J(x) = II(Ys 0 (<Px)J-Ih, 

Thus, BIHT aims to decrease ..7 at each step (3.31). 
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Proof We first note that .:J is convex. We can write .:J(x) = L:i Ji(x) with each 

convex function Ji given by 

0, else, 

where cpi denotes a row of 4> and Ai(x) =sign (cpi, x). Moreover, if (cpi, x) =/: 0, then 

the gradient of Ji is 

0, else 

while if (cpi, x) = 0, then the gradient is replaced by the subdifferential set 

Thus, by summing over i we conclude that~ q>T(A(x)- Ys) E \1J(x;y8 , 4>). 0 

Consequently, the BIHT algorithm can be thought of as trying to solve the prob-

lem: 

x* = argmin TII[Ys 0 (4>x)]-III s.t. llxllo = K, llxll2 = 1. 
X 

Observe that since Ys 0 (4>x) simply scales the elements of 4>x by the signs y8 , 

minimizing the one-sided £1 objective enforces a positivity requirement, 

Ys 0 (4>x) ~ 0, (3.33) 

that, when satisfied, implies consistency. 
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Previous 1-bit CS algorithms (such as the RSS algorithm of the previous section) 

have used a one-sided £2-norm to impose consistency [33, 39, 75, 76). Specifically, 

they have applyied a constraint or objective that takes the form II[Ys 0 (<Px)J-IIV2. 

Both the one-sided £1 and £2 functions imply a consistent solution when they evaluate 

to zero, and thus, both approaches are capable of enforcing consistency. However, 

the choice of the £1 vs. £2 penalty term makes a significant difference in performance 

depending on the noise conditions. We explore this difference in the experiments in 

Section 4.2. 

BIHT shifts 

Several modifications can be made to the BIHT algorithm that may improve certain 

performance aspects, such as consistency, reconstruction error, or convergence speed. 

We believe that such variations exhibit interesting and useful properties that should 

be mentioned. 

Projection onto sphere at each iteration. We can enforce that every inter­

mediate solution have unit £2 norm. To do this, we modify the "impose signal model" 

step (3.32) by normalizing after choosing the best K-term approximation, i.e., we 

compute 

(3.34) 

where U(v) = v/llvll 2 . While this step is necessary for previous algorithms such 

as [39, 75, 76), it is in general not necessary in the BIHT case. 
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If we choose to impose the projection, <P must be appropriately normalized or, 

equivalently, the step size of the gradient descent must be carefully chosen. Other­

wise, the algorithm will not converge. Empirically, we have found that for a Gaussian 

matrix, an appropriate scaling is 1/( VMII<PII 2), where the 1/II<PII2 controls the am­

plification of the estimate from <J?T in the gradient descent step (3.31) and the 1/VM 

ensures that IIYs- A(x8 )112 ~ 2. Similar gradient step scaling requirements have been 

imposed in the conventional IHT algorithm and other sparse recovery algorithms as 

well (e.g., [25]). 

Minimizing hinge loss. The one-sided £1-norm is related to the hinge-loss 

function in the machine learning literature, which is known for its robustness to 

outliers [106]. Binary classification algorithms seek to enforce the same consistency 

function as in (3.33) by minimizing a function ~[~- Ys 0 (<Px)]+, where [·]+ sets 

negative elements to zero. When~> 0, the objective is both convex and has a non­

trivial solution. Further connections and interpretations are discussed in Section 4.2. 

Thus, rather than minimizing the one-sided £1 norm, we can instead minimize the 

hinge-loss. The hinge-loss can be interpreted as ensuring that the minimum value 

that an unquantized measurement (<Px)i can take is bounded away form zero, i.e., 

I ( <Px )i I ~ ~- This requirement is similar to the sphere constraint in that it avoids a 

trivial solution; however, will perform differently than the sphere constraint. In this 

case, in the gradient descent step (3.31), we instead compute 
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where 'Ill = (Ys 0 <I>) scales the rows of <I> by the signs of Ys· Again, the step size must 

be chosen appropriately, this time as c,,JII<I>II2, where c, is a parameter that depends 

on K. 

Minimizing other one-sided objectives. In general, any function R(x) = 

:E Ri(xi), where ~ is continuous and has a negative gradient for Xi < 0 and is 0 

for Xi > 0, can be used to enforce consistency. To employ such functions, we simply 

compute the gradient of Rand apply it in (3.31). 

As an example, the previously mentioned one-sided £2-norm has been used to 

enforce consistency in several algorithms. We can use it in BIHT by computing 

in (3.31). We compare and contrast the behavior of the one-sided £1 and £2 norms in 

Section 4.2. 

As another example, in similar fashion to the Huber norm [107], we can combine 

the £1 and £2 functions in a piecewise fashion. One potentially useful objective is 

L:Ri(x), where~ is defined as follows: 

0, Xi~ 0, 

~(x) = lxil, _l <X·< 0 2- I l 
(3.35) 

2+1 xi 4, 
1 

Xi< -2· 

While similar, this is not exactly a one-sided Huber norm. In a one-sided Huber-

norm, the square ( £2) term would be applied to values near zero and the magnitude 
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(l1) term would be applied to values significantly less than zero, the reverse of what 

we propose here. 

This objective can provide different robustness properties or convergence rates 

than the previously mentioned objectives. Specifically, during each iteration it may 

allow us to take advantage of the shallow gradient of the one-sided l 2 cost for large 

numbers of measurement sign discrepancies and the steeper gradient of the one-sided 

l 1 cost when most measurements have the correct sign. This objective can be applied 

in BIHT as with the other objectives, by computing its gradient and plugging it into 

(3.31). 

3.7.3 Convex 1-bit reconstruction formulations 

The world is flat: From hyperspheres to hyperplanes 

The RSS and BIHT algorithms adhere closely to the theoretical 1-bit framework 

(Sections 3.2-3.5) in that they attempt to find a solution that lies on the unit sphere. 

As previously described, this problem is not convex and therefore at best we can 

hope to prove that the algorithm converges to some local minimum as in the RSS 

algorithm, but not guarantee that we have found a feasible (i.e., consistent) solution. 

In these algorithms, we can only check if the solution is feasible. 

However, it is possible to formulate the 1-bit reconstruction problem as a convex 

program. The key insight is that we want to find any non-trivial sparse solution 

inside the feasible region and the solution does not necessarily have to live on the 
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(a) (b) 

Figure 3.4 : The geometry of the convex reconstruction formulation in two dimensions. 
The hyperplanes (lines) cp1 and cp2 correspond to the first and second rows of <P, respectively. 
The green shaded region between the planes denotes the feasible region. The circle denotes 
the unit sphere. The red solid line denotes the centroid vector w of the feasible region and 
the dashed red line denotes the constraint wT x = 1. In this case the plane lies tangent 
to the sphere since the solution and the centroid are the sa1ne. The red dot denotes the 
optimal solution before normalization. (a) w is the centroid, and (b) w is an approximation 
to the centroid. 

unit sphere, since any non-trivial solution can be normalized. One convex approach 

would then choose a hyperplane that cuts through the feasible region. For example, 

we can solve 

x +- min llxllr s.t. Y<I>x ~ 0 and wr x = 1, 
xEJR.N 

where w is the centroid of the hyperplanes defined by the rows of <I>. We may also 

choose w to be an approximation to the vector, obtained by summing the rows of <I>, 

i.e., w = L: Cf?i· This is a linear prograrn (LP).8 

8During the final preparation of this manuscript a similar program was proposed and ana-

lyzed (108). 
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The presence of the linear constraint wT x = 1 in (£1-minlB,LP) ensures that we 

avoid a trivial solution. The constraint furthermore defines a plane of possible solu­

tions. Figure 3.4 depicts the geometry of the components of (£1-minlB,LP) formulation 

in two dimensions. Specifically, the elements of the diagram are the same as in Fig­

ure 3.1 with the addition of the vector w (which is exact in (a) and approximated 

in (b)), denoted by the solid red line and the hyperplane wT x = 1 denoted by the 

dashed red line. In this example, due to the orientation of the vectors c.p1 and c.p2 , 

the true centroid w aligns with the x2-axis exactly. Since the centroid is on the 

same axis as the sparsest solution, the plane lies tangent to the unit sphere, i.e., 

wT x = xT x = llxll§ = 1. In general this need not be the case. To see this, suppose 

we could only approximate w, as in Figure 3.4(b). Because it is convex, this program 

is guaranteed to return a feasible, and thus consistent solution. 

If the LP returns a strictly sparse solution, then it can be normalized (projected 

onto the unit sphere) and thus if <P is a BESE, then we can guarantee stable recovery 

by Lemma 6. However, this program solves for the minimum l'1-norm and thus will 

not necessarily return a strictly K-sparse solution. 

Doors opened by the hinge-loss 

As we saw in the introduction of the BIHT algorithm, we can use the hinge-loss or 

square-loss to enforce consistency. This can be applied as a constraint in a convex 

optimization problem. Specifically, the hinge loss reconstruction would be formulated 
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Figure 3. 5 : The geometry of the hinge-loss inspired reconstruction formulation in two 
dimensions. The hyperplanes (lines) cp1 and cp2 correspond to the first and second rows of~ , 

respectively. The green shaded region between the planes denotes the region of consistent 
solutions. The circle denotes the unit sphere. The dark gray shaded region denotes the 
feasible region. Note that the feasible region does not include the trivial solution. The red 
dot denotes the optimal solution before normalization. 

as 

x +- min llxlh s.t. Y<I?x- K- 2: 0 
xER N 

(3.36) 

for K > 0, or the relaxation 

(R1-min1B,hinge) 

with ). > 0. Sirnilarly the square-loss would be formulated as 

(R1-min1B,square) 

These programs are convex and return non-trivial solutions. 

We can interpret these programs as making the assumption that the minimum 

amplitude of the true measurements <I?x was greater than K. To illustrate this , Fig-
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ure 3.5 depicts geometry of the hinge-loss inspired formulation in two dimensions. 

We see from the figure that the addition of the term K is akin to "lifting" the feasible 

region away from the intersection with the trivial solution (the origin). In practice 

the minimum amplitude assumption is not precisely true, however, if there is noise 

present on the measurement before quantization, it may be a reasonable assumption 

that measurements below the noise floor had quantized to the wrong values anyway. 

Thus, by tweaking K we can adjust the tolerance to noise before quantization. 

3.8 Empirical Verification 

In this section we explore the performance of the RSS and BIHT algorithms and 

compare them to the performance of previous algorithms for 1-bit CS. We also explore 

the performance of the convex formulations as well as the multi-bit formulations 

decribed earlier. 

The experimental setup is as follows. For each data point, we draw a length-N, K­

sparse signal with the non-zero entries drawn uniformly at random on the unit sphere, 

and we draw a new M x N matrix ci> with each entry c/>ij rv N(O, 1). We then compute 

the binary measurements Ys according to (3.1). Reconstruction of xis performed from 

Ys with three algorithms: matching sign pursuit (MSP) [76], restricted-step shrinkage 

(RSS), and BIHT; the algorithms will be depicted by dashed, dotted, and triangle 

lines, respectively. Each reconstruction in this setup is repeated for 1000 trials and 

with a fixed N = 1000 and K = 10 unless otherwise noted. Furthermore, we perform 
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Figure 3.6 : Average reconstruction angular error Esim vs. M/N, plotted three ways. (a) 
Angular error Esim, (b) SNR in decibels, and (c) Inverse angular error E~~. The plot demon­
strates that BIHT yields a considerable improvement in reconstruction error, achieving an 
SNR as high as 40dB when M/N = 2. Furthermore, we see that the error behaves according 
Esim = 0 (1/M), implying that on average we achieve the optimal performance rate given 
in Theorem 4. 

the trials for M/N within the range [0, 2]. Note that when M/N > 1, we are acquiring 

more measurements than the ambient dimension of the signal. While the M / N > 1 

regime is not interesting in conventional CS, it may be very practical in 1-bit systems 

that can acquire sign measurements at extremely high, super-Nyquist rates. 

Average error. We begin by measuring the average reconstruction angular error 

Esim over the 1000 trials. The results of this are depicted in Figure 3.6. We display 

the results of this experiment three different ways: i) the true angular error in Fig-

ure 3.6(a), which we denote as Esim, to demonstrate typical values achieved, ii) the 
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signal-to-noise ratio (SNR)9 in Figure 3.6(b), to demonstrate that the performance of 

these techniques is practical (since the angular error is unintuitive to most observers), 

and iii) the inverse ofthe angular error squared, i.e., €;~ in Figure 3.6(c), to compare 

with the performance predicted by Theorem 5. 

We begin by comparing the performance of the algorithms. While the angular 

error of each algorithm appears to follow the same trend, BIHT obtains smaller error 

(or higher SNR) than the others, significantly so when M/N is greater than 0.35. The 

discrepancy in performance could be due to difference in the algorithms themselves, or 

perhaps, differences in their formulations for enforcing consistency. This is explored 

later in this section. 

We now consider the actual performance trend. We see from Figure 3.6(c) that, 

above M/N = 0.35 each line appears fairly linear, albeit with a different slope, 

implying that with all other variables fixed, Esim = 0 (1/ M). This is on the order of 

the optimal performance as given by the bound given in Theorem 4 and predicted by 

Theorem 5 for Gaussian matrices. 

Misses and false alarms. We dig a little deeper into the source of errors by 

examining the reconstruction "misses," i.e., those coefficients that were identified 

as zero that are non-zero in the true signal, as well as the "false-alarms", i.e., those 

coefficients that were identified as non-zero that are zero in the true signal. The results 

9We define the reconstruction SNR in decibels as SNR(x) := 10log10(llx11VIIx- xll~). Note that 

this metric uses the standard euclidean error and not angular error. 
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Figure 3. 7 : Reconstructed signal coefficient (a) misses, and (b) false-alarms. The MSP 
algorithm is most likely to miss a coefficient, while RSS and BIHT perform comparably. 
The RSS algorithm returns a large number of coefficients that are close to zero and thus 
performs poorly in the false-alarms metric. Both BIHT and MSP are restricted to have at 
most K false alarms by design. 

are depicted in Figure 3.7(a) and (b), respectively. In both cases, BIHT out performs 

the other algorithms, although it is very close to the RSS algorithm in the number of 

misses. While both RSS and MSP have significantly more false-alarms than BIHT, by 

design, MSP can return at most K non-zero coefficients and thus cannot have more 

than K false alarms. Meanwhile, the RSS algorithm may have many coefficients that 

are significantly close to zero but are numerically counted as non-zeros. 

Consistency. We also expose the relationship between the Hamming distance 

dH(A(x) , A(x)) between the measurements of the true and reconstructed signal and 

the angular error of the true and reconstructed signal. Figure 3.8 depicts the Ham-

ming distance vs. angular error for three different values of M / N. The particularly 

striking result is that BIHT returns significantly more consistent reconstructions than 

the two other algorithms. This is clear from the fact that most of the red (plus) points 

lie on the y-axis while the majority of blue (dot) or green (triangle) points do not. 
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Figure 3.8 : Reconstruction angular error Esim vs. measurement Hamming error EH. BIHT 
returns a consistent solution in most trials, even when the number of measurements is too 
low to permit a small angular error (see (a) M/N = 0.1). For larger M/N regimes, we see a 
linear relationship Esim ~ C + EH between the average angular error Esim and the hamming 
error EH where C is constant (see (b) and (c)). The BESE formulation in Definition 2 
predicts that the angular error is bounded by the hamming error EH in addition to an offset 
E. The dashed line Euwoo + EH denotes the empirical upper bound for 1000 trials. 

We find that, even in significantly "under-sampled" regimes like M/N = 0.1, where 

the BcSE is unlikely to hold, BIHT is likely to return a consistent solution (albeit 

with high variance of angular errors). We also find that in "over-sampled" regimes 

such as M / N = 1. 7, the range of angular errors on the y-axis is small. 

