
STATIC ANALYSIS OF A CONCURRENT PROGRAMMING

LANGUAGE BY ABSTRACT INTERPRETATION

Maryam Zakeryfar

A thesis
in

The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy (Computer Science)

Concordia University
Montréal, Québec, Canada

March 2014
© Maryam Zakeryfar, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211517233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Mrs. Maryam Zakeryfar

Entitled: Static Analysis of a Concurrent Programming

Language by Abstract Interpretation

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. Deborah Dysart-Gale Chair

Dr. Weichang Du External Examiner

Dr. Mourad Debbabi Examiner

Dr. Olga Ormandjieva Examiner

Dr. Joey Paquet Examiner

Dr. Peter Grogono Supervisor

Approved by

Dr. V. Haarslev, Graduate Program Director

Christopher W. Trueman, Dean

Faculty of Engineering and Computer Science

Abstract

Static Analysis of a Concurrent Programming Language by Abstract Interpretation

Maryam Zakeryfar, Ph.D.

Concordia University, 2014

Static analysis is an approach to determine information about the program without actually

executing it. There has been much research in the static analysis of concurrent programs.

However, very little academic research has been done on the formal analysis of message

passing or process-oriented languages. We currently miss formal analysis tools and tech-

niques for concurrent process-oriented languages such as Erasmus . In this dissertation, we

focus on the problem of static analysis of large Erasmus programs. This can help us toward

building more reliable Erasmus software systems.

Reasoning about non-deterministic large Erasmus program using static analyzer is hard.

These kinds of programs can quickly exhaust the computational and memory resources of

the static analyzer tool. We use Abstract Interpretation to reason about Erasmus programs.

To use the Abstract Interpretation theory, we introduce a lattice for Erasmus communica-

tions and an Event Order Predictor algorithm to statically determine the order that events

happen in an Erasmus program. By using fixed-point theory of lattice, we compute a safe

approximation of reachable states of an Erasmus programs.

We also offer a Resettable Event order Vector for Erasmus processes to realistically imple-

ment our vector for large Erasmus programs using bounded space. We believe that our

formal approach is also applicable to other types of process-oriented programs and MPI

programs.

iii

Acknowledgements

It all started with my mother’s dream. All her life she had aspired to higher learning but

life had clipped her wings; her dream of piercing through the clouds of un-knowing became

my inspiration for pursuing higher education. Keeping her dream alive inspired me to fly,

allowing me to share the joy with her. It was a wonderful journey.

I was truly blessed to work under the guidance of a brilliant professor: Dr Peter Grogono,

who helped me pursue my goal with respect, humour and great patience. I also want to

thank my defence committee: Dr Joey Paquet, Dr Olga Ormandjieva, Dr Mourad Debbabi,

and Dr Weichang Du for their thoughtful and meticulous feedback, shedding light where

there was darkness. Finally, I am very grateful to my colleagues in the lab, Nima Jafroodi

and Tamer Abdou for keeping me on track.

Despite living so far away, my family was always by my side. My mother inspired me with

her wisdom; my father continuously fuelled my dream encouraging me to push my limits,

to work hard, to dream big. The unconditional love of my siblings Mehri, Mehrnaz and

Daniel, provided the wind under my wings, propelling me to new heights. None of this

could have happened without them and I cannot thank them enough.

I met my husband Georges on a beautiful summer day in Montreal. Ever since that day he

has travelled alongside me, showing me his love and expressing joy in my accomplishment.

This thesis is dedicated to him.

