50,281 research outputs found

    Session-based concurrency, declaratively

    Get PDF
    Session-based concurrency is a type-based approach to the analysis of message-passing programs. These programs may be specified in an operational or declarative style: the former defines how interactions are properly structured; the latter defines governing conditions for correct interactions. In this paper, we study rigorous relationships between operational and declarative models of session-based concurrency. We develop a correct encoding of session 휋-calculus processes into the linear concurrent constraint calculus (횕회회), a declarative model of concurrency based on partial information (constraints). We exploit session types to ensure that our encoding satisfies precise correctness properties and that it offers a sound basis on which operational and declarative requirements can be jointly specified and reasoned about. We demonstrate the applicability of our results by using our encoding in the specification of realistic communication patterns with time and contextual information

    A decentralized analysis of multiparty protocols

    Get PDF
    Protocols provide the unifying glue in concurrent and distributed software today; verifying that message-passing programs conform to such governing protocols is important but difficult. Static approaches based on multiparty session types (MPST) use protocols as types to avoid protocol violations and deadlocks in programs. An elusive problem for MPST is to ensure both protocol conformance and deadlock-freedom for implementations with interleaved and delegated protocols. We propose a decentralized analysis of multiparty protocols, specified as global types and implemented as interacting processes in an asynchronous π-calculus. Our solution rests upon two novel notions: router processes and relative types. While router processes use the global type to enable the composition of participant implementations in arbitrary process networks, relative types extract from the global type the intended interactions and dependencies between pairs of participants. In our analysis, processes are typed using APCP, a type system that ensures protocol conformance and deadlock-freedom with respect to binary protocols, developed in prior work. Our decentralized, router-based analysis enables the sound and complete transference of protocol conformance and deadlock-freedom from APCP to multiparty protocols

    Static Analysis of a Concurrent Programming Language by Abstract Interpretation

    Get PDF
    Static analysis is an approach to determine information about the program without actually executing it. There has been much research in the static analysis of concurrent programs. However, very little academic research has been done on the formal analysis of message passing or process-oriented languages. We currently miss formal analysis tools and techniques for concurrent process-oriented languages such as Erasmus . In this dissertation, we focus on the problem of static analysis of large Erasmus programs. This can help us toward building more reliable Erasmus software systems. Reasoning about non-deterministic large Erasmus program using static analyzer is hard. These kinds of programs can quickly exhaust the computational and memory resources of the static analyzer tool. We use Abstract Interpretation to reason about Erasmus programs. To use the Abstract Interpretation theory, we introduce a lattice for Erasmus communications and an Event Order Predictor algorithm to statically determine the order that events happen in an Erasmus program. By using fixed-point theory of lattice, we compute a safe approximation of reachable states of an Erasmus programs. We also offer a Resettable Event order Vector for Erasmus processes to realistically implement our vector for large Erasmus programs using bounded space. We believe that our formal approach is also applicable to other types of process-oriented programs and MPI programs

    A Decentralized Analysis of Multiparty Protocols

    Get PDF
    Protocols provide the unifying glue in concurrent and distributed software today; verifying that message-passing programs conform to such governing protocols is important but difficult. Static approaches based on multiparty session types (MPST) use protocols as types to avoid protocol violations and deadlocks in programs. An elusive problem for MPST is to ensure both protocol conformance and deadlock freedom for implementations with interleaved and delegated protocols. We propose a decentralized analysis of multiparty protocols, specified as global types and implemented as interacting processes in an asynchronous π\pi-calculus. Our solution rests upon two novel notions: router processes and relative types. While router processes use the global type to enable the composition of participant implementations in arbitrary process networks, relative types extract from the global type the intended interactions and dependencies between pairs of participants. In our analysis, processes are typed using APCP, a type system that ensures protocol conformance and deadlock freedom with respect to binary protocols, developed in prior work. Our decentralized, router-based analysis enables the sound and complete transference of protocol conformance and deadlock freedom from APCP to multiparty protocols.Comment: revision following anonymous review

    A Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs

    Full text link
    The actor model is an attractive foundation for developing concurrent applications because actors are isolated concurrent entities that communicate through asynchronous messages and do not share state. Thereby, they avoid concurrency bugs such as data races, but are not immune to concurrency bugs in general. This study taxonomizes concurrency bugs in actor-based programs reported in literature. Furthermore, it analyzes the bugs to identify the patterns causing them as well as their observable behavior. Based on this taxonomy, we further analyze the literature and find that current approaches to static analysis and testing focus on communication deadlocks and message protocol violations. However, they do not provide solutions to identify livelocks and behavioral deadlocks. The insights obtained in this study can be used to improve debugging support for actor-based programs with new debugging techniques to identify the root cause of complex concurrency bugs.Comment: - Submitted for review - Removed section 6 "Research Roadmap for Debuggers", its content was summarized in the Future Work section - Added references for section 1, section 3, section 4.3 and section 5.1 - Updated citation

    Automatic Verification of Erlang-Style Concurrency

    Full text link
    This paper presents an approach to verify safety properties of Erlang-style, higher-order concurrent programs automatically. Inspired by Core Erlang, we introduce Lambda-Actor, a prototypical functional language with pattern-matching algebraic data types, augmented with process creation and asynchronous message-passing primitives. We formalise an abstract model of Lambda-Actor programs called Actor Communicating System (ACS) which has a natural interpretation as a vector addition system, for which some verification problems are decidable. We give a parametric abstract interpretation framework for Lambda-Actor and use it to build a polytime computable, flow-based, abstract semantics of Lambda-Actor programs, which we then use to bootstrap the ACS construction, thus deriving a more accurate abstract model of the input program. We have constructed Soter, a tool implementation of the verification method, thereby obtaining the first fully-automatic, infinite-state model checker for a core fragment of Erlang. We find that in practice our abstraction technique is accurate enough to verify an interesting range of safety properties. Though the ACS coverability problem is Expspace-complete, Soter can analyse these verification problems surprisingly efficiently.Comment: 12 pages plus appendix, 4 figures, 1 table. The tool is available at http://mjolnir.cs.ox.ac.uk/soter

    Work Analysis with Resource-Aware Session Types

    Full text link
    While there exist several successful techniques for supporting programmers in deriving static resource bounds for sequential code, analyzing the resource usage of message-passing concurrent processes poses additional challenges. To meet these challenges, this article presents an analysis for statically deriving worst-case bounds on the total work performed by message-passing processes. To decompose interacting processes into components that can be analyzed in isolation, the analysis is based on novel resource-aware session types, which describe protocols and resource contracts for inter-process communication. A key innovation is that both messages and processes carry potential to share and amortize cost while communicating. To symbolically express resource usage in a setting without static data structures and intrinsic sizes, resource contracts describe bounds that are functions of interactions between processes. Resource-aware session types combine standard binary session types and type-based amortized resource analysis in a linear type system. This type system is formulated for a core session-type calculus of the language SILL and proved sound with respect to a multiset-based operational cost semantics that tracks the total number of messages that are exchanged in a system. The effectiveness of the analysis is demonstrated by analyzing standard examples from amortized analysis and the literature on session types and by a comparative performance analysis of different concurrent programs implementing the same interface.Comment: 25 pages, 2 pages of references, 11 pages of appendix, Accepted at LICS 201
    • …
    corecore