We can infer an interesting performance trend from Figures 3.8(b) and (c), where 

the BESE property may hold. Since the RSS and MSP algorithms often do not 

return a consistent solution, we can visualize the relationship between angular error 

and hamming error. Specifically, on average the angular reconstruction error is a 

linear function of hamming error, EH = dH(A(x), A(x)), as similarly expressed by 

the reconstruction error bound provided by BESE. Furthermore, if we let c1000 be 

the largest angular error (with consistent measurements) over 1000 trials, then we 
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Figure 3.9 : Enforcing consistency: One-sided £1 vs. one-sided £2 BIHT. When BIHT 
attempts to minimize a one-sided £2 instead of a one-sided £1 objective, the performance 
significantly decreases. We find this to be the case even when an oracle provides the true 
signal support a priori. Note: (c) is simply a zoomed version (b). 

can suggest an empirical upper bound for BIHT of E1000 + EH· This upper bound is 

denoted by the dashed line in Figures 3.8(b) and (c). 

One-sided f 1 vs. one-sided £2 objectives. As demonstrated in Figures 3.6 and 

3.8, the BIHT algorithm achieves significantly improved performance over MSP and 

RSS in both angular error and Hamming error (consistency). A significant difference 

between these algorithms and BIHT is that MSP and RSS seek to impose consistency 

via a one-sided £2-norm, as described in Section 3. 7.2. Minimizing either the one-

sided £1 or one-sided £2 objectives will enforce consistency on the measurements of 

the solution; however, the behavior of these two terms appears to be significantly 
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different, according to the previously discussed experiments. 

To test the hypothesis that this term is the key differentiator between the algo­

rithms, we implemented BIHT-£2, a one-sided £2 variation of the BIHT algorithm that 

enabled a fair comparison of the one-sided objectives (see Section 3.7.2 for details). 

We compared both the angular error and Hamming error performance of BIHT and 

BIHT-£2. Furthermore, we implemented oracle assisted variations of these algorithms 

where the true support of the signal is given a priori, i.e., 'IJK in (3.32) is replaced by 

an operator that always selects the true support, and thus the algorithm only needs 

to estimate the correct coefficient values. The oracle assisted case can be thought 

of as a "best performance" bound for these algorithms. Using these algorithms, we 

perform the same experiment detailed at the beginning of the section. 

The results are depicted in Figure 3.9. The angular error behavior of BIHT-£2 is 

very similar to that of MSP and RSS and underperforms when compared to BIHT. 

We see the same situation with regards to Hamming error: BIHT finds consistent 

solutions for the majority of trials, but BIHT-£2 does not. Thus, the results of this 

simulation suggest that the one-sided term plays a significant role in the quality of 

the solution obtained. 

One way to explain the performance discrepancy between the two objectives comes 

from observing the deep connection between our reconstruction problem and binary 

classification. As explained previously, in the classification context, the one-sided £1 

objective is similar to the hinge-loss, and furthermore, the one-sided £2 objective is 
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Figure 3.10 : Enforcing consistency with noise: One-sided £1 vs. one-sided £2 BIHT. 
When BIHT attempts to minimize a one-sided £2 instead of the one-sided £1 objective, the 
algorithm is more robust to flips of measurement signs. *Note that the Hamming error 
in (b) is measured with regard to the noisy measurements, e.g., a Hamming error of zero 
means that we reconstructed the signs of the noisy measurements exactly. 

similar to the so-called square-loss. Previous results in machine learning have shown 

that for typical convex loss functions, the minimizer of the hinge loss has the tightest 

bound between expected risk and the Bayes optimal solution [109] and good error 

rates, especially when considering robustness to outliers [109, 110]. Thus, the hinge 

loss is often considered superior to the square loss for binary classification.10 One 

might suspect that since the one-sided £1-objective is very similar to the hinge loss, 

it too should outperform other objectives in our context. Understanding why in our 

context, the geometry of the £1 and £2 objectives results in different performance is 

an interesting open problem. 

We probed the one-sided fi/£2 objectives further by testing the two versions of 

10 Additional ''well-behaved" loss functions (e.g., the Huber-ized hinge loss) have been proposed [56] 

and a host of classification algorithms related to this problem exist [56, llQ-113], both of which may 

prove useful in the 1-bit CS framework in the future. 
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Figure 3.11 : Comparison of BIHT to conventional CS multibit uniform scalar quanti­
zation (multibit reconstructions performed using BPDN [72]). BIHT is competitive with 
standard CS working with multibit measurements when the total number of bits is severely 
constrained. In particular, the BIHT algorithm performs strictly better than CS with 4 bits 
per measurement. 

BIHT on noisy measurements. We flipped a number of measurement signs at random 

in each trial. For this experiment, N = M = 1000 and K = 10 are fixed , and we 

performed 100 trials. We varied the number of sign flips between 0% and 5% of the 

measurements. The results of the experiment are depicted in Figure 3.10. We see that 

for both the angular error in Figure 3.10(a) and Hamming error in Figure 3.10(b) , that 

the one-sided £1 objective performs better when there are only a few errors and the 

one-sided £2 objective performs better when there are significantly more errors. This 

is expected since the £1 objective promotes sparse errors. This experiment implies 

that BIHT-£2 (and the other one-sided £2-based algorithms) may be more useful when 

the measurements contain significant noise that might cause a large number of sign 

flips, such as Gaussian noise. 
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Performance with a fixed bit-budget. In some applications we are interested 

in reducing the total number of bits acquired due to storage or communication costs. 

Thus, given a fixed total number of bits, an interesting question is how well l-it CS 

performs in comparison to conventional CS quantization schemes and algorithms. For 

the sake of brevity, we give a simple comparison here between the 1-bit techniques 

and uniform quantization with Basis Pursuit DeNoising (BPDN) [72] reconstruction. 

While BPDN is not the optimal reconstruction technique for quantized measurements, 

it (and its variants such as the LASSO [56]) is considered a benchmark technique 

for reconstruction from measurements with noise and furthermore, is widely used in 

practice. 

The experiment proceeds as follows. Given a total number of bits and a (uniform) 

quantization bit-depth B (i.e., number of bits per measurement), we choose the num­

ber of measurements as M = total bits/ B, N = 2000, and the sparsity K = 20. 

The remainder of the experiment proceeds as described earlier (in terms of drawing 

matrices and signals). For bit depth greater than 1, we reconstruct using BPDN with 

an optimal choice of noise parameter and we scale the quantizer to such that signal 

can take full advantage of its dynamic range. 

The results of this experiment are depicted in Figure 3.11. We see a common trend 

in each line: lackluster performance until "sufficient" measurements are acquired, 

then a slow but steady increase in performance as additional measurement are added, 

until a performance plateau is reached. Thus, since lower bit-depth implies that 
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a larger number of measurements will be used, 1-bit CS reaches the performance 

plateau earlier than in the multi-bit case (indeed, the transition point is achieved at 

a higher number of total bits as the bit-depth is increased). This enables significantly 

improved performance when the rate is severely constrained and higher bit-rates per 

measurements would significantly reduce the number of available measurements. For 

higher bit-rates, as expected from the analysis in [78], using fewer measurements with 

refined quantization achieves better performance. 

It is also important to note that, regardless of trend, the BIHT algorithm performs 

strictly better than BPDN with 4 bits per measurement and uniform quantization 

for the parameters tested here. This gain is consistent with similar gains observed 

in [39, 76]. A more thorough comparison of additional CS quantization techniques 

with 1-bit CS is a subject for future study. 

Comparison to quantized Nyquist samples. In our next experiment, we 

compare the performance of the 1-bit CS technique to the performance of a conven­

tional uniform quantizer applied to uniform Nyquist-rate samples. Specifically, in 

each trial we draw a new Nyquist-sampled signal in the same way as in our previous 

experiments and with fixed N = 2000 and K = 20; however, now the signals are 

sparse in the discrete cosine transform (DCT) domain. We consider four reconstruc­

tion experiments. First, we quantize the Nyquist-rate signal with a bit-depth of /3 

bits per sample (and optimal quantizer scale) and perform linear reconstruction (i.e., 

we just use the quantized samples as sample values). Second, we apply BPDN to the 
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Figure 3.12 : Comparison of uniformly quantized Nyquist-rate samples with linear re­
construction (solid) and BPDN denoising (dashed), CS with M = N and BPDN recon­
struction (dash-circle), and 1-bit quantized CS measurements with BIHT reconstruction 
(dash-dotted). Nyquist samples were quantized with bit-depth {3 E [2, 10] and 1-bit CS 
used M = {3N measurements; the same number of bits is used in each reconstruction. The 
Nyquist-rate lines have the classical 6.02dB /bit-depth slope, as expected. For a fixed num­
ber of bits, 1-bit CS does not follow this slope and outperforms conventional quantization 
when {3 < 6. 

quantized Nyquist-rate samples with optimal choice of noise parameter, thus denois-

ing the signal using a sparsity model. Third, we draw a new Gaussian matrix with 

M = N, quantize the measurements to /3 bits, again at optimal quantizer scale, and 

reconstruct using BPDN. Fourth, we draw a new Gaussian matrix with M = f3N and 

compute measurements, quantize to one bit per measurement by maintaining their 

sign, and perform reconstruction with BIHT. Note that the same total number of bits 

is used in each experiment. 

Figure 3.12 depicts the average SNR obtained by performing 100 of the above tri-

als. The linear, BPDN, Gaussian measurements with BPDN, and BIHT reconstruc-

tions are depicted by solid, dashed, dash-circled, and dash-dotted lines, respectively. 
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Figure 3.13 : Comparison of BIHT, BIHT-£2, RSS, and the convex LP formulation 
(f1-min1B,LP) for a fixed bit budget (and fixed N = 2000, K = 20). In the noiseless setting 
even when the supports are known, the BIHT algorithms outperforms all other methods 
and LP performs second best. 

The linear reconstruction has a slope of 6.02dB/bit-depth, exhibiting a well-known 

trade-off for conventional uniform quantization. The BPD N reconstruction (without 

projections) follows the same trend, but obtains an SNR that is at least 10dB higher 

than the linear reconstruction. This is because BPDN imposes the sparse signal 

model to denoise the signal. We see about the same performance with the Gaussian 

projections at M = N, although it performs slightly worse than without projections 

since the Gaussian measurements require a slightly larger quantizer range. Similarly 

to the results in Fig. 3.11, in low Nyquist bit-depth regimes ({3 < 6), 1-bit CS achieves 

a significantly higher SNR than the other two techniques. When 6 < {3 < 8, 1-bit 

CS is competitive with the BPDN scenario. This simulation demonstrates that for a 

fixed number of bits, 1-bit CS is competitive to conventional sampling with uniform 

quantization, especially in low bit-depth regimes. 
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Comparison ofBIHT, BIHT-l2 , RSS, and the LP. In our next experiment, 

we compare the performance of severall-bit CS reconstruction algorithms for a fixed 

bit budget. Specifically, we compare the BIHT, BIHT-f2 , and RSS algorithms with 

the convex (f1-min1B,LP) formulation. The LP formulation was implemented using 

MATLAB's built-in LP solver. Additionally, we include the performance when the 

true signal support is known a priori for both BIHT and the LP. Our choice of 

extending these two algorithms will become clear shortly. 

We choose the number of measurements as M = total bits, N = 2000, and the 

sparsity K = 20. The experiment proceeds in the same fashion as in Figure 3.11, 

however, now we only consider 1-bit measurements and performance across differ­

ent algorithms. The BIHT, BIHT-f2 , RSS algorithms, and LP are denoted by solid 

(black), dotted triangle (black), dash-dotted (blue), and dashed (red) lines, respec­

tively. The known support enhanced variations of the algorithms are marked with 

circles. 

As in the previous noiseless experiments, we find that BIHT significantly outper­

forms the other non-oracle-assisted algorithms, in this case, when the total number 

of bits is greater than 400. As a general trend, beyond 500 total bits, we find that in 

order of decreasing performance we have the LP, RSS, and BIHT-f2 • 

Since the LP formulation and BIHT performed the best, we compared them when 

the support is known a priori. Doing so measurements the best performance we 

can hope to achieve with these algorithms (in similar fashion to the oracle-assisted 
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reconstruction of Section 1.2). These additional experiments are denoted by the lines 

with hollow circles on them. Although both algorithms perform with the same general 

trend, we see that even when the support is known, BIHT still outperforms the convex 

program. Also note that the convex program will always return a consistent solution 

and that BIHT returns a consistent solution most of the time. Thus, we can draw 

the conclusion that in the noiseless case, on average, BIHT provides a solution closer 

to the true solution inside the feasible region than does the LP, and that perhaps 

consistency isn't everything. It could be possible that the improved performance of 

BIHT in this case has to do with the distribution of the signals that were drawn in 

these experiments. 

Comparison of BIHT, BIHT-£2 , RSS, and the LP in noise. We also 

compare the performance with noisy measurements between the different algorithms 

and formulations proposed earlier. We performed an experiment where in each trial, 

we add zero-mean Gaussian noise e to the measurements before quantization, i.e., 

Ys = sign(<I>x +e). (3.37) 

We use the parameters N = 1000, K = 10, M = 2N and scale the noise so that 

the measurement SNR varies between 0 dB and 40 dB. Once the measurements are 

quantized, we perform reconstruction. The same algorithms are compared as in the 

previous experiment and again, the LP was implemented using MATLAB's built-in 

tools. 

Figure 3.14 depicts the results of this experiment. As we have seen before, the 
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Figure 3.14: Reconstruction SNR as a function of measurement SNR (before quantization). 
Reconstructions performed with BIHT, BIHT-f2, RSS, and the LP for fixed N = 1000, 
K = 10, M = 2N and measurement SNR between 0 dB and 40 dB. The BIHT algorithm 
outperforms the others in the high SNR regime (greater than 30dB) but underperforms in 
lower SNR regimes. The RSS algorithm achieves competitive performance to the BIHT -f2 
algorithm when only the K largest coefficients are saved. T he convex algorithm does not 
appear to outperform the RSS algorithm, despite its potentially nice properties. 

BIHT algorithm performs best when the noise 1s very low (and the SNR is very 

high). However, below 30dB the other algorithms start to outperform BIHT. We 

also see that BIHT -£2 generally performs better than RSS but the two algorithms 

perform about the same when we only keep the K largest returned RSS coefficients 

(recall that RSS generally does not return a sparse solution). The RSS, LP, and 

BIHT-£2 algorithms perform similarly because they employ similar formulations to 

enforce consistency, similar to that of the square-loss. Intuitively, the one-sided R1 

consistency formulation should bias toward sparse sign error and thus it makes sense 

that it performs better in lower noise scenarios. 

Saturation-agnostic reconstruction. In our final experiment in this section, 



40,--------.---------.--------.----, 

25 
a: 
t5 20 
a: 

15 · ~·L . 
I 

10 . 

5 · 

0.02 0.04 0.06 
Saturation Level (G) 

117 

Figure 3.15 : Saturation-agnostic sensing in action. A 4-bit quantizer with finite range G 
was applied to CS measurements as described in Section 2.1. The saturation-agnostic curve 
corresponds to the technique described in Section 3.6 and the saturation consistent curve was 
generated with the SC-CoSaMP, noted in Chapter 2. This simulation demonstrates that the 
saturation-agnostic formulation can achieve a significantly non-zero SNR in regimes where 
most measurements are saturated, in fact, even when all measurements have saturated. 
This technique provides robust performance when the saturation level cannot be controlled. 

we explore the benefits of saturation-agnostic reconstruction via the 1-bit algorithms, 

as explained in Section 3.6. We are interested in testing t his technique in the context 

of measurement saturation as explained in the introduction to this chapter. Specifi-

cally, we are interested in demonstrating that signal reconstruction is possible for an 

arbitrary amount of saturation via a single consistent formulation. 

The setup of the experiment is as follows. In each trial we generate an length 

N = 1000, K = 10 sparse unit-norm signal. We also draw a new M x N Gaussian 

measurement matrix with variance 1/ M, for fixed M = N /2. After computing mea-

surements, we apply a 4-bit quantizer with finite range G, as described in Section 2.1. 