iv

Contents

List of Algorithms viii

List of Tables ix

List of Figures x

1 INTRODUCTION 1

1.1 Problem Statement . 1

1.2 Contributions . 2

1.3 Thesis Organization . 3

2 BACKGROUND 5

2.1 Glossary of Terms . 5

2.2 Verification Techniques . 5

2.2.1 Theorem-proving . 6

2.2.2 Model Checking . 7

2.2.3 Static Analysis . 8

2.3 Classical Static analysis Techniques . 10

2.3.1 Data Flow Analysis . 10

2.3.2 Constraint Based Analysis . 10

2.3.3 Type and Effect Systems . 11

2.3.4 Abstract Interpretation . 11

2.4 Erasmus . 12

2.4.1 The Sleeping Barber . 12

v

2.5 Abstract Interpretation . 16

2.5.1 Mathematical Foundations . 16

2.5.1.1 Fixed Point . 19

2.5.2 Static Analysis of Program by Fixed Point Theory 20

2.5.3 Galois Connection in Abstract Interpretation 21

2.5.3.1 Example . 23

2.6 A Lattice for Erasmus . 25

2.7 Algorithms for partial ordering of events in a distributed system 25

2.7.1 Lamport Logical Clock . 25

2.7.2 Vector Clock (VC) . 28

2.7.2.1 Scenario example . 30

2.7.2.2 Limitation of Vector Clock 32

2.8 Chapter Summary . 33

3 DESIGN A NOVEL COMMUNICATION ABSTRACT DOMAIN 34

3.1 Preliminaries . 35

3.1.1 Conditional Erasmus program . 35

3.1.2 Select and Loop Select Statements 36

3.1.3 Deadlock . 38

3.2 Concerete Semantic Domain for Erasmus 39

3.2.1 A Communication Lattice . 39

3.2.2 Fixed-Point calculation of program semantics 44

3.3 Abstract Semantic . 46

3.4 Operators and Transfer Functions . 47

3.4.0.1 Galois Connection . 47

3.5 Example . 49

3.5.1 Galois Connection . 51

3.6 Chapter Summary . 53

4 DESIGN AN EVENT ORDER PREDICTOR 54

4.1 An Event Order Predictor . 54

vi

4.1.1 Event Order . 56

4.1.1.1 Communication Pattern . 57

4.1.2 Reset Conditions for Erasmus . 59

4.1.2.1 Order-bound value . 59

4.1.2.2 Time-Frame . 59

4.1.3 The Reset Rule . 60

4.1.3.1 Phase-based applications 60

4.1.4 Event Order Predictor for Cells . 61

4.2 Chapter Summary . 64

5 EVALUATIONAL ANALYSIS 65

5.1 Reasoning . 65

5.2 Practical Evaluation . 66

5.2.1 Cyclic Communication Pattern . 66

5.2.2 Abstraction . 67

5.2.3 EOV Operations . 68

5.2.4 Reasoning . 68

5.2.5 Cyclic Communication Pattern - Deadlock 72

5.2.6 Reasoning . 73

5.2.7 Heating Simulation: Successful Communication: 75

5.2.8 Reset Condition . 80

5.2.9 Reasoning . 81

5.3 Comparisons . 85

5.3.1 Static analysis of process-oriented programs 85

5.3.2 Event Order Predictor . 86

5.4 Chapter Summary . 87

6 IMPLEMENTATION 88

6.1 Event Order Predictor algorithm . 88

6.2 Implementation details . 91

6.3 Static analysis of Erasmus . 93

vii

6.3.1 Circular Dependency Chain . 95

6.3.2 Event Order Vector . 97

6.3.3 Program Specification . 97

6.4 Proof of Concept Results . 99

6.5 Summary . 101

7 RELATED WORKS 102

7.1 Static Analysis Tools by Abstract Interpretation 102

7.2 Static Analysis Tools for CSP languages . 103

7.3 Static Analysis Tools for Message Passing Programs 103

7.4 Chapter Summary . 104

8 CONCLUSION AND FUTURE WORK 106

8.1 Research Contributions . 106

8.2 Research Limitations . 107

8.3 Directions For Future Research . 107

8.3.1 Applying AI concepts to Erasmus 108

8.3.2 Applying EOP concepts to Erasmus 108

8.3.3 Fully Implementation of the Analyzer 108

Appendix A Java Classes for implementation 109

A.1 OrderVector and Statement Classes . 109

A.2 Event Order Predictor Class . 110

Appendix B Erasmus Grammar 111

B.1 Terminal symbols . 111

B.2 Non-terminal symbols . 112

B.3 Rules . 112

Bibliography 120

viii

Program Listings

2.1 Sleeping barber problem- Part 1 . 15

2.2 Sleeping barber problem- Part2 . 16

2.3 Philosophers Meeting Scheduling Problem 31

3.1 Chemical Plant Emergency Alarm System 36

3.2 Erasmus program with loop select and conditions 37

3.3 Program E1 with constraint P
x

−→ Q . 42

3.4 Program E2 with constraints P
x

−→ Q and Q
y

−→ R 42

3.5 Program E . 50

3.6 Abstract Processes: E′ . 50

4.1 Communication Pattern [4] . 58

4.2 Process Pump in heating simulation . 61

5.1 Program E . 67

