To solve the combinatorial optimization problems especially the minimal
Vertex-cover problem with high efficiency, is a significant task in theoretical
computer science and many other subjects. Aiming at detecting the solution
space of Vertex-cover, a new structure named interaction between nodes is
defined and discovered for random graph, which results in the emergence of the
frustration and long-range correlation phenomenon. Based on the backbones and
interactions with a node adding process, we propose an Interaction and Backbone
Evolution Algorithm to achieve the reduced solution graph, which has a direct
correspondence to the solution space of Vertex-cover. By this algorithm, the
whole solution space can be obtained strictly when there is no leaf-removal
core on the graph and the odd cycles of unfrozen nodes bring great obstacles to
its efficiency. Besides, this algorithm possesses favorable exactness and has
good performance on random instances even with high average degrees. The
interaction with the algorithm provides a new viewpoint to solve Vertex-cover,
which will have a wide range of applications to different types of graphs,
better usage of which can lower the computational complexity for solving
Vertex-cover