13 research outputs found

    Message passing for vertex covers

    Full text link
    Constructing a minimal vertex cover of a graph can be seen as a prototype for a combinatorial optimization problem under hard constraints. In this paper, we develop and analyze message passing techniques, namely warning and survey propagation, which serve as efficient heuristic algorithms for solving these computational hard problems. We show also, how previously obtained results on the typical-case behavior of vertex covers of random graphs can be recovered starting from the message passing equations, and how they can be extended.Comment: 25 pages, 9 figures - version accepted for publication in PR

    Long-range frustration in T=0 first-step replica-symmetry-broken solutions of finite-connectivity spin glasses

    Full text link
    In a finite-connectivity spin-glass at the zero-temperature limit, long-range correlations exist among the unfrozen vertices (whose spin values being non-fixed). Such long-range frustrations are partially removed through the first-step replica-symmetry-broken (1RSB) cavity theory, but residual long-range frustrations may still persist in this mean-field solution. By way of population dynamics, here we perform a perturbation-percolation analysis to calculate the magnitude of long-range frustrations in the 1RSB solution of a given spin-glass system. We study two well-studied model systems, the minimal vertex-cover problem and the maximal 2-satisfiability problem. This work points to a possible way of improving the zero-temperature 1RSB mean-field theory of spin-glasses.Comment: 5 pages, two figures. To be published in JSTA

    Determining the Solution Space of Vertex-Cover by Interactions and Backbones

    Full text link
    To solve the combinatorial optimization problems especially the minimal Vertex-cover problem with high efficiency, is a significant task in theoretical computer science and many other subjects. Aiming at detecting the solution space of Vertex-cover, a new structure named interaction between nodes is defined and discovered for random graph, which results in the emergence of the frustration and long-range correlation phenomenon. Based on the backbones and interactions with a node adding process, we propose an Interaction and Backbone Evolution Algorithm to achieve the reduced solution graph, which has a direct correspondence to the solution space of Vertex-cover. By this algorithm, the whole solution space can be obtained strictly when there is no leaf-removal core on the graph and the odd cycles of unfrozen nodes bring great obstacles to its efficiency. Besides, this algorithm possesses favorable exactness and has good performance on random instances even with high average degrees. The interaction with the algorithm provides a new viewpoint to solve Vertex-cover, which will have a wide range of applications to different types of graphs, better usage of which can lower the computational complexity for solving Vertex-cover

    The theory of percolation on hypergraphs

    Full text link
    Hypergraphs capture the higher-order interactions in complex systems and always admit a factor graph representation, consisting of a bipartite network of nodes and hyperedges. As hypegraphs are ubiquitous, investigating hypergraph robustness is a problem of major research interest. In the literature the robustness of hypergraphs as been so far only treated adopting factor-graph percolation which describe well higher-order interactions which remain functional even after the removal of one of more of their nodes. This approach, however, fall short to describe situations in which higher-order interactions fail when anyone of their nodes is removed, this latter scenario applying for instance to supply chains, catalytic networks, protein-interaction networks, networks of chemical reactions, etc. Here we show that in these cases the correct process to investigate is hypergraph percolation with is distinct from factor graph percolation. We build a message-passing theory of hypergraph percolation and we investigate its critical behavior using generating function formalism supported by Monte Carlo simulations on random graph and real data. Notably, we show that the node percolation threshold on hypergraphs exceeds node percolation threshold on factor graphs. Furthermore we show that differently from what happens in ordinary graphs, on hypergraphs the node percolation threshold and hyperedge percolation threshold do not coincide, with the node percolation threshold exceeding the hyperedge percolation threshold. These results demonstrate that any fat-tailed cardinality distribution of hyperedges cannot lead to the hyper-resilience phenomenon in hypergraphs in contrast to their factor graphs, where the divergent second moment of a cardinality distribution guarantees zero percolation threshold.Comment: (12 pages, 4 figures
    corecore