5.2 Heating Simulation- Part 1 . 78

5.3 Heating Simulation- Part 2 . 79

5.4 Heating Simulation- Part 3 . 80

6.1 Communication Fault in Erasmus . 95

6.2 Starvation in Erasmus . 100

A.1 OrderVector and Statement Classes . 109

A.2 Event Order Predictor Algorithm . 110

ix

List of Tables

2.1 Glossary of Terms. 6

2.2 Outcomes of Static Analyzer Tool (SAT) . 9

2.3 Summary of Static Analysis Tool Result Types. 9

2.4 Comparing two vector timestamps . 29

3.1 Possible Abstract Domains for Erasmus . 40

3.2 Definitions . 52

3.3 events name for program E . 52

4.1 Nomenclature . 55

4.2 Nomenclature . 57

5.1 Event Order Vector Indexes for program E. 69

5.2 HS Event Order Indexes . 81

6.1 Nomenclature . 89

6.2 Deadlock Situations in Erasmus . 94

7.1 Existing research . 105

x

List of Figures

2.1 Barber Design Diagram . 13

2.2 A system S and its model M . 22

2.3 Fixed-point approximation . 22

2.4 Concerete Domain 〈D, ⊆〉 and Abstract Domain〈D̂, ⊆〉 [37]. 24

2.5 Abstraction and concretization functions . 24

2.6 α and γ form a Galois connection [37]. 24

2.7 HBR relations . 26

2.8 Philosophers Meeting . 32

3.1 Chemical Plant Emergency Alarm System. 36

3.2 Sender and Receiver program . 38

3.3 Sender, Receiver program deadlocks . 39

3.4 Lattice of program states . 45

3.5 Abstraction of processes . 51

4.1 Communication Pattern . 58

4.2 Cell ownership in Erasmus. 63

5.1 A chain of processes, P , Q and R . 67

5.2 Transition table for processes P , Q, and R 69

5.3 Finding the fixed-point of program E- Scenario 1. 70

5.4 Finding the fixed-point of program E- Scenario 2. 71

5.5 Graph of events for program 5.1. 71

5.6 Finding the fixed-point of program E1 - Scenario 1 74

xi

5.7 Finding the fixed-point of program E1 - Scenario 2 74

5.8 Event Orders for program E1 . 75

5.9 Event Orders for program E1 . 75

5.10 Heating Simulation . 77

5.11 Event Orders for Heating Simulation (1) 82

5.12 Event Orders for Heating Simulation (2) 82

5.13 Event Orders for Heating Simulation (3) . 83

5.14 Finding the fixed-point of HS (1) . 83

5.15 Finding the fixed-point of HS (2) . 84

5.16 Finding the fixed-point of HS (3) . 84

6.1 Graph of events of barber program-1 . 91

6.2 Graph of events of barber program-2 . 92

6.3 Event Order Vector values for barber program 93

6.4 Circular wait in program E1 . 95

6.5 Program E1 . 96

6.7 Modules of the analysis . 97

6.6 Abstract Syntax Tree of Erasmus . 97

6.8 Starvation Scenario . 100

xii

Chapter 1

INTRODUCTION

Static analysis of programs has been a significant topic for all categories of programming

languages. In this thesis, we investigate the static analysis of a process-oriented program-

ming language called: Erasmus . This chapter gives an overview of the structure of the

thesis and its contributions. Section 1.1 gives a short introduction to the problem state-

ment of the thesis. Section 1.2 reviews the thesis contributions. Section 1.3 provides the

thesis organization.

1.1 Problem Statement

The purpose of the static analysis is to detect properties of programs without actually

executing them. This can help programmers in finding bugs early in the software de-

velopment phase. There has been much research in the static analysis of computer pro-

grams for both sequential and concurrent programs. However, most of the existing research

[12, 1, 59, 42, 31, 46, 41, 45, 52, 16] has been carried out on object-oriented and CSP

languages and is not targeted for message passing or process-oriented languages. Looking

at the existing works and research in the static analysis of concurrent programs, we see

that despite the importance of large-scale process-oriented programs, very little academic

research has been done on the formal analysis of this type of programs. We currently lack

formal analysis tools and techniques to analyze the communication properties of concurrent

applications such as Erasmus –a process-oriented language– and message passing programs.