We vary G between 0 and 0.07. We perform reconstruction with two algorithms: 
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i) the saturation-agnostic reconstruction formulation of Section 3.6 with the BIHT 

algorithm, and ii) the greedy saturation consistent CoSaMP (SC-CoSaMP) used in 

the democratic method and detailed in Chapter 2. SC-CoSaMP is known to break 

down when too much saturation is incurred on the measurements. We chose the 

BIHT algorithm to implement the saturation-agnostic approach since it produced 

the best noiseless reconstruction performance in the previous experiments. Results 

are expressed in RSNR and reflect the average over 100 trials. We chose the signal 

to have unit norm for the sake of comparison but this is not required in general. 

Figure 3.15 depicts the results of this experiment. The dashed (blue) line de­

picts the average reconstruction performance obtained by the multibit technique and 

the solid (black) line depicts the performance obtained when applying SC-CoSaMP. 

For large quantizer range G, little saturation occurs and the SC-CoSaMP algorithm 

slightly outperforms the BIHT algorithm. However, this may be due to the differences 

in the algorithms and not the formulation itself. When G is decreased significantly, 

in this case below 0.02, the SC-CoSaMP algorithm drops steeply in performance, 

eventually obtaining an SNR of 0 when G = 0. However, the multibit BIHT algo­

rithm, although it moderately decreases in performance around the same G = 0.02, 

maintains a significantly non-zero SNR, even at G = 0. Indeed, G = 0 corresponds 

to the "supersaturated" case, i.e., 1-bit CS. 

The conclusion of this experiment, and indeed this chapter, is that we are in fact 

able to stably recover signals regardless of saturation level (or even bit-depth). The 
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algorithm is agnostic to the number of saturations and provides reasonable perfor­

mance where previous algorithms fail. 

3.9 A Note on Alternative 1-Bit Frameworks 

Two alternative approaches have been introduced to acquire 1-bit measurements and 

recover sparse signals. In [114], the authors propose a convolution-based imaging sys­

tem with 1-bit measurements. Reconstruction is performed using total variation (TV) 

minimization and a gradient descent algorithm. In addition, the authors introduce a 

convex regularization parameter that simultaneously enforces both sign consistency 

and non-zero signal norm. In [98], the authors propose both non-adaptive and adap­

tive 1-bit sensing schemes. The non-adaptive scheme, which most closely relates to 

the framework presented here, relies on knowledge of the dynamic range of the sig­

nal, as well as an assumption about the distribution of the values of the nonzero 

coefficients. 



Algorithm 4: RSS-inner (subroutine) 
so Initialize 

Given initial solution x0 and initial step-size T 0 

Choose 0 < 'f/1 ::; 'f/2 < 1 and 0 < rl ::; ')'2 < 1 < rs 

Set iteration s := 0 

while not converged do 
s1 Compute step 

Compute a new trial point z 8 via (3.25) 

Compute the ratio r8 via (3.27) 

s2 Accept or reject the trial point 

If r > '~'~1 then set xs+l = z 8 
s- ., ' 

otherwise set xs+ 1 = x 8 

' 

sa Adapt step-size 

Update T 8 according to (3.28) 

84 Update iteration count 

Sets:= s + 1 
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Algorithm 5: Binary Iterative Hard Thresholding (BIHT) 
so Initialize 

Set initial solution x0 := 0 

Set iterations:= 0 

while not converged do 

Sl Update estimate (note that this is quite different from IHT proper) 

s2 Hard threshold and project onto unit sphere 

ss Update iteration count 

Sets:= s + 1 
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Chapter 4 

Regime Change 

We now return to the multibit scalar quantizer (2.1) from Chapter 2: 

(4.1) 

where the signal noise is denoted by n E JRN, and QB : R -+ 2l is a B-bit scalar 

quantization function (applied element-wise in (2.1)) that maps real-valued CS mea­

surements to the discrete alphabet 2l with 12ll = 2B. 

Since the quantizer is scalar, we can write the bit-budget constraint as 

~=MB. (4.2) 

This fixed bit-budget ~ = M B and the signal noise n impose a competing perfor­

mance tradeoff as a function of M. On the one hand, since B = ~ / M, we can 

increase the bit-depth as we decrease the number of measurements, thereby increas­

ing the precision of each measurement. On the other hand, signal noise is amplified 

due to noise folding as we decrease the number of measurements, thereby decreasing 

the precision of each measurement [36]. Thus, we find ourselves in somewhat of a co­

nundrum: as we take fewer measurements we can allocate more bits per measurement 

(good), but noise folding increases the risk of wasting these bits on already imprecise 

measurements (bad). 
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We can gain more insight into this conundrum through a back-of-the-envelope 

calculation of the optimal total acquisition error, which comprises the expected mean­

squared distortion due to a scalar quantizer for Gaussian measurements O(llxii~2-2B) 

and the expected reconstruction error due to measurement noise 0 (t;u~). Equating 

these noise levels to minimize the total mean square error (MSE) leads to 

This expression can also be found using classical rate-distortion bounds in terms of 

the signal-to-noise ratio (SNR) [115, 116]. Imposing the fixed bit-budget B = fJ3jM 

and rearranging terms, we find that the MSE is minimized when 

(4.3) 

The term on the left is the logarithm of the SNR of the input signal. For fixed fJ3 and 

N, (4.3) implies that there are two operational regimes that correspond roughly to 

"high" input SNR and "low" input SNR. At high input SNR, the MSE is minimized 

by taking a small number of measurements M with large bit-depth; we call this the 

measurement compression (MC) regime. At low input SNR, the MSE is minimized 

by taking a large number of measurements M with small bit-depth; we call this 

the quantization compression ( QC) regime. The exact SNR at which the transition 

between the two regimes occurs is a function of the total bit-budget. 

In this chapter, 1 we argue for the distinction between the MC and QC regimes in 

1This chapter includes work done in collaboration with Richard Baraniuk [117]. 
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two ways. First, we formalize the back-of-the-envelope calculation in ( 4.3) by ana­

lyzing the reconstruction MSE that results from the combined effects of quantization 

and signal noise folding. Specifically we provide an upper bound on this MSE for an 

optimal non-uniform scalar quantizer that roughly predicts the trends of the optimal 

bit-depth for different signal noise powers and bit-budgets. Second, we provide a suite 

of simulations for a specific setup frequently encountered in practice: the acquisition 

of sparse signals from uniformly quantized measurements. Surprisingly, at certain 

practical SNRs, our simulations suggest that a 1-bit quantizer (using the reconstruc­

tion techniques developed in [74]) exhibits better performance than larger bit-depth 

quantizers. 

4.1 Analysis of Quantized CS Systems with Signal Noise 

In this section we derive a new upper bound on the oracle-assisted reconstruction error 

due to both noise and quantization, making the back of the envelope calculation 

( 4.3) more rigorous. This bound enables us to argue that, for a fixed bit-budget 

~ = M B, it may be better to quantize to fewer bits per measurement B than take 

fewer measurements M. The following theorem is proved in Appendix D. 

Theorem 8. Suppose that YQ = QB(<P(x + n)). Let the signal x E JRN be sparse with 

support n E {1, ... , N} and lf21 = K, where the elements n are chosen uniformly 

at random and the amplitudes of the non-zero coefficients are drawn according to 

xi E n "' N(O, a;). Let the signal noise n E JRM be a random, white, zero-mean 
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vector with variance u~. Furthermore, let the M x N matrix <I> satisfy the RIP 

of order K with constant 8, q>q>T = ~IM, and M < N. Choose QB to be the 

optimal scalar quantizer with B > 1 that minimizes the MSE for the distribution of 

the measurements <I>(x+n). Then for a fixed bit-budget ofSJ3 = MB, the MSE of the 

oracle-assisted reconstruction estimate x satisfies 

(II ~~~2) 2K ( 2 -2B 2 ( -2B)) K (S)3 ) IE X- X 2 :::; SJ3(1 _ 8) KuxB2 + NunB 1 + 2 + (1 _ 8) B -1 6, 

(4.4) 

where 6 = maJC.i#j IIE(Qn(<I>x + <I>n)iQn(<I>x + <I>n)i)l is the correlation between the 

quantized measurements. 

Each component of the bound (4.4) is fairly intuitive. The term Ku;B2-2B re-

fleets the error due to quantizing the measurements. The term Nu~B (2-2B + 1) 

reflects both the error due to measured signal noise as well as the quantization of 

that noise. The reconstruction error is effectively proportional to these two terms. 

The final term ( ~ - 1) 6 reflects an additional error due to the correlation between 

the quantized measurements. In many CS scenarios we expect this term to be close to 

zero, and furthermore for large B it has been shown that this term can be accurately 

approximated as zero [118]. Thus, choosing the optimal B primarily comes down to 

balancing the terms inside the parentheses. 

The bound in ( 4.4) applies to strictly sparse signals immersed in signal noise. 

However, it may also be of interest to consider so-called compressible signals, i.e., sig-

nals that are not strictly sparse but that can be reasonably approximated by retaining 
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their K largest magnitude coefficients. For such signals, the "tail" part of the signal 

that we do no expect to recover, i.e., the subset of the smallest N- K entries, is also 

subject to noise folding. Theorem 8 can be extended to handle compressible signals 

by inflating the second term to account for the additional correlation between the 

quantized measurements. The general performance trends will be similar to sparse 

signals in noise; i.e., signals that are "less compressible" will induce the same regime 

as signals with low input SNR. 

The bound in ( 4.4) is pessimistic, since we do not take into account the benefits 

accrued by increasing the number of measurements, for instance by improving the RIP 

constants of <I>. Furthermore, when the quantization error is large enough to dominate 

the measurement noise, the measurement noise terms may not play an active role in 

the true behavior of the system. Again, this is not reflected by the bound. Finally, 

the bound does not apply to 1-bit quantization or the case where M > N. 

To use the bound (4.4) to support our argument that there are both MC and QC 

regimes in CS, we examine the behavior of the oracle-assisted reconstruction error as 

a function of the bit-depth B (or equivalently the number of measurements M since 

~ = M B). Since the solution for the optimal B cannot be computed in closed form 

without resorting to tabulated functions, we evaluate the bound over some interesting 

parameters. The evaluation of the bound is depicted in Figure 4.1, where plots (a)­

( d) correspond to input signal-to-noise ratios (ISNRs) of 35dB, 20dB, 10dB, and 5dB, 
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B (bit-depth) B (bit-depth) 

(a) ISNR = 35dB, optimal bit-depth= 7 

''~ i·~ 
0·52 4 6 8 10 12 

B (bit-depth) 

(c) ISNR = lOdB, optimal bit-depth= 2 

(b) ISNR = 20dB, optimal bit-depth = 5 

~~ 
2 4 6 8 10 12 

B (bit-depth) 

(d) ISNR = 5dB, optimal bit-depth= 2 

Figure 4.1 : Upper bound on the oracle-assisted reconstruction error as a function of bit­
depth B and ISNR. The term inside the parenthesis in the bound (4.4) was computed. 
Black dots denote the minimum point on each curve. 

respectively. We define the input SNR (ISNR) in dB as 

( lE(IIxll~)) 
ISNR := 10 log10 lE(IInll~) . (4.5) 

where lE(IIxll~) = Ka; and lE(IInll~) = Na~. 

Since we are primarily concerned with the performance trend of (4.4) as a function 

of B and the ISNR, we make a few simplifications when plotting the bound. First, we 

only evaluate the term inside the parenthesis; this term is proportional to the error 

on the measurements and does not depend on the RIP constant, the sparsity K, or 

the correlation between the quantization errors. Second, by only evaluating the term 

inside the parenthesis in ( 4.4), we do not take into account the effect of M on the 

RIP constants ( 8 decreases as M increases). The minimum error point in each curve 
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is denoted by a solid black dot. 

The message from Figure 4.1 is clear. The tradeoff between the number of mea­

surements M and bit-depth B empirically follows a convex curve, i.e., the error not 

only increases when B is too small, but the error also increases when B is too large. 

In other words, more bits per measurement is not necessarily optimal. Furthermore, 

as expected, the minimum reconstruction error occurs for smaller B as the ISNR 

decreases. For the high ISNR of 35dB, the bound is minimized at a bit-depth of 

approximately 7 bits per measurement. The is an example of the MC regime, where 

larger bit-depths and thus lower M yield the best performance. For the low ISNR of 

10dB, the bound is minimized at a bit-depth of approximately 2 bits per measure­

ment. This is an example of the QC regime, where larger bit-depths and thus higher 

M yield the best performance. 

4.2 Experiments 

In the previous section we have argued that the QC regime exists by deriving an 

upper bound on the oracle-assisted reconstruction error. In this section we perform a 

suite of simulations to empirically study for which input noise levels and bit-budgets 

this regime will occur in practical systems. Specifically our simulations i) validate the 

theoretical result in Theorem 8, ii) demonstrate the performance achieved in practice 

when combining quantization and signal noise, and finally iii) prove the existence of 

the QC regime. A surprising additional result emerges from the simulations: when 
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nontrivial signal noise is present, 1-bit CS systems perform competitively with, if not 

better than conventional CS with uniform multibit quantization. 

4.2.1 Setup 

Our simulations were performed using canonically (identity) sparse signals x. 2 The 

signals were measured with i.i.d. Gaussian matrices, i.e., y = <P(x + n) with 

<P ""'NMxN(O, 1/M). The measurements were quantized uniformly with quantiza­

tion interval !:l. = G2-B+1, where G is the dynamic range of the quantizer. In all 

simulations, we chose G = II<Pxll= to maximize the range of the quantizer and ensure 

that for any noiseless measurement I(<Px)i- Qs((<Px)i)l :::; !:l./2. 

In each trial we drew a new M x N sensing matrix <Panda new signal x. The 

non-zero coefficients of x were chosen according to a Gaussian distribution, and their 

positions were chosen at random. We additionally added Gaussian noise to x to 

obtain the desired ISNR. For B > 1, reconstruction of the estimate x was performed 

using the oracle-assisted reconstruction algorithm (1.10) for Section 4.2.2 and (BPDN) 

with an oracle value off = IIY- Qs(Y)II 2 for the remaining subsections. For B = 

1, reconstruction was performed using both the binary iterative hard thresholding 

(BIHT-£1) and BIHT-£2 algorithms; the former generally performs better in lower 

noise scenarios and the latter performs better in higher noise scenarios [74]. We 

2The results of simulations did not change when the signals were DOT-sparse. 
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(b) ISNR = 20dB, optimal bit-depth = 6 
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Figure 4.2 : Oracle-assisted reconstruction error (compare to the analytical upper bound 
plotted in Figure 4.1) for N = 1000, K = 10, and ~ = 3N. As predicted by (4.4), the 
minimum reconstruction error (denoted by black dots) is achieved by smaller bit-depths as 
the ISNR decreases. 

report the reconstruction SNR (RSNR) 

·- ( llxll~ ) RSNR .- 10 log10 llx _ xll~ (4.6) 

in dB unless otherwise noted. Recall that the number of measurements and bit-

depth are constrained by ~ = M B. We average our results over 100 trials for each 

parameter tuple (N, K, ~' B, ISNR). 

4.2.2 Oracle-assisted reconstruction 

We begin by validating the message from Theorem 8, i.e., we examine the solution 

to the oracle-assisted reconstruction algorithm to see how the empirical performance 

relates to the bound (4.4). Our goal is to compare the performance of our simula-
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tions to the theory-based plots in Figure 4.1. The experiments were performed as 

described previously with the oracle-assisted reconstruction algorithm. We plot the 

reconstruction error llx- xll~ for bit-depths between 2 and 12 for a fixed bit-budget 

~ = 3N. We compared bit-depths of 2 and higher, since (4.4) does not hold for 

lower bit-depths. Furthermore, unlike the statement of Theorem 8, recall that we 

used a uniform quantizer and not an optimal quantizer for the Gaussian measure­

ments. Figures 4.2(a)-(d) depict the results for ISNR = 35dB, 20dB, 10dB, and, 

5dB, respectively. 