1

Static analysis of small Erasmus programs seems trivial, However, since one of the main

goals of Erasmus is to facilitate writing large programs, we need to consider an Erasmus

program with many processes and cells. The main challenge arises when a process-oriented

application is large and generates many non-deterministic calls. Such applications can

quickly exhaust the computational as well as memory resources of the static analysis tools

[26].

We use Abstract Interpretation (AI) to reason about large Erasmus programs. To the

best of our knowledge, there has been no previous research in using AI in formal analysis

of process-oriented programs. Cousot [14] tried applying AI concepts on CSP but the

amount of computation needed to do the analysis made the applicability of his work to CSP

languages very difficult. Siegel [57] also emphasized the need of applying AI on message-

passing programs:

Other interesting avenues of research include applications of static analysis and

Abstract Interpretation to MPI or other message-passing systems. These ap-

proaches could potentially reason without bounds on parameters or process

counts. Yet very little research has been done in this area [57].

Developing the right approach for reasoning about concurrent Erasmus programs is an

important step toward building reliable Erasmus software systems.

1.2 Contributions

Generally, concurrent programs are non-deterministic in their execution order, unless the

programmer carefully writes a deterministic concurrent program. In this thesis, we target

both deterministic and non-deterministic Erasmus programs and make the following contri-

butions:

• Since our focus in this research is communication analysis, the existing domains in

abstract interpretation theory such as intervals, convex hull and polyhedra, etc [15]

are not useful for us. Therefore, we offer a novel communication domain whose con-

2

cretization and abstraction function are introduced. The abstract domain can be

added to the existing abstract domains in Abstract Interpretation theory [15].

• To build a lattice for event communications for POP programs, we propose an Event

Order Predictor (EOP) where the events orders are determined statically. Our ap-

proach is inspired by Vector Clock and it predicts the order of events for all possible

paths. Event Order Predictor may be applicable to the formal analysis of other concur-

rent programs. From the result of our first experiment, we realize that implementing

EOP for non-deterministic Erasmus programs is not practically possible. Therefore,

we replace the vector with a Resettable Event Order Vector.

• We construct a Resettable Event Order Vector for Erasmus programs that contain

loop, select, loopselect and case control structures. The Reset conditions and

EOP algorithms are provided based on the properties of Erasmus language.

• To reason about Erasmus programs we propose a generic approach for static analysis of

concurrent Erasmus programs that contain loop, select, loopselect and case control

structures. By using AI theory, we compute the fixed point of only reachable states

of the program. Therefore, we partially avoid the issue of state explosion. We also

use EOP to realistically implement our vector using bounded space. This, reduces

the size of vector. We prove the correctness of our EOP using mathematical theory.

We define a vector order for Erasmus Cell. This way, we encapsulate the details

of processes within a Cell. This, reduces the length of the vector. Detecting dead

process(es) and omitting the dead process from the vector also reduces the length of

Event Order Vector.

1.3 Thesis Organization

The thesis is structured as follows: Chapter 2 reviews the theoretical background of the

research. It explains the communication of processes in Erasmus programming language, the

mathematical foundations to understand Abstract Interpretation technique and two pop-

ular algorithms for dynamically building a partial order of events in distributed systems:

3

Lamport Clock and Vector Clock. Chapter 3 presents our novel communication domain.

The concretization and abstraction functions are also introduced in this chapter. Chapter

4 presents the Event Order Predictor(EOP) for process-oriented programs. The implemen-

tation details of Event Order Vector is also provided in this chapter. Chapter 5 offers a

reasoning approach to reason about non-deterministic synchronous Erasmus programs that

contain loop, select and case statements. The chapter presents a practical evaluation to

evaluate our reasoning methodology in detecting deadlock and successful communication

in Erasmus programs. A comparison of the new approach with the existing tools and tech-

niques is provided at the end of the chapter. Chapter 6 shows our experiment in partially

implementing the concepts of EOP in Erasmus analysis. The goal of the chapter is to in-

vestigate the possibility of reasoning about deterministic concurrent synchronous programs

by Event Order predictor and Abstract Interpretation theory. This experiment makes un-

derstand the limitations of the EOP approach. To overcome the efficiency limitation, we

propose a Resettable vector in our EOP approach. Chapter 7 summarizes the closely re-

lated works and compares them to our work. Finally, in chapter 8 thesis conclusions and

possible future works are provided.