The plots generally follow the same trends as in Figure 4.1; however the minimum 

error occurs for a slightly higher bit-depth in each case. The plots demonstrate that, 

as claimed in Section 4.1, the best performance is obtained for smaller bit-depths as 

the ISNR decreases. 

4.2.3 Reconstruction performance as a function of~ 

We next explore the performance achieved using practical algorithms instead of oracle­

assisted reconstruction. The experiments were performed as explained previously, 

for N = 1000 and K = 10, bit-depths B = 1, 2, 4, 6, 8, 10, 12, and for bit-budgets 

~ E [N/2, 7N], with the BPDN and BIHT algorithms. Figures 4.3(a)-(d) depict the 

experiment for the input ISNR = 35, 20, 10, 5dB, respectively. 

In the high ISNR regime of 35dB, bit-depths of B = 1, 6, 8, 10, and 12 obtain 

similar RSNRs of around 35dB, while smaller bit-depths result in poorer performance. 
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Figure 4.3 : Reconstruction performance as a function of total bits, for different ISNRs. 
Plots depict RSNR for different bit-depths B for different ISNR with parameters N = 1000 
and K = 10, and reconstruction via BPDN. The figure demonstrates that as the ISNR is 
decreased, smaller bit-depths achieve better performance. Additionally, 1-bit CS techniques 
perform competitively with or better than BPDN for all ISNRs tested. 

This is to be expected; since when the signal noise is fairly small, we will generally 

do better by using more bits per measurement. 

The performance of BIHT in this case is consistent with previous results showing 

that the 1-bit techniques can outperform even 4-bit uniformly quantized CS mea-
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surements with BPDN recovery. This trend starts to reverse for lower signal ISNRs. 

Indeed for ISNRs of lOdB and 5dB, we see that 2 and 4 bit-depth quantization out­

performs larger bit-depths for all budgets. Strikingly, the best performance for input 

SNRs of 20dB, 10dB, and 5dB is achieved by acquiring just 1 bit per measurement 

and reconstructing with the BIHT -f.2 algorithm. 

In addition to the simulations presented here, we also performed the similar sim­

ulations with N = 1000 and K = 60. We found that all of the curves in Figure 4.3 

dropped in SNR by roughly the same constant (that depends on K). The relationship 

between the 1-bit curves and the others was about the same for~= 2N and lower. 

For ~ > 2N, the 1-bit reconstructions still outperformed the others; however the 

performance disparity was not as great as forK= 10. 

These simulations demonstrate two points. First, they verify that the intuition 

provided by the upper bound (4.4) is indeed correct: for lower ISNRs it is benefi­

cial to choose smaller bit-depths B and more measurements M. This validates the 

distinction between the QC and MC regimes. Second, the 1-bit CS setup performs 

significantly better than the multi-bit setup for low ISNRs and is competitive with 

the multi-bit setup for moderate ISNRs. There are several reasons for this. When 

the quantization error dominates the measurement noise, the reconstruction error is 

primarily due to the quantization error only. This case arises when B is small; i.e., 

we can likely satisfy QB(x + n) = QB(x) for increasing values of lnil as B decreases. 

Furthermore, in this case consistent reconstruction of the 1-bit algorithms may have 
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Figure 4.4 : Maximum RSNR given a fixed bit-budget~ for parameters N = 1000, K = 10. 
The left side of each plot corresponds to the QC regime, while the right side corresponds 
to the MC regime. The solid line (blue) corresponds to the number of measurements M, 
while the dashed line (green) corresponds to the bit-depth B. 

an advantage. Consistency could be presumably added to multibit reconstruction to 

improve performance but this is a topic left for future research. 

4.2.4 Reconstruction performance as a function of ISNR 

In this set of experiments, we varied the ISNR between 5dB and 45dB and searched for 

the (M, B) pair that maximized the RSNR, for a fixed bit-budget~ and parameters 

N = 1000 and K = 10. As demonstrated by the previous experiment, the RSNR will 

not be the same for each bit-budget. 

Figures 4.4(a)-(c) depict the results of this experiment for ~ = N, 2N, and 

5N, respectively. The left axis and solid line (blue) corresponds to the number of 

measurements M, while the right axis and dashed line (green) corresponds to the 

bit-depth B. As always, we have that ~ = M B. The QC regime is represented on 

the left side of the plots (low ISNR), while the MC regime is represented on the right 
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side of the plots (high ISNR). For example, for a bit-budget of~= 2N, if the ISNR 

is 30dB, then we are operating in the MC regime and should set the bit-depth to 

approximately 7, resulting in the measurement ratio of approximately M/N = 0.29. 

However, for the same bit-budget, if the ISNR is 15dB, then we are operating in the 

QC regime and should set the bit-depth to 1, resulting in a measurement ratio of 

M/N=2. 

In each plot in Figure 4.4 there is a sharp transition between optimal bit-depth 

being high (B > 5) and low (B:::; 2). This transition is centered at the ISNRs 19dB, 

23dB, and 38dB, for the bit-budgets~= N, 2N, and 5N, respectively. This implies 

that the transition occurs at higher ISNRs for higher bit-budgets. Thus, we infer that, 

for higher bit-budgets~' it is better to choose low B, even when the input ISNR is 

fairly high. The bottom line then is that, for moderate ISNR, the MC regime can be 

assumed when the bit-budget ~ is small, while the QC regime can be assumed when 

the bit-budget is large. 
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Chapter 5 

Compressive Sensing Architectures 

Acentral question of the CS framework is how do we design a good sensing system. As 

previously explained in Section 1.2 from an analysis perspective, a variety of different 

conditions on~ can be used to ensure that robust signal recovery is possible [16, 21, 42, 

44, 119]. From a practical perspective, we wish to design a physical sampling system 

for which, when modeled by ~, the aforementioned conditions are provably satisfied. 

To this end, several hardware architectures have been proposed that theoretically 

enable CS to be used in practical settings with analog signals. Examples include 

the random demodulator, random filtering, and random convolution for time-varying 

signals [18, 47, 48, 120], and several compressive imaging architectures [19, 121, 122]. 

Other compressive frameworks exist that have yielded similar types of architectures, 

for instance for multi-band signal acquisition [49, 123] or within the finite rate of 

innovation area [124, 125]. In this chapter,1 we introduce two new practical CS 

acquisition architectures. We first motivate our new designs. 

Beyond theoretical requirements, the aim of most CS-ADCs is to exploit the fact 

that fewer measurements are required to represent the signal, for instance, by reducing 

1This chapter includes work done in collaboration with J. P. Slavinsky, Mark Davenport, and 

Richard Baraniuk [20, 126] 
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the sampling rate of a conventional ADC. This is often achieved through analog 

hardware that preconditions the signal before it is sampled at a sub-Nyquist rate by 

a conventional ADC. 

One such architecture that exemplifies this philosophy is the random demodulator 

(RD) [18, 21, 127, 128]. Figure 5.1 depicts the block diagram of the random demod­

ulator. The four key components are a pseudo-random ±1 "chipping sequence" p(t) 

operating at the Nyquist rate or higher, a low pass filter, often represented by an 

ideal integrator with reset, a low-rate ADC, and a quantizer. An input analog signal 

x(t) is modulated by the chipping sequence, i.e., preconditioned, and integrated. The 

output of the integrator is sampled, and the integrator is reset after each sample. The 

output measurements from the ADC are then quantized. 

There are additional desirable properties that CS-ADCs must have if we wish to 

execute them in practice: 

1. precise calibration with computational models; 

2. few additional sources of hardware noise; and 

3. efficient computational implementation of recovery. 

As we will discuss in this chapter, these requirements preclude the use of certain kinds 

of analog components, such as analog filters, that are commonly found in current 

designs for wideband signal acquisition, such as the RD [18, 49, 127, 128]. 

We briefly describe two instances in which analog filtering hinders the RD. i) 
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ADC S~JJp<t) 

!chip =N Hz fs=MHz 

Figure 5.1: The random demodulator (RD) [18]. The analog signal x(t) is "preconditioned" 
i.e., modulated by a ±1 square-waveform p(t) that is determined by a pseudo random 
sequence. The result is integrated and sampled at a sub-Nyquist rate by a conventional 
ADC. 

Signal 

® 
Chipping 
Sequence 

p(t) • Data Collection 

continuous integration 
RD -

PRO/ 
t 

CMUX- • • • • • • • 
Instantaneous samples 

Figure 5.2 : Waveforms at preconditioning stages in the RD and polyphase random de­
modulator (PRD). The analog signal x(t) is modulated by a non-ideal analog square-wave. 
The RD then integrates the entire result before sampling and quantization. The CMUX 
and PRD integrate only instantaneous samples of the modulated signal before quantization. 

In practice the integrator is implemented by an analog low pass filter. The impulse 

response of this filter must be accurately modeled in the discrete implementation of <P. 

Precise calibration of this model with physical hardware is time consuming and can 

vary significantly between devices due to temperature and other operating conditions. 

ii) As shown in Figure 5.2, the rise and fall times of p(t) fluctuate significantly 

away from the ideal square waveform. These fluctuations are integrated into the RD 
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measurements. Such non-idealities are extremely difficult to calibrate for, and largely 

behave as a source of noise in the system [129]. 

In this chapter, we introduce two new CS-ADC architectures, namely the com-

pressive multiplexer (CMUX) and the polyphase random demodulator (PRD), for 

wideband signal acquisition that addresses these practical considerations. 

5.1 The Random Demodulator (RD) 

The random demodulator (RD) was originally proposed in [18] and further studied 

in [21, 127, 128, 130]. Its primary goal is to acquire a wideband signal x(t) while 

reducing the hardware costs associated with a high-rate Nyquist ADC. We refer the 

reader to Figure 5.1 for a diagram and detailed description of the RD. We briefly 

review how the RD fits into the previously described CS framework, the kinds of 

signals it aims to acquire, and further improvements to its design. 

The RD can be thought of as integrating short time windows of a pseudo-randomly 

modulated signal. That is, each measurement Ym before quantization can be written 

as 

1(m+l}/M 
Ym = (p(t) + n(t))x(t)dt, m = 0, ... , M- 1, 

m/M 
(5.1) 

where M is the measurement rate of the RD 8/H, p(t) is the ideal square-waveform 

( ) l(n+l)/N { } 
P t t=n/N = Pn E -1, 1 , (5.2) 

according to the "chipping sequence" p, n(t) is the error associated with practical 
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chipping sequences, and N is the Nyquist rate for x(t). For the purposes of this 

chapter, we consider a fixed time window ofT seconds. We denote N =NT to be 

the number of Nyquist samples in the time window and M = MT to be the number 

of CS measurements in the time window. 

For a fixed time window T, we can rewrite (5.1) as 

(m+l)N/M 

where 

Ym = 2:: PnXn +em, 
n=mN/M 

1(m+l)/M 
em= n(t)x(t)dt 

m/M 

(5.3) 

(5.4) 

since, for bandlimited x(t), Xn = J~j~l)/N x(t)dt are simply the Nyquist sam-

pies x of the signal x(t). For an example of N = 6, M = 3, and a sequence 

p = [-1, 1, -1, -1, 1, -1], if the square wave-form is ideal, i.e., n(t) = 0, then we 

have the discrete measurement matrix 

-1 1 0 0 0 0 

4>= 0 0 -1 -1 0 0 (5.5) 

0 0 0 0 1 -1 

such that y = 4>x. 

The most immediate way to apply the RD to the CS framework is via the so-called 

discrete multi-tone signal model. In this case, the signal x as composed of a linear 

combination of pure tones. Specifically, suppose that F is theN x N DFT matrix 

with elements 

fn,w = }wexp{-27riwn/N}, (5.6) 
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where n E [0, N -1] and w = 0, ±1, ... , ±N/2 -1. We call F the sparsity basis. The 

observed signal is then represented as x = Fs and we solve for a sparse s from the 

underdetermined matrix <I> F. 

In [18] it was shown that the program (BPDN) applied to recover s with ideal 

<I> F will observe similar robustness guarantees as described earlier if the number of 

measurements satisfies 

M 2: CKlog6 N, (5.7) 

with high probability depending on N and statistical properties of the chipping se­

quence. Further results were later shown for <I> with other sparsity bases, using 

analysis based on coherence [21]. 

A oft-noted drawback of the DFT-based model is that if the signal contains a 

tone that is not perfectly "on-grid," i.e., not one of the columns of the DFT matrix, 

then the signal will not be truly sparse. To remedy this, several algorithms have 

been proposed to recover non-integral tones, enhancing the richness of the discrete 

multi-tone model [22]. 

Finally, we mention one recent notable modification of the RD. In [130], the 

authors apply run-length limited (RLL) codes to generate the chipping sequence. 

These codes enable a potentially slower maximum chipping rate than the conventional 

RD since the sequences avoid consecutive sign changes. 
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5.1.1 Drawbacks of the RD 

A non-ideal chipping waveform alone presents a serious problem for the RD. The 

measurement error em in (5.4) is dependent on the input signal and thus, if n(t) were 

modelled as random, then it will still be correlated to the input. However, in practice 

n(t) is likely to be dependent on the waveform p(t), and thus the measurement error 

is dependent on both the input signal and the chipping sequence that determines the 

measurement matrix <l>. Furthermore, we have that 

llell~ ::; llxll~ AN n(t)dt, (5.8) 

implying that, in the worst case, the measurement error can have more energy than 

the input signal itself. Luckily this case only occurs when n(t) = vx(t), v E JR, which 

should be unlikely in an appropriately designed system. 

To make matters worse, in practice the integrator will be implemented as a low 

pass filter, in which case the rows of the matrix (5.5) should be the modulated, sam­

pled impulse response of the filter. Accurate models of the filter impulse response can 

be difficult to obtain in practice, hard to calibrate for because such devices fluctuate 

under different temperatures, and computationally inefficient. 

5.2 The Compressive Multiplexer ( CMUX) 

We now introduce the CMUX for acquisition of multi-channel signals [20]. By multi­

channel signals we mean that we have multiple disjoint sections of a signal that we 
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X1(t) 

XJ(t) 

(a) {b) 

Figure 5.3 : (a) CMUX system diagram. Each of the J channels is spread by a different 
chipping sequence, and then summed and sampled. (b) CMUX equivalent system. The 
sampling operation is moved to the front of the system for the sake of analysis. 

wish to measure simultaneously. Each section of the signal alone may not be sparse, 

our only requirement is that the total signal formed by appending each of the channels 

to each other is sparse. As an example, consider multiple (potentially discontiguous) 

channels in the RF spectrum. We may find that some channels contain no energy 

while others do. Our goal is to measure each of these channels together and recover 

the signals that are present. 

The CMUX acquires J independent signal channels, each of bandwidth W /2 Hz, 

into a single stream of samples running at the Nyquist rate (W Hz) of any one 

channel. As shown in Figure 5.3(a), each channel is first mixed down to baseband 

to obtain Xj(t) and then modulated by a pseudo-random ±1 chipping sequence Pi(t) 

with chipping frequency W Hz. The spread channels are then summed and sampled 

once per chip by a single ADC. It is important to note that the summation occurs 

over the channels and not over time (in contrast to previous systems [18, 47, 49]). 

Without loss of generality, the CMUX can be written as a W x JW matrix q,, 
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formed by concatenating diagonal W x W submatrices {Pi, j = 1, · · · , J. For the sake 

of analysis, we will consider the elements along the diagonals to be ±1 Rademacher 

variables. As an example, let J = 3 and W = 3. Then the ~ matrix might look like 

~= 

-1 0 0 1 0 0 1 0 0 

0 1 0 

0 0 -1 

<1>1 

0 

0 

1 0 

0 -1 

0 -1 0 

0 0 -1 

(5.9) 

We consider signals that are jointly sparse over the combined bandwidth of the 

spectrum channels. The sparsity basis \II for this model is a JW x JW block diagonal 

matrix with W x W D FT bases along the diagonal. Thus, we aim to recover a K­

sparse vector a E JRJW such that y = Aa, where A is the union of orthonormal 

bases 

(5.10) 

and where F is the W x W unitary D FT matrix2 • For the remainder of this section, 

the subscript j denotes the submatrix (or subvector) corresponding to channel j and 

the subscript \j denotes the submatrix (or subvector) corresponding to all channels 

except for j. 

It has recently been demonstrated by Romberg that A of this form satisfy the 

RIP [131]. We present a modified version of the statement of the theorem (as sug­

gested in [131]) for completeness: 

2Note that this is not the same A as in Chapter 3. 
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Algorithm 6: Trivial Reconstruction 
s1 Demodulate channel i 

Theorem 9 (Theorem 3.1 in [131]). Let A be defined as in {5.10}, and fix 8 E (0, 1). 

Then there exists C0 such that when 

(5.11) 

A satisfies the RIP of order K as in {1.3} with probability 1- cgj8Ci, where Co is 

constant. 

Note that the constant Co is the same as that in [131], and improved bounds on 

the probability may be obtained [132]. It is clear from this statement that for the 

total bandwidth N = JW, the number of possible channels can be upper bounded as 

5.2.1 Custom CMUX reconstruction algorithms 

Trivial reconstruction We can trivially produce an approximate recovery of any 

input channel i by multiplying that channel's chipping sequence against the output 

samples, i.e., Xi= iPiY· It is clear from 

(5.12) 

that this approach yields the original channel x;, plus a noise term that is the sum 

of the other channels spread by a new ±1 sequence <Pi<P;. Note that exact recovery 
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Algorithm 7: Block Coordinate Relaxation (BCR) [133] 
so Initialize 

Set r = y 

Set initial estimate a = 0 

while not converged do 

s1 Choose a new block 

Block index j E {1, · · · , J} 

s2 Subtract current estimate contribution (except from current 

block) 

Compute r = y - Ava\i 

ss Update the current block coefficients 

Via soft-thresholding ai = S(AJr), where S(z) = z(lzl- .X)+flzl 

is achieved when all non-zero coefficients are in a single channel and there are no 

noise sources. Furthermore, the trivial reconstruction can either be used by algo-

rithms resilient to noise (correlation routines, PLLs, etc.). This one step algorithm is 

summarized in Algorithm 6. 

Block coordinate relaxation (BCR) The trivial reconstruction technique can 

be extended to perform joint reconstruction of all channels. One approach would 

be to approximate one channel as above, transform and threshold to keep the largest 

coefficients, subtract that channel's contributions from the measurements, and repeat 

this process with the other channels. Indeed, this is roughly the procedure of block 
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coordinate relaxation (BCR) [133]. 

BCR provably solves the (LASSO) program when A is a union of orthonormal 

bases. We initialize by setting r = y and the initial estimate a = 0. The remaining 

steps are as follows: i) Choose a new block j E {1, · · · , J}. ii) Subtract the contri­

bution of the current estimate (except from current block) from the measurements 

to update the residual, r = y- Ava\i· iii) Update the current block coefficients 

by soft-thresholding the D FT coefficients of the trivial reconstruction, ai = S ( AJ r), 

where S(z) = z(lzl - ,\)+flzl, element-wise. The BCR algorithm is summarized in 

Algorithm 7. 

Note that for the CMUX, BCR uses exactly J FFTs and one soft-threshold oper­

ation of dimension W per iteration. Most other CS algorithms compute AT(y- Ax) 

in each iteration; thus these algorithms will require at least twice as many FFTs per 

iteration. Furthermore, the total number of iterations in BCR can be reduced by 

adaptively adjusting ,\ [134]. 

The soft-thresholding step of BCR projects the current channel estimate onto the 

£1-ball, thus "sparsely approximating" or "denoising" the channel estimate. We can 

extend this algorithm to recover non-integral frequencies, i.e., those oustide of the 

set of frequencies defined by the length-W DFT, by employing spectral CS [22] or 

BPDN-analysis [135] in place of soft-thresholding. 
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Figure 5.4 : Passive Averager CMUX (PA-CMUX) for J = 3. 

5.2.2 The passive averager: A CMUX hardware concept 
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A major goal in implementing randomized CS hardware is to reduce the possible 

sources of hardware noise (i.e., achieve a simple design) so that it does not obscure 

the benefits achieved through sample rate reduction. To this end, we propose the 

Passive Averager CMUX (PA-CMUX). 

As depicted in Figure 5.4, the PA-CMUX uses a single linear feedback shift reg-

ister (LFSR) to generate the chipping sequence, J analog switches, two banks of 

resistors, and a single-channel ADC to achieve the chipping sequence multiply and 

the instantaneous sum. The J uncorrelated chipping sequences are formed from de-

lays of a single chipping sequence. Depending on the sign of the chipping sequence 

applied to it, each input signal Xj(t) is routed by an analog switch to either a "+1" 

or "-1" bank of resistors. Each resistor bank consists of J resistors of nominally the 

same resistance; in practice, discrete resistors are unnecessary as each switch has a 
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controlled output impedance. 

Using Kirchoff's voltage and current laws, the voltage output from each bank, V+l, 

V_b equals the average of the voltages that are fed into the bank, hence, inducing 

passive averaging. These voltages can be written as 

V [ ] _ LjEPn,+l Xj [n] 
+1 n - IP. I , 

n,+1 

V [ ] = LjEPn,-l Xj[n] 
- 1 n IPn,-11 ' 

where Pn,+l and Pn,-1 are the sets of channel indices being routed to the +1 bank 

or -1 bank at sample index n, respectively. Thus, we must rescale these voltages to 

obtain equivalent CMUX samples: 

While this could be achieved with two ADCs and gain components, we can also invert 

the averaging scale factors not during measurement, but during reconstruction. We 

simply compute the difference of the two averages, y[n] = V+I[n]- V_ 1 [n], and apply 

the averaging weights in cp during reconstruction. The system designer can also 

calibrate the system by measuring the actual resistances along each signal pathway; 

these non-ideal values turn our averages into weighted averages. 

The PA-CMUX relies on the fact that a single-channel ADC natively computes 

the difference between two voltages. In a typical setup, one of these voltages would be 

ground. However, in the PA-CMUX we can use it to compute the difference between 

the two averages. 
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5.2.3 Comparison with random demodulator 

The CMUX compares favorably against the RD [18] on a number of fronts. CMUX 

computational models are more accurate and easier to calibrate due to absence of the 

analog filter. Additionally, since summation is performed over the channels and does 

not take place over time, the summation hardware is simpler. We refer the reader 

to Figure 5.2 for a depiction comparing the integration schemes in the RD and the 

CMUX. Additionally, this sampling characteristic translates to relaxing the require­

ments on individual CMUX hardware components between samples (e.g. switching 

times); the RD's integrator enforces strict time-oriented performance requirements. 

The ability to bandpass sample significantly reduces the chipping and sampling fre­

quencies for the CMUX as opposed to the RD. Even when ignoring the bandpass 

sampling issue, the CMUX's chipping sequences operate at a lower rate than the RD 

for the same total bandwidth. As power requirements for these components typically 

rise with the square of the frequency, a meaningful savings is achieved. 

The multi-channel nature of the CMUX also brings benefits. The CMUX can grow 

its total bandwidth by adding channels without increasing the chipping and sampling 

rates. In RF scenarios, splitting the CMUX's target bandwidth across multiple RF 

tuners matches the fact that commercially-available tuners don't produce arbitrarily 

large bandwidths. And with access to multiple independent tuners, the CMUX can 

also allocate its bandwidth capacity where it is needed in the spectrum. The CMUX 

can also turn off unoccupied channels to improve performance; at an extreme, the 



151 

CMUX reverts to a Nyquist sampler when all but one input channel is disabled. 

There are of course some disadvantages. The CMUX undersampling factor is 

restricted more than in the RD. This factor is fixed at J - Joff, where Joff is the 

number of disabled input channels. Also, non-idealities inherent to the RF tuners (or 

equivalent) means that signals can fall out of coverage at channel edges. 

5.3 The Polyphase Random Demodulator (PRD) 

We can add additional components to the CMUX to extend its behavior to be the same 

as the RD. A key insight to our design is that while ADC comprises both a sample­

and-hold (S/H) step (discretization in time) and a quantization step (discretization 

in amplitude), the former requires significantly simpler hardware and consumes less 

power than the latter. Additionally, S /H can be performed with high precision at 

high speeds while quantization cannot [7]. Our PRD design employs a bank of parallel 

S/H components at an early stage, enabling precise preconditioning of discrete-time 

analog-valued signals and then employs a single quantizer that operates at a sub­

Nyquist rate. 

We briefly describe the new architecture, depicted in Figure 5.5. The signal analog 

x(t) is input into a bank of J S/H "rails" (previously called channels in the CMUX 

context). Each S /H circuit samples the signal at a rate of N / J Hz, where N Hz is 

the Nyquist rate for x(t). Furthermore, the j-th rail's S/H circuit is delayed by jfN 

from the sampling rate clock, where j = 0, · · · , J - 1 corresponds to each rail. For 
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j=J-1 

~~~PJ-I(t) 

Figure 5.5: The polyphase random demodulator (PRD). J Sample-and-hold (S/H) circuits 
sample the signal x(t) at time t8 • The outputs of the S/H circuits are each modulated by 
a different pseudo-random "chipping sequence" (analog waveform) Pj(t), combined, and 
quantized by a single quantizer. All components operate at the sub-Nyquist rate of NjJ 
where N is the Nyquist rate of x(t). 

a given rail, each held value is scaled by +1 or -1, according to a pseudo-random 

"chipping" sequence Pi(t). In practice Pi(t) is an analog waveform that approximates 

a square wave. The rails are then summed together and the result is quantized, again 

at a rate of NjJ Hz. 

As an example, for N = 6 Nyquist samples in a time window and J = 2 S/H rails, 

the resulting q> matrix might look like 

-1 1 0 0 0 0 

q>= 0 0 -1 -1 0 0 (5.13) 

0 0 0 0 1 -1 

Thus, the computational model q> of the PRD is identical to that of the RD with an 

ideal square-wave and ideal integrator, and thus satisfies the theoretical guarantees 

of [18, 21]. 
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Figure 5.6: Maximum number of channels J for fixed bandwidth N = JW = 5000. 
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Note that starting from the first column, every J-th column corresponds to the 

first S/H rail (and similarly, starting from the second column, every J-th columns 

corresponds to the second S/H rail). Since the summation is taken across the rails at a 

given time instant, the PRD avoids integrating non-ideal fluctuations in the waveforms 

of the chipping sequences. Because of this, the calibration process only requires that 

we look at the scalings of the outputs of each rail, a significant improvement over 

previous designs. Furthermore, since no analog filter is used, we do not need to 

model an impulse response, leading to both accurate software modeling and significant 

speedups in recovery computations. 

5.4 Simulations 

5.4.1 Exactly sparse recovery (CMUX) 

We wish to characterize the maximum number of channels required for exact recov-

ery of sparse signals in simulation and compare this with the theoretical bound in 

Section 5.2. We fix N = JW = 5000 and vary K/N between 0 and 0.3. We perform 
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Figure 5. 7 : Power spectral density of one 12 kHz-wide signal. 

1000 reconstructions using SPGLl [28] for each choice of J and record the maximum 

J such that 90% of the reconstructions yielded exact recovery. 

Figure 5.6 demonstrates the results of this experiment. The dashed line depicts 

the experimental performance for an ideal CMUX given by (5.9); the dash-dotted 

line depicts the performance of the PA-CMUX given in Section 5.2.2 with resistors 

deviating randomly up to 20% from their intended values. The solid depicts the curve 

J = N/(Klog(N/K)) exactly, the best possible performance for a CS system, (note 

that this is better than the bound given in Section 5.2). This simulation demonstrates 

that in both cases, typical CMUX behavior is close to an ideal CS system thus appears 

to outperform the theoretical guarantees. 

5.4.2 Practical RF example (CMUX) 

In this example we simulate two FM modulated voice signals, each approximately 12 

kHz wide. The voice signals live in two different 400 kHz wide channels. There are 

5 total input channels, making the total observed bandwidth 2 MHz. All channels 

have noise such that the voice signals have an SNR of 30 dB. 
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Figure 5.8 : Simulated analog p(t) and non-ideal waveform with an SNR of 13 dB. 

Figure 5.9 : Reconstruction performance of RD vs. the PRD. The RD significantly degrades 
as a function of the chipping waveform p(t) SNR, while the PRD is not affected for the 
parameters tested. 

PSDs of the signal in one channel are shown in Figure 5. 7. The original signal 

is depicted by solid lines, the trivial recovery is depicted by a dash-dotted line, and 

the CS recovery is performed with BCR as described earlier. The plot demonstrates 

that the largest energy portion of the spectrum can be recovered, even by the trivial 

method. However, the BCR recovery is significantly more accurate and has a lower 

noise floor than even the original signal (due to its sparse approximation feature). 

5.4.3 Effects of a non-ideal modulator waveform (PRD) 

To demonstrate the power of the PRD design over the RD, we conducted a simple 

experiment highlighting only the effects of a non-ideal chipping waveform. The ex-

periment was performed as follows. We chose a length N = 5000 signal x that was 
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K = 50 sparse in the discrete cosine transform (DCT) domain. We oversampled this 

signal by R = 100 times to simulate an analog waveform x(t). Similarly, we generated 

a chipping sequence of length 5000 and oversampled this signal by R as well (obtain­

ing a square wave p(t) at the high rate). We then simulated a non-ideal square wave 

by applying a causal low pass filter to band-limit the wave. An example non-ideal 

p(t) is given in Fig. 5.8. Finally, we compute the measurements that both the RD 

and the PRD would produce given x(t) and p(t) with 10 times undersampling (i.e., 

J = 10 rails). For the PRD, we chose the "instantaneous" sample point to be at the 

center of the square-wave. Reconstruction of x was performed using SPGL1 [28] and 

results are reported in terms of SNR(z, z) := 20 log10(llzll2/llz- £11 2). To gauge the 

fidelity of the analog chipping sequence, we also report p(t) in terms of SNR. 

The results of this experiment are depicted in Figure 5.9. There are two clear 

messages from this example. First, even when the chipping sequence is ideal (p(t) SNR 

= oo), the PRD outperforms the RD. This is likely an artifact of the simulation since, 

integrating any R values that simulate x(t) is not equivalent to the corresponding 

value in x. Second, the reconstruction performance of the RD significantly degrades 

as SNR of p(t) decreases. In stark contrast, the performance of the PRD is seemingly 

not dependent on the the SNR of p(t) as simulated. This is because for the parameters 

tested, the center of the chip is still ±1. This highlights the primary advantage of 

the instantaneous sampling of the PRD. 
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Chapter 6 

Discussion 

6.1 Summary 

Quantization is the primary bottleneck in analog-t~digital conversion. Specifically, as 

the bit-depth of the quantizer increases, the sampling rate of the ADC must decrease. 

In this thesis we set out to exploit this relationship between sampling rates and 

quantizer bit-depth. We demonstrated that while conventional CS dogma espouses 

that sampling rates be decreased to ease the burden of the ADC, it is also possible to 

decrease the bit-depth for the same purposes, and in some cases the latter approach 

will perform better than the former. To review, we have shown the following facts. 

We first verified that conventional CS does obtain increased the dynamic ranges 

versus conventional ADCs. We introduced a deterministic definition of dynamic range 

and demonstrated that it is meaningful. We further showed that CS systems effec­

tively have the same dynamic range as conventional sampling systems. Thus, since 

CS enables sampling at lower rates, a high bit-depth quantizer can be employed to 

increase the overall dynamic range of the system. Our results are general for any CS 

systems that have the RIP. 

We next demonstrated that it is possible to quantize CS measurements to only a 
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single bit, representing their signs. In this case the quantizer is reduced to a simple 

comparator enabling extremely fast sampling speeds. To develop robust reconstruc­

tion guarantees we introduced the binary €-stable embedding property of 1-bit CS 

systems. This property explains that Hamming distances between the binary mea­

surements are approximately the same as angular distances between the input vectors. 

We proved that random matrices, specifically those with elements drawn from a Gaus­

sian distribution and those drawn with rows uniformly from the unit sphere, enable 

this property. We further developed two new algorithms to solve the reconstruction 

problem and demonstrated their feasibility in simulation. Finally, we connected the 

1-bit CS to the context of saturation and dynamic range in CS systems and introduced 

a method for saturation-agnostic CS. 

We next showed that in some situations it may be more beneficial to compress via 

the quantizer and sample at slightly higher rates. In particular we found two funda­

mental CS regimes, the measurement compression (MC) regime and the quantization 

compression ( QC) regime . The former is defined by scenarios where measurements 

are expensive and input signal noise is low. The latter is defined by scenarios where 

sampling rates are cheap, the quantization process is expensive, and there is high in­

put signal noise. A key realization is that the inverse relationship between sampling 

rate and quantizer bit-depth enables the development of practical hardware systems 

that take advantage of the QC regime. 

Finally, we developed two new CS architectures for practical signal acquisition. In 
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particular we developed the compressive multiplexer ( CMUX) for multichannel sig­

nal acquisition and a new random demodulator, the polyphase random demodulator 

(PRD). The latter architecture explicitly takes advantage of the fact that the quan­

tizer is the main bottleneck in CS systems; the sample-and-hold hardware is separated 

from the quantizer and thus discrete-in-time measurements (but not in amplitude) 

are manipulated via analog "pre-processing" before finally being digitized. 

6.2 Open Questions and Future Directions 

The research contained in this volume open several interesting questions that may be 

useful to answer in the future. 

6.2.1 Does the RIP of a matrix imply the BtSE for that matrix? 

Matrices that have the RIP have been studied extensively since its introduction in 

CS. Thus, an obvious desire would be for many of these sensing systems to also be 

used as 1-bit CS systems. While it may be true that many of them can, we can point 

to at least two counterexamples of matrices that have the RIP but not the BtSE. 

The most trivial example is the identity matrix. To see this consider the length-N 

vectors X = [1, 0, ... 'o]T and s = h/1 - v2 ' v, 0, ... 'o]T and let ~ = IN be the N X N 

identity matrix. By definition, the identity matrix satisfies the RIP since it is an 

exact isometry; indeed, it is square and thus not even compressive. Furthermore, it is 

clear that ~x = x and ~s = s. Without loss of generality, define sign(O) = 1. Then 
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note the following relationship 

{ 
0, 

dH(A(x), A(s)) = 

1/N, 

0 ~ v ~ 1, 
(6.1) 

-1 < v < 0. 

In words, the Hamming distance between the measurements of the sparse signals only 

depends on the sign of the second element of s, meaning that a large number of angles 

between x and s will yield the same Hamming distance. Indeed, it is also possible to 

construct many orthogonal vectors to x satisfying the same relationship. In fact, even 

if s were designed to be parallel to x, the Hamming distance of the measurements 

would only depend on the relative direction. 

A second example is matrices with ±1 entries, such as those with entries drawn 

from the Rademacher distribution, i.e., +1 or -1 with probability 1/2. The 

Rademacher distribution is subGaussian and thus can be shown to have the RIP 

with high probability [46]. In this case suppose that we choose x = [cos(v), 0, ... , O]T 

and s = [cos(v), sin(v), 0, ... , o]T. Then for the hamming distance between sign(~x) 

and sign(~s) to be non-zero, the column sin(v)¢2 must have elements at least as big 

as cos(v). Thus, if v < 7r/4 and thus sin(v) < cos(v), we have 

dH(A(x), A(s)) = 0, (6.2) 

for any ±1 matrix. This relationship will be true no matter how large we increase 

M, meaning that the precision of the signals preserved by this mapping cannot be 

increased. We have found in simulation that indeed Rademacher matrices do not 
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Figure 6.1 : (a) Reconstruction SNR as a function of sparsity 1-bit quantized Nyquist 
samples of a DCT -sparse signal. (b) Reconstruction SNR as a function of sparsity from 
1-bit quantized Nyquist samples measured with an N x N Gaussian matrix. The plots 
demonstrate that the average reconstruction between the two scenarios is similar, suggesting 
that the DCT matrix provides something like a weak average-case BcSE. 

support good performance of reconstruction of canonically sparse signals. 1 

6.2.2 Does the Fourier basis provide a BcSE? 

Although the identity matrix does not provide a BcSE, it may be possible that other 

orthonormal bases do. For example, recent simulations suggest that if the N x N 

D FT matrix may indeed provide a BcSE or some weaker notion of this property with 

a randomized signal model. 

To test this hypothesis, we performed an experiment where we generated DCT-

sparse signals (i.e., <I> is the DCT basis, the signal we wish to recover x is sparse) 

1 A nearly identical example was discussed in (108] which appeared during the final preparation 

of this manuscript. 
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and quantized to 1-bit per Nyquist sample. We then performed reconstruction using 

the 1-bit CS algorithms described in Chapter 3. The results of this experiment are 

depicted in Figure 6.1(a). For comparison we provide the same experiment but with 

anN x N Gaussian matrix <l> in Figure 6.1(b). 

This simulation suggests that we achieve the same performance as if we had used a 

Gaussian measurement system, however by quantizing the Nyquist samples directly. 

This implies that for some classes of signals, we maybe be able to perform 1-bit 

quantization directly. Indeed, approaching this problem from the 1-bit CS perspective 

may yield theoretical guarantees for previous 1-bit ADC architectures such as some 

of those in [136]. 
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Appendix A 

Dynamic Range 

A.l Lemma 1 

Proof. Begin by taking (:J = G/ llxlloo· Observe that 

!lf:Jxlloo = fJ llxlloo = G, 

and thus no entries of (:Jx exceed the saturation level G. Hence, we can bound the 

quantization error as 

(A.l) 

We also have that 

IIPxll: ~ P2 llxll: ~ ~:;:~: (A.2) 

Combining (A.l) and (A.2), we obtain that 

SQNR((:Jx) = llf:Jxll~ > G2 llxll~ / llxll!, 
llf:Jx- QB ((:Jx)ll~ - N (D./2)2 ' 

which simplifies to yield the desired result. 0 

A.2 Theorem 2 

Proof. We begin by considering (:J(}in(x). Recall that for all scalings (:J < G/ llxlloo 

we have that llf:Jxlloo < G, so that there are no saturations. Thus we can bound the 



SQNR as 

Thus, if we ensure that 

f32 llxll; 
SQNR({3x) ;::: N(!:l./2)2 • 

then we also guarantee that SQNR(f3x) >C. This will occur provided that 

Thus we can set 

164 

We now turn to {3~a;x(x). Since we are now considering {3 > G/ llxll 00 , there will 

be at least one entry of x that takes a value greater than G and thus saturates. 

Furthermore, the saturated value is guaranteed to have error greater than !:l./2 since 

our quantizer represents a maximum value of G - !:l./2. Thus, we observe that the 

total quantization error is less than the error of a signal where each element takes the 

value of the maximum saturated measurement. If we define G = G- !:l./2 then we 

have that 

> f32 llxll; 
SQNR({3x) - N(f311xlloo- G)2 

(A.3) 

By design, we have that f311xlloo > G, and hence 

(f311xlloo- G) 2 = f3 2 llxll;,- 2Gf311xlloo + G2 

:::; f32 llxll;,- 2GG + G2 = f32 llxll;,- G2 + (!:l./2)2 • 



From this we observe that 

and so from (A.3) we have that if 

then SQNR(,Bx) >C. By rearranging, we see that this will occur provided that 

Thus we can set 

2 CN (G2 - (!:l./2)2) 
,6 < llxll~ c,(x)2- 1 . 

max 2 CN (G2 - (!:l./2)2 ) 

/3c (x) = llxll~ c,(x)2- 1 . 

Combining our expressions for /33in(x) and /33ax(x) we obtain 

which simplifies to establish (2.9). 
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Appendix B 

Binary Stable Embeddings 

B.l Lemma 5: Intersections of Orthants by Subspaces 

In this section, we demonstrate that while there are 2M available quantization points 

provided by 1-bit measurements, a K sparse signal will not use all of them. To 

understand how effectively the quantization bits are used, we first need to investigate 

how the K-dimensional subspaces projected from theN-dimensional K-sparse signal 

spaces intersect orthants in the M -dimensional measurement space. 

An orthant in M dimensions is a set of points in JRM that all have the same sign 

pattern: 

0 s = { x I sign x = 8}, 

where 8 is a vector of ±1. Each orthant has M boundaries of dimension M- 1, 

defined as the subspace with a coordinate set to 0: 

s.Bi = {x I (x)i = 0}. 

We split each boundary into 2M-I faces, defined as the set 

Ji,s = {x I (x)i = 0 and sign (x)i = (8)i for all i # j}, 
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Spherical Cap 
Orthants 

Faces 
Sphere 

Boundaries 

(a) (b) 

Figure B.1 : (a) The geometry of orthants in R3 . (b) The geometry of spherical caps. 

where sis the sign vector of a bordering orthant, and i is the boundary in which the 

face lies. Each face borders two orthants. Note that the faces are M- 1 dimensional 

orthants in theM -1 dimensional boundary subspace. The geometry of the problem 

in IR 3 is summarized in Figure B .1 (a). 

We use I ( M, K) to denote the maximum number of orthants in M dimensions 

intersected by a K-dimensional subspaces (with I(M, 1) = 2). We upper bound 

I ( M, K) using an inductive argument that relies on the following two lemmas: 

Lemma 12. If a K -dimensional subspace S C JRM is not the subset of a boundary 

~i, then the subspace and boundary do intersect and their intersection is a K - 1 

dimensional subspace of ~i· 

Proof. We count the dimensions of the relevant spaces. If S is not a subset of ~i, 

then it equals the direct sumS= (Sn~i)EBW, where W C JRM is also not a subspace 

of ~i· Since dim ~i = M - 1, dim W ~ 1, and dimS n ~i = K - 1 follows. D 
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Lemma 13. For K > 1, a K -dimensional subspace that intersects an orthant also 

non-trivially intersects at least K faces bordering that orthant. 

Proof. Consider a K-subspace S, a point p E S interior to the orthant Osignp, and 

a vector x1 E S non-parallel top. The following iterative procedure can be used to 

prove the result: 

1. Starting from 0, grow a until the set p ± axz intersects a boundary ~i, say 

at a = az. It is straightforward to show that as a grows, a boundary will be 

intersected. The point of intersection is in the face J=i,signp· The set {p±axzla E 

(0, az)} is in the orthant Osignp· 

2. Determine a vector Xz+l E S parallel to all the boundaries already intersected 

and not parallel to p, set l = l + 1 and iterate from step 1. 

A vector can always be found in step 2 for the first K iterations since S is K di­

mensional. The vector is parallel to all the boundaries intersected in the previous 

iterations and therefore p ± axz always intersects a boundary not intersected before. 

Therefore, at least K distinct faces are intersected. 0 

Lemmas 12 and 13lead to the main result in this section. Lemma 5 in Section 3.4.1 

follows trivially. 

Lemma 14. The number of orthants intersected by a K -dimensional subspace S in 
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an M dimensional space V is upper bounded by 

Proof The main intuition is that since the faces on each boundary are equivalent to 

orthants in the lower dimensional subspace of the boundary, the maximum number 

of faces intersected at each boundary is a problem of dimension I ( M - 1, K - 1). 

If S is contained in one of the boundaries in V, the number of orthants of V 

intersected is at most I(M- 1, K). Since I(M, K) is non-decreasing in M and K, 

we can ignore this case in determining the upper bound. 

If S is not contained in one of the boundaries then Lemma 12 shows that the 

intersection of S with any boundary ~i is a K- 1 dimensional subspace in ~i· To 

count the faces of ~i intersected by S we use the observation in the definition of faces 

above, that each face is also an orthant of ~i· Therefore, the maximum number of 

faces of ~i intersected is a recursion of the same problem in lower dimensions, i.e., is 

upper bounded by I(M -1, K -1). Since there are M boundaries in V, it follows that 

the number of faces in V intersected by Sis upper bounded by M · I(M -1, K -1). 

Using Lemma 13 we know that for an orthant to be intersected, at least K faces 

adjacent to it should be intersected. Since each face is adjacent to two orthants, the 

total number of orthants intersected cannot be greater than twice the number of faces 

intersected divided by K: 

I(M, K)::; 2M· I(M;:. 1, K- 1). (B.1) 



The result follows by induction. 

A tighter achievable bound is also known [137, 138]: 

I(M,K) 

M-1 
K~ 2 . 
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D 

(B.2) 

Although (B.2) is tighter and achieved with a subspace in a general configuration, 

it leads to expressions on the same asymptotical order of our main results. We use 

(B.1) for the remainder of this chapter because of its simpler form. 

B.2 Theorem 4: Distributing Signals to Quantization Points 

To prove Theorem 4 we consider how the available quantization points optimally 

cover the set of signals of interest. We consider unit norm signals that belong in a 

union of L subspaces, each of dimension K. Thus the set of interest is the union of 

L unit spheres of K dimensions. 

First we need to understand how to measure the sets of signals of interest. We 

denote the unit sphere in K dimensions-which is the surface of the K -dimensional 

unit ball-using SK - 1, and the rotationally invariant area measure on the sphere 

using u(·). Thus the area of the whole sphere is equal to u(SK-1). If subspaces 

intersect, the area of the sphere inside the intersection has measure zero. Therefore, 

the total surface area of all L spheres is LSK-1 • 

The most efficient cover of this area is achieved if every point covers a spherical 
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cap of radius r, denoted using C ( r). The geometry of the problem is demonstrated 

in Figure B.l(b). From [139] the surface area of a spherical cap of radius r satisfies 

For L(~)2K points to cover the area Lu(sK-1 ) we require 

L(~)2Ku(C(r)) ~ Lu(SK-1) ~ ( M;2r) K > 1 

K 
~ r ~ 2eM = n (K/ M), 

using the bound(~) ~ (eM/ K)K. Incidentally, this proof gives an obvious solution to 

a Grassmanian covering problem of !-dimensional subspaces inK dimensional spaces. 

Although Grassmanian packing problems have been examined in the literature (e.g., 

in the context of frame theory [140]), to our knowledge, the Grassmanian covering 

problem has not been posed or attempted. 

B.3 Theorem 5: Optimal Performance via Gaussian Projec-

tions 

To prove Theorem 5, we follow the procedure given in [89, Theorem 3.3]. We begin 

by restricting our analysis to the support set T C {1, · · · , N} with ITI < D ~ N, 

and thus we consider vectors that lie on the (sub) sphere :E*(T) = {x : suppx C 

T, llxll2 = 1} c ~N. We remind the reader that Bt5(x) :={a E sN-1 : llx- alb< 8} 

is the ball of unit norm vectors of Euclidean distance 8 around x, and we write 

B6(x) = BtS(x) n :E*(T) as in Section 3.5.2. 
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Given a vector cp rv NNx 1(0, 1) and two distinct points p and q in Q0 , we have 

that 

JP>[Vu E B8(p), 'v'v E B8(q): signcpT u =J signcpT v] > ds(p, q) - /fi58, 

from Lemma 15 (given in Section B.4). When Eo> 28, we have the relationship 

and thus 

By setting 8 = 7rE0 /(4 + 1ry'2;ijj) (and reversing the inequality), we obtain 

Thus, for M different random vectors 'Pi arranged in <P = ( cp1, · · · , cp M) T rv 

NMxN(o, 1), and for the associated mapping A defined in (3.1), we have that 

1P[3u E B8(p), 3v E B8(q): A(u) = A(v) I llu- vll2 >Eo] ~ (1-1'-)M. 

In words, we have found a bound on the probability that two vectors' measurements 

are consistent, even if their euclidean distance is greater than E0 , but only for vectors 

in the restricted (sub) sphere :E*(T). Now we seek to cover the rest of the space :E:K 

(unit norm K -sparse signals). 

Given a radius 8 > 0, the sphere :E*(T) can be covered with a finite set Q0 C :E*(T) 

of no more than (3/8)D points such that, for any w E :E*(T), there exists a q E Q0 
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with wE B6(q) [45]. Since there are no more than (1~6 1) :::; (IQ5 1)2 < (3/6)2D pairs of 

distinct points in Q 5, we find 

To obtain the final bound, we observe that any pair of unit K-sparse vectors x 

and sin E:K belongs to some E*(T) with T = suppx U supps and ITI < 2K. There 

are no more than (~) < (N/2K) 2K of such sets T, and thus setting D = 2K above 

yields 

JP>[3u, vEE~: dH(A(u), A(v)) = 0 lllu- vll2 >Eo] 

::=; ( ~ )2K Cr!J12 + 67rv;;:K) )4K (1 - ~ )M 

::=; exp [2Klog( 2~) + 4Klog(1l"!o (12 + 61rv;;:K))- M~], 

where the second inequality follows from 1 - ~ :::; exp ~. By upper bounding this 

probability by rJ and solving forM, we obtain 

M ?_ .l. (2K log 2NK + 4Klog(-1 (12 + 61rJ;K)) +log l). 
~ ~ ~ 

Since K > 1, we have that ~(12 + 61rv'1fK) < 12v'1fi( < 16\1"2K, and thus the 

previous relation is then satisfied when 

M > .l. (2K log 2NK + 4Klog( .l.(16J2K)) +log l) 
£o £o ~ 

- ~:~ (2K log~+ 4Klog(~:~ (16J2)) +log~) 

- .l. (2K log N + 4K log( 16 ) + log l). 
£o £o ~ 
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B.4 Lemma 8: Concentration of Measure for 8-Balls 

Proving Lemma 8 amounts to showing that, for some fixed f > 0 and 0 ~ o ~ 1, 

given a Gaussian matrix <P E JRMxD, the mapping A: JRD--+ BM defined as A(u) = 

sign ( <Pu), and for some x, s E SD-l, we have 

where the balls B8 are also restricted to JRD. 

Given u E B6(x) and v E B6(s), the quantity MdH(A(u),A(v)) is the sum 

LiAi(u) ED Ai(v), where Ai(u) stands for the ith component of A(u). For one index 

Ai(u) ED Ai(v) < zt :=max {Ai(P) ED Ai(q) : p E B8(x), q E B8(s) }, 

Ai(u) ED Ai(v) > zi- :=min {Ai(p) ED Ai(q): p E B8(x), q E B8(s) }, 

and therefore 

M M 
z- := I:zi- < MdH(A(u),A(v)) < I:zt -. z+. 

i=l i=l 

Of course, the occurrence of zt = 0 ( z; = 1) means that all vector pairs taken 

separately in B6(x) and B6(s) have consistent (or respectively, inconsistent) mea-

surements on the ith sensing component Ai. More precisely, since cpi rv NNx 1 (0, 1), 

zt are binary random variables such that lP[ zt = 1] = 1 - Po and JP[ zi- = 1] = PI 



independently of i, where the probabilities p0 and p1 are defined by 

Po(ds(x, s), 8) = IP[Zt = 0] = IP('v'p E B5(x), 'v'q E B5(s), Ai(u) = Ai(v)], 

PI(ds(x, s), o) = IP('v'p E B5(x), 'v'q E B5(s), Ai(u) # Ai(v)]. 
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In summary, z+ and z- are binomially distributed with M trials and probability 

of success 1- Po and p1, respectively. Furthermore, we have that JEZ+ = M (1- p0 ) 

and JEz- = M p1 , thus by the Chernoff-Hoeffding inequality, 

IP[z+ > M(1-po)+ME] ~ e-2ME2, 

IP[ z- < Mpl- ME] ~ e-2ME2 

This indicates that with a probability higher than 1 - 2e-2ME2, we have 

The final result follows by lower bounding p0 and p1 as in Lemma 15. 

Lemma 15. Given 0 ~ o < 1 and two unit vectors x, s E sD-l, we have 

p0 = IP['v'u E B0(x), 'v'v E B0(s), sign (<p, u) = sign (<p, v)] ~ 1 - ds(x, s) - [fi5o, 

(B.3) 

P1 = IP['v'u E B0(x), 'v'v E Bo(s), sign(<p,u) # sign(<p,v)] > ds(x,s) - [fi5o. 

(B.4) 

Proof of Lemma 15. We begin by introducing some useful properties of Gaussian vec­

tor distribution. If <p "'NDx1 (0, 1), the probability that <p E A C JRD is simply the 
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measure p, of A with respect to the standard Gaussian density 1(cp) = (27r~v12 e-llrpll 212, 

i.e., 

JP>[ cp E A]= p,(A) = L dDcp 'Y(cp), 

with p,(JRD) = 1. It may be easier to perform this integration over a hyper-spherical 

set of coordinates. Specifically, we let any vector cp be represented by the values 

(r, ¢b · · · , </>n-1) where r E JR+ stands for the vector length, ¢b · · · , <f>n-2 E [0, 1r] 

corresponds to the vector angles in each dimension, and </>n-1 E [0, 27r] being the angle 

of cp in the "xs" plane. This is possible since 1 is rotionally invariant and thus we may 

assume the "xs" plane is spanned by the canonical vectors en = x and en_1 in the 

canonical basis {e1, ···,en} ofJRD, with e1 = (x 1\ s) I llx 1\ sll2 and en-1 =en 1\ e1. 

The change of coordinates is then defined as cp1 = r cos ¢1, cp2 = r sin ¢1 cos ¢2, 

... , 'PD-1 = r sin </>1 · · · sin </>n-2 cos </>n-b and cpn = r sin </>1 · · · sin </>n-2 sin </>D-b 

while, conversely, r = llc,oll2, tan¢1 = (cpb + · · · + cp~) 112lcpb ... , tan<f>n-2 = (cpb + 

'Pb-1)1/2 I 'PD-2, and tan<f>n-1 = C,On I 'PD-1-1 

We now seek a lower bound on p1. Computing this probability amounts to esti­

mating 

1This change of coordinates can be very convenient. For instance, the proof of Lemma 7 relies 

on the computation IP'(Ai(x) =f. Ai(s)] = JL(A = { <p : c/Jn-1 E (0, 1r ds(x, s)] U [1r, 1r + 1r ds(x, s)]}) = 

ds(x, s), since for (almost) all <p E A, x and s live in the two different subvolumes determined by 

the plane { u : (<p, u) = 0} [96, 97]. 
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where W6 = {cp: (cp,u)(cp,v) ~ 0, VuE B5(x), Vv E B5(s)} is the set of all vectors 

cp such that its inner product with u and v result in different signs. Note that if 

B5(x) n B5(s) is not empty, then we have PI = 0 since for w E B5(x) n B5(s), we 

have (cp, w) 2 • This term cannot be negative and thus W6 = {cp: (cp, w) = 0}, which 

has measure zero with respect to J-L. In order to avoid this trouble, we must choose 

ds(x, s) 2: .; arcsinb"/2. Furthermore, since arcsin A ~ ~A for any 0 < A < 1, this 

occurs if ds(x, s) 2: b". 

The remainder of the proof is devoted to finding an appropriate way to integrate 

the set W5. To this end, we begin by demonstrating that estimating PI can be 

simplified with the following equivalence (proved just after the completion of the 

proof of Lemma 15). 

Lemma 16. The set W6 c lRP is equal to the set 

Vi = { cp : (cp, x) (cp, s) ~ 0, llx - Prr(cp) xll 2: b", lis - Prr(cp) sl! 2: 8}, 

where Prr(cp) is the orthogonal projection on the plane IT( cp) = { u E JRD : (cp, u) = 0}. 

Using the hyper spherical coordinate system developed earlier, membership in Vi 

can be expressed as 

tan cPD-I E [0, tan B), (R1) 

cp = (r, cPb · · · , cPD-I) E Vi {::} sin cPI · · · sin c/>v-2l sin c/>v-II > b", (R2) 

sin cPI · · · sin c/>v-2l sin( cPD-I - B) I 2: b". (R3) 
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Indeed, requirement (R1) enforces (cp, x)(cp, s) :::; 0, while (R2) and (R3) are direct 

translations of the requirements that llx - 'Prr(<p) xll = I($, x = en)l > 8 and lis -

'Prr(<p) sll = I (cp, y = -sin f) en +cos 0 en-1) I ~ 8, with cp = 11! 11 cp. 

We are now ready to integrate to find p1: 

P1 = J.t(Vi) = (2'/I"~D/2 l+ dr rD-1e-r2 12 [ ( k'/1" d¢1 sinD-2 </>1) · · · ( k'/1" d<f>n-2 sin </>n-2)] · · · 

[ [ d<f>n-1 X9(o,<p) ( <Pn-1) X9(o,<p) ( <Pn-1 - B)], 
lro,o) u [11",11"+6) 

with X>.(¢) = 1 if I sin¢ I ~ A and 0 else, for some A E [0, 1], and g(8, cp) = 

8/(sin¢1 · · · sin</>n-2)· 

However, 

f d¢ X>.(¢) X>.(¢- B) - 20- 4arcsinA > 20- 27rA, 
lro,oJ u [11",11"+6) 

since A :::; arcsin A < ~A for any A E [0, 1]. Consequently, 

J.t(Vi) ~ (2'/I"~D/2 [ dr rD-1e-r2/2 ... 
}JR.+ 

[ ( k'll" d¢1 sinD-2 </>1) · · · ( k'/1" d<f>n-2 sin </>n-2)] (20- (sint/>1 •• ::fnt/>v-2)) 

0 1r 8 In-3 In-4 · · · Io 0 1r 8 
In-2 In-3 In-4 · · · Io 

Using the fact that In= v'7fr(n~1 )/r(~ + 1) > J1f/J~ +~,we obtain In_2 > 

~ ~ .[Ii, and thus 
4 

P1 > ds(x,s) - y'fi58. 
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If we want a meaningful bound for p1 2::: 0, then we must have ds(x, s) > /fd8 2::: 

8. Therefore, as soon as the lower bound is positive, the aforementioned condition 

ds(x, s) 2::: 8 always holds. 

The lower bound for p0 is obtained similarly. It is straightforward to show that 

Po = p,(Vt), with Vt = { cp : (cp, x) (cp, s) > 0, llx - Prr(cp) xll 2::: 8, IIY - Prr(cp) sll > 8}. 

Lower bounding p,(Vt) as for p,(Vt), the only difference occurring with the integral 

on tf>D-2 given by 

= 21r- 2()- 4arcsing(8, cp) > 2(7r- ())- 21rg(8, cp). 

Therefore, the lower bound of p0 amounts to change () -4- 1r- () in the one of PI! which 

provides the result. D 

Proof of Lemma 16. If 8 = 0, there is nothing to prove. Therefore 8 > 0 and if cp* 

belongs to either V5 or W5, we must have (cp, x)(cp, s) < 0. It is also sufficient to work 

on the restriction of v6 and w6 to unit vectors. 

{i} V5 c W5: By contradiction, let us assume that cp* E V6 but cp* ~ W5. Without 

any loss of generality, ( cp*' X) > 0 and ( cp*' s) < 0. Since cp* ~ w6' there exist two 

vectors u* E B5(x) and v* E B5(y) such that (cp*,u*)(cp*,v*) > 0. If (cp*,u*) > 0 and 

( cp*, v*) > 0, then, since ( cp*, s) < 0 and by continuity of the inner product, there exist 

a A E (0, 1) such that (cp*, s(.X)} = 0 with s(.X) = y+.X(v*-s). Therefore, s(.X) E II(cp) 

and, by definition of the orthogonal projection, lis- Prrcp sll ~ lis- s(.X)II ~ .X8 < 8 
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which is a contradiction. If (cp*, u*) < 0 and (cp*, v*) < 0, we apply the same reasoning 

on x and u*. Therefore, V0 c W0 . 

(ii} Wo c Vo: If cp* E W 0 with cp* fl. V0 , we have either llx - Prr(cp*) xll < 8 or 

lis - Prr(cp*) sll < 8. Let us say that llx - Prr(cp*) xll < 8. Then, for w = x + 

8(Prr(cp*)x-x)/11Prr(cp*)x-xll E B;(x), (cp*,x)(cp*,w) = ((cp*,x))2(1-8/IIPrr(cp*)x­

xll) +8(cp*,Prr(cp*)x) < 0. However, cp* E W0 and (cp*,x)(cp*,s) < 0, leading to 

( cp*, w) ( cp*, s) > 0, which is a contradiction. D 

B.5 Theorem 6: Gaussian Matrices Provide BESEs 

The strategy for proving Theorem 6 will be to count the number of pairs of K -sparse 

signals that are Euclidean distance 8 apart. We will then apply the concentration 

results of Lemma 8 to demonstrate that the angles between these pairs are approx­

imately preserved. We specifically proceed by focusing on a single K-dimensional 

subspace (intersected with the unit sphere) and then by applying a union bound to 

account for all possible subspaces. 

LetT C {1, ... , N} be an index set of size ITI = K, E*(T) = {wE JRN: suppw C 

T, llwlb = 1} be the sphere of unit vectors with support T. We first use again the fact 

that the sphere :E*(T) can be 8-covered by a finite set of points QT,o· That is, for any 

wE :E*(T), there exists a q E QT,o such that wE B6(q) = B0(q) n E;, = {w' E E;,: 

llw'- qll2:::; 8} (45]. Note that the size of QT,o is bounded by IQT,ol :::; Co= (3/8)K. 

Let cl>T be the matrix formed by the columns of ci> indexed by T and note that 
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fl>rw = fl>w. Since f.~ 0 is given, then for all pairs of points x, y E Qr,6, we have 

for all p E B6 ( x) and q E B6 (y). This follows from Lemma 8 with D = K, since fl>r 

is a Gaussian matrix and by invoking the union bound, since there are (~6 ) :::; Cg = 

(3/8)2K such pairs x, y. 

The bound (B.5) can be extended to all possible index sets T of size K via the 

union bound. Specifically, for all T C {1, · · · , N} and all pairs of points x, y E Qr,6, 

we have 

lP' (I dH(A(p), A(q)) - ds(x, y) I < f.+ y'f.K 8) > 1 _ 2 (e;)K (~?K e-2E2M 

(B.6) 

for all p E B6(x) and q E B6(y), since there are no more than (~) < (eN/ K)K 

possible T. 

To summarize, for any points on the sphere u, v E sN-l with lsuppu U suppvl :::; 

K, there exists an index set T of size K such that u, v E E*(T) and from (B.6) there 

exists two points x, y E Qr,6 such that u E B5 ( x) and v E B6 (y) with a probability 

exceeding 1-2 (e;)K (~?K e-2E
2 M. Furthermore, when this occurs we have 

I dH(A(u), A(v)) - ds(x, y) I :::; f.+ y'f.K 8. (B.7) 

To obtain our final bound, consider that u E B6 ( x) implies that 1r ds ( u, x) < 

2arcsin8/2 :::; 1r8j2, and d8 (v,y) can be similarly bounded. Thus, ds(u,v) > 



182 

ds(x, y)- 8 and ds(u, v)::; ds(x, y) + 8, and (B.7) becomes 

I dn(A(u), A(v)) - ds(u, v) I ::; E + (1 + .f¥() 8. (B.8) 

By bounding the probability of failure as 2 (eJ:)K (!)2K e-2e2M < TJ, where 0 < rJ < 1, 

and setting E = (1 + .jfK) 8, solving forM, we obtain 

Since K 2::: 1, we have that 2(1 + J2irK) < 4J2i;K, and thus the previous relation 

is satisfied if 

M > j ( K log( 9~) + 2K log( 4v'~1rK) +log(~)), 

e~ (K log(9eN) + 2K log( 4~) +log(~)), 

j (K log(N) + 2K loge2~) +log(~)), 

which can be further simplified toM > ~(K log(N) + 2K log( 5e0 ) +log(~)). 

B.6 Lemma 9: Stability with Measurement Noise 

In Lemma 9, since <P rv NMxN(o, 1), each Yi = (<Px)i follows a Gaussian distribution 

N(O, llxll~), and furthermore, since we have independent additive noise, Zi = Yi +ni = 

(<Px)i + ni follows the Gaussian distribution N(O, llxll~ + cr2). 

We begin by bounding the probability that any noisy measurement Zi has a dif­

ferent sign than the original corresponding measurement Yi, i.e., we bound Po = 
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lP(ziYi < 0). This quantity is interesting since M dH(An(x),A(x)) follows a Bino-

mial distribution with M trials and probability of success p0 and thus we also have 

To solve for the bound, we compute 

with the pdf !Yi(t) = g(t;a') = j;;:t exp(-t2/2a'2). This leads to 

Po = fooo du 1P(ni < -u) g(u; llxll2) + /_0
00 

du 1P(ni > -u) g(u; llxlb) 

= fooo du 2 Q(u/a) g(u; llxll2) < fooo due-~ g(u; llxll2) 
00 _!({llzll~+u2)u2 ) 

= 1 r due 2 u211zll~ = ! (j 

v'21rllxll2 lo 2 Jllxll~ + a2' 

where Q(u) = J,::O dt g(t; 1) denotes the tail integral of the standard Gaussian dis­

tribution which is bounded by Q(t) ~ ~e-t212 for t ~ 0 (see for instance [141, Eq. 

(13.48)]). 

Thus, we have Po ~ e(a, llxlb) = ~ J u2 and, by applying the Chernoff-
llxll2+u2 

Hoeffding inequality to the distribution of dH(An(x), A(x)), 

1P[M dH(An(x), A(x)) > M e(a, llxll2) +ME] 

< 1P[M dH(An(x), A(x)) > M Po+ ME] 

< -2M£.2 e , 

which proves the lemma. 
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B. 7 Corollary 3: Stability with Compressible Signals 

The proof of Corollary 3 is as follows. Since x = x K + ( x - x K) then ~x = ~x K + n 

where n = ~(x-xK) is a random Gaussian vector. Thus A(x) = An(xK) where An is 

defined as in Lemma 9. The vector n is also independent of ~XK since the supports 

of XK and (x- XK) are disjoint. Finally, the variance u of each i.i.d. component ni of 

n is llx- xKII~, thus the result follows from Lemma 9 with the bound e(u, l!xKII 2) = 

1 u - llx-xKII2 . II 11 2 - II 11 2 + II 11 2 2 yfllxKII~+u2 - 2llxll2 smce X 2- XK 2 X- XK 2· 
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Appendix C 

The RSS Algorithm 

C.l Quadratic Penalty Framework 

The quadratic penalty framework can also make use of the RSS-inner subroutine to 

solve (3.17). This framework has been is used by FPC and gradient projection for 

sparse reconstruction (GPSR) to solve conventional CS reconstruction problems [27]. 

This approach proceeds by iteratively minimizing a sequence of penalty functions: 

min llxlh + 11
2

8
11 min{ Ax- b, 0}11~ s.t. llxll2 = 1, 

:z:eJRN 
(C.1) 

where p,8 > 0 is the penalty parameter, and we increase p,8 -+ +oo by setting p,s+1 := 

K,J18 with K, > 1. In fact, (C.1) often only needs to be solved once for some values of 

p,8 = p,, as is done in practice with FPC and GPSR. 

It is then straightforward to see that (C.1) is of the form (3.18) and can be solved 

by the RSS-inner subroutine. 

C.2 Convergence Proof of Algorithm 4 

Before proving Lemma 10 from Section 3.7.1-B, we introduce an additional Lemma 

17 that provides bounds on the reduction of the first-order approximation m8 ( x). We 
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then present a proof that demonstrates both Lemmas. 

Lemma 17. Suppose that X 8 is not a stationary point of (3.18). Denote by d8 := 

z 8 - x 8 the search direction computed at X 8 E JRN. Then the predicted reduction 

objective function of the subproblem (3.23) satisfies 

(C.2) 

Proof of Lemmas 10 and 17: The corresponding first-order optimality conditions 

of (3.23) are 

where p E 8llz8 1h· Given any feasible solution x with llxlb = 1, we have 

TB 
+-llx- zsll~ 

2 
8 

- llxlh -llz8 111 + (.Xzs- p) T (x- Z 8 ) + ~ llx- Z8 11~ 

- llxiii-pTx+(.Xzs)Tx-.X+ ;llx-zsll~ 
7 8 -A 

llxll1- PT X+ 2 llx- Z8 11~ 

> rs- Allx- zsll~, 
2 

(C.4) 

(C.5) 

where the first equality follows from the Taylor expansion of the smooth terms of 
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ms(x), the second equality comes from (C.3), the third equality uses p T z8 = llz8 11 1 

and llzsll2 = 1, and the fact llxlh = max q T x gives the last inequality. 
qE[-1,1) 

It follows from (C.3) that (T8 - A)z8 := T8 X 8 - J..L98 - p. We now discuss the 

following cases: 

Z 8 = uff."u2 is a global minimizer. Substituting X= X 8 into (C.5) gives (C.2). 

2. T8 - A> 0 and IT8 X 8 - f..L98 1 ~ 1. Without loss of generality, we can assume that 

there exists a component zf > 0. Then Pi = 1 and T8 X 8 - J..L98 - 1 < 0 which 

contradicts (T8 - A)zi > 0. 

3. T 8 - A < 0. Suppose that Z 8 has at least two nonzero components. Without 

loss of generality, we can assume that there exits a component zf > 0. Let 

Xi = zf + f with f > 0 and Xj = zj for all other j =I i. It is obvious that x = 11~12 

is feasible, x =I Z 8 and p E Bllxll1. Hence llxll1 - p T x = 0 and (C.4) implies 

that m8 (x) < m8 (z8 ), which contradicts the fact m8 (x) 2': m8 (z8 ). Therefore, 

the solution Z 8 only has one nonzero element and its value must be either -1 

or 1. Note that 

It can be verified that zf = sgn(Ti8 X8 - J..Lgi), where i = argmaxk=1, ... ,n IT8 Xt-

J..L9ZI (select only one i if there are multiple solutions); otherwise zf = 0. In fact, 

the set {i IIT8 Xi- J..L9il = 1} is empty. 
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J.t9il = 1} is not empty and the closed-form solution of the subproblem (3.23) 

is given by (3.26). 

D 

The next lemma shows that iteration s will be successful for a sufficient large T 8 , 

hence, the number of unsuccessful iterations between two successful iterations cannot 

be infinity. 

Lemma 18. Suppose that lldslb > 0 and T 8 ;:::::: 7 := 12,!!~2 • Then the s-th iteration is 

a very successful iteration which satisfies T 8+1 ::::; T 8 • 

Proof: Using the definition of r8 , Lemma 17 and Assumption 1, we obtain 

- I (~(xk) - (~(zs) - 8(xs' zs) I 
8(x8 , z 8 ) 

I
J.tf(xs) + J.t(gs)T ds- J.tf(zs) I 

8(x8 , z 8 ) 

< 2J.tii9(X8 + eds)- g(x8 )ll2lld8 ll2 (c E (O 1)) 
Tslldsll~ ' <, ' 

2J.tL < - < 1-"72· Ts -

Therefore, r8 ;:::::: ry2 and the s-th iteration is very successful. The rule (3.28) ensures 

D 

The following lemma gives a useful alternative characterization of stationarity. 

Lemma 19. For any successful iteration k with T8 < +oo, the point X 8 is a stationary 

point of (3.18) if only if d8 = 0. 
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Proof: Suppose that d8 =j:. 0. Since iteration k is successful, Lemma 17 and the 

ratio (3.27) testing show that the function value at Z 8 is smaller than that of X 8 , 

implying that x 8 is not a stationary point. Conversely, if d8 = 0, then it follows from 

(C.3) and x 8 = z8 that 

p + p,g8 - AX8 = 0, A E ~' llx8 112 = 1, 

which are the first-order optimality conditions of (3.18). 0 

We are now ready to prove Theorem 7. 

C.2.1 Proof of Theorem 7 

If Algorithm 4 has finitely many successful iterations, then for sufficiently large s, the 

iteration is unsuccessful. Thus, the sequence { 7 8 } converges to +oo. Suppose that s0 

is the index of the last successful iteration and lldslb > 0 for s > s0 • It follows from 

Lemma 18 that there must exist a very successful iteration of index s larger than s0 , 

which is a contradiction to the assumption. 

Suppose that Algorithm 4 has infinitely many successful iterations. Since an 

unsuccessful iterate in the sequence { x 8 } remains the same and makes no progress, 

it can be substituted by the same successful iterate. The substituted sequence which 

only consists of different successful iterates is still denoted by the same notation {x8 }. 

Since the sequence satisfying llx8 11 = 1lies in a compact set, there exists at least one 

cluster point x* such that llx*ll = 1. 

Suppose that the cluster point x* is not a stationary point. According to Lemma 
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18, there exits a constant 7 such that T 8 ~ 7 < +oo for all s. Hence, there exists a 

subsequence { X 8i} approaches x* and lim T 8 i = t* ~ 0. Since x* is not a stationary 
Si-+00 

point, by Lemma 19, d* =1- 0 and 

8(x*, x* + d*) = llx*III- llx* + d*l11 - Jl(g*) T d* = E > 0. 

Using the fact that the shrinkage operator is non-expansive, i.e., 

IIS(x)- S(y)ll2 ~ llx- Ylb, 

we obtain 

which implies that lim ssi = S* and lim d8 i = d*. Note that g(x) and llxlh are 
Si-+00 Si-+00 

continuous. For si large enough, we have therefore that 

It follows from the acceptance rule for successful iterations (3.28) that 

(C.6) 

However, since the series with positive terms 

00 00 

L(l-l(xsi) _ (J-I(xsi+l) < L (J-I(xsi) _ (J-I(xsi+I) 
i=l S=SI 
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is convergent, we have 

which contradicts (C.6) and completes the proof. D 
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Appendix D 

Regime Change: Proof of Theorem 8 

We first extend the upper bound of Theorem 4.1 in [38] on the oracle-assisted recon­

struction error to account for correlated measurement noise. 

Lemma 20. Suppose that y = <Px + z, where z E ~M is a zero-mean, random vector 

with covariance matrix ~ = IE( zzT), and that x is K -sparse. Furthermore, suppose 

that <P satisfies the RIP of order K with constant 8. Then the estimate x provided by 

the oracle-assisted reconstruction algorithm ( 1.10) satisfies 

(D.1) 

where Amax(~) is the largest eigenvalue of~. 

Proof For a fixed support set n E {1, ... , N} with 101 = K, the RIP ensures that 

<Pn is full rank, and thus the oracle estimate satisfies 

xln = xln + <Phz. (D.2) 

We seek to estimate lE (II<Phzll~). 



For any K x M matrix A we have that 

E (IIAzll~) - lE(Tr(Az(Az)T)) = E(Tr(AzzT AT)) 

- Tr(AE(zzT)AT) = Tr(AEAT) 

K 

- L Aj(AEAT), 
j=l 
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(D.3) 

where >.i(AEAT) denotes the j-th eigenvalue of AEAT, and (D.3) follows since AEAT 

is a K x K matrix. Lemma 8.2 of [38] explains that the eigenvalues of this matrix 

can be upper bounded as 

(D.4) 

where Smax(A) denotes the maximum singular value of A. 

Thus, to obtain the final bound, we combine (D.3) with (D.4) and substitute 

A = <Ph, yielding 

E (II<Phzll~) < K Smax( <Ph? Amax(E) 

K 
< 1 _ 0>.max(E), 

since we have that Smax(<i>h)2 :::; 1:_6 from Lemma 8.1 of [38]. 

(D.5) 

D 

We next demonstrate that, by choosing a signal model with random values and 

supports, the noiseless measurements <Px are identically distributed and uncorrelated. 
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Lemma 21. Let x E JRN be a sparse signal with support n E {1, ... , N} and 1n1 = K, 

where the elements n are chosen uniformly at random and the amplitudes of the non­

zero coefficients are drawn according to Xj E n rv N(O, a;). Furthermore, let the 

M x N matrix <I> satisfy <I><I>T = Z,IM. Then the vector <I>x is distributed as a mixture 

of Gaussians with 

(D.6) 

i.e., the elements ( <I>x )i of <I>x are zero-mean uncorrelated variables. 

Proof. For a fixed support n, each element ( <I>x )i is Gaussian distributed with mean 

zero since it is the sum of K zero-mean Gaussian variables. Furthermore, the dis­

tribution of ( <I>x )i over all possible supports is the sum of the distribution for each 

fixed support, scaled by the probability that they occur. Thus, (<I>x)i is a mixture of 

Gaussians with lE( ( <I>x )i) = 0. 

To derive the variance of the elements and also show that they are uncorrelated, 

we first examine lE(xxT). The off-diagonal elements are zero, i.e., lE(xixj)i#i = 0, 

since the elements of x are uncorrelated, by definition. Furthermore, the variance of 

the diagonal elements can be computed as 

since the K non-zero support locations are chosen uniformly, any location j is chosen 

with probability KjN. Thus, lE(xxT) = ~a;IN. We next compute the correlation of 
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the measurements cpx to obtain 

(D.7) 

which concludes the proof. D 

Proof of Theorem 8. Denote the error between the noiseless ideal measurements and 

(D.8) 

Our goal is to determine a bound on the variance a;; of each element zi of z. We 

begin by rewriting the norm squared of z as 

(D.9) 

where the index i denotes individual elements of the respective vector. 

We now seek an upper bound on the expected value of each of the quantities in 

(D.9). We begin with the second term in (D.9). From the definition of cp, we have 

that the elements of cpn have variance 

(D.lO) 

and furthermore are uncorrelated, as was reviewed in Section 1.2. 
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To bound the first term in (D.9), we note that the optimal scalar quantizer of rate 

B for a Gaussian variable g with variance a-2 has MSE given by IE(g- Qs(g)) 2 = 

a-22-2B. Furthermore, the MSE of an optimal quantizer of rate B for any variable 

with variance a-2 is upper bounded by that of a Gaussian variable. Our goal is to 

apply this quantization bound to ( <I>x + <I>n )i. Since ( <I>x )i and ( <I>n )i are zero mean 

and independent of each other, then we immediately have that IE ((<I>x + <I>n);) = 

J:;a-; + i;;a-~, where the first term follows from Lemma 21, and the second term 

follows from (D.10). Thus, we can bound the first term in (D.9) as 

lE ([(<I>x + <I>n)i- Qs(<I>x + <I>n)i] 2) < lE ((<I>x + <I>n);) 2-2B 

K N < -a-22-2B + -a-22-2B 
M x M n . (D.ll) 

Combining (D.10) and (D.ll) as in (D.9) yields 

(D.12) 

We have thus far established an upper bound on the variance a-;i of the error Zi 

of each measurement. We next obtain a bound on the eigenvalues of the covariance 

matrix :E = IE(zzr). The off-diagonal elements of :E can be written as 

(D.13) 

since IE((<I>x)i(<I>x)j)) = 0 by design and, for an optimal scalar quantizer, we have that 
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E has cr;i along its diagonal and 6 for all other entries. We next apply Gershgorin's 

circle theorem, which explains that any eigenvalue is upper bounded by the diagonal 

entry plus the sum of the magnitudes of the off-diagonal entries of each row of E. 

Thus, we have 

(D.l4) 

where 6 =maxi#; I1E(zizi)l. 

To obtain the final bound, we combine to (D.12) with (D.14) and apply the upper 

bound in Lemma 20. We express the bound with the substitution M = 2:3/ B. 0 
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