4

Chapter 2

BACKGROUND

This chapter covers fundamental elements that are used in this research. Section 2.2 presents

an overview of most widely used verification techniques. Section 2.3 explains the existing

approaches for static analysis of programs. Section 2.4 presents the syntax of Erasmus

programming language. In Section 2.5, the basic definitions and terminologies for the Ab-

stract Interpretation are presented. Section 2.7 explains two popular algorithms to generate

partial order of events in distributed systems. Last Section 2.8 summarizes the material

discussed in this chapter.

2.1 Glossary of Terms

A list of Glossary of terms that is used throughout this chapter is given in Table 2.1. The

explanations of terms are given on the right.

2.2 Verification Techniques

Choosing the right technique(s) for the verification of Erasmus program is a non-trivial

problem. First, the chosen technique should scale to large and complex programs. Second,

it should address the issue of the state explosion problem. In the following section, a survey

of the existing verification techniques will be presented.

5

Term Explanation

Correctness Correctness of a a program is asserted when it is said
that a program is correct with respect to a specifica-
tion. For example, a program is correct when it does
or does not have certain properties.

Halting problem Given a description of a computer program, decide
whether the program finishes running or continues to
run forever.

Undecidability There is no universal procedure to determine whether
an arbitrary program does or does not possess the
property. Example: Halting problem.

Deadlock Deadlock in concurrent programs happens when a pro-
cess is waiting for a resource that is being held by an-
other process that is also waiting for another resource.
The result is that both processes freeze.

Starvation Starvation occurs when a process is waiting for a re-
source that keeps getting given to other processes.
Therefore, the process starves.

Fairness Granting that each process will be given the access to
a resource equally (according to each process priority).

Abstract Interpretation Terms

Forbidden Zone The set of states in which certain properties do not
hold.

Safety Property A property of a program that ensures that no possible
executions of the program can reach a forbidden zone.

Concrete semantics Semantics that describe the possible behaviours of
programs during their execution.

Collecting semantics A class of properties of program executions derived
from concrete semantics. The purpose of a “collect-
ing” semantics is to collect information about the pro-
gram by interpreting it.

Concretization function A function that maps abstract properties to concrete
properties.

Abstract function A function that maps concrete properties to abstract
properties.

Fixed Point A point that is mapped to itself within an order-
preserving self map.

Table 2.1: Glossary of Terms.

2.2.1 Theorem-proving

In general, theorem-proving can be applied to the semantics of a language to show that

programs have particular properties. One such property might be correctness, assuming

that this can be formalized. Program properties in sequential program can be delivery

6

of correct results and termination; whereas in concurrent programs the properties of in-

terference freedom, deadlock freedom and fairness are critical. In this technique which is

known as formal verification, a specification notation with formal semantics, along with a

deductive apparatus for reasoning, are used for analysis of the program. The history of

theorem-proving as a means of establishing properties, goes back to 1960s and 70s, when

Hoare [34] suggested a logical basis for reasoning about the properties of a program. The

original idea was from Floyd [24]. Floyd [25] also proposed a basic for formal definition of

the meaning of program similar to [34]. The Science of Programming [29] is the very first

text book that used proof techniques for program development. The book is constructed

based on some of techniques suggested by Dijkstra [20]. In this book, Dijkstra identifies

some of the weaknesses of programming languages and considered a program to be a math-

ematical structure.

Verifying programs by theorem-proving is an activity that requires insight as well as signif-

icant mathematical calculations. However, the fully automatic verification of the program

using theorem proving is an undecidable problem and therefore impossible to implement.

2.2.2 Model Checking

Another verification technique to establishes program properties is model checking. This

technique is mostly used after the program has been abstracted to a finite state system. It

consists of constructing a system model along with specifications to ensure the system model

conforms to the specification. This model must preserve the properties of the program that

we wish to establish. Ideally, it should abstract out everything that we are not interested

in. For instance, the model can include only communication statements but ignore other

statements. Therefore, the model can check communication properties but cannot check,

e.g., overflow. Model checking explores all the possible states and transitions of a particular

program. Also, this verification technique can be automated. Model checking can be

summarized in three general phases as follows:

• Modelling: Converting a design into formalism so mathematical computation can

be performed.

7

• Specification: Stating the properties that belong to the system. Model should re-

spect these properties.

• Verification: Verifying the model against specification using mathematical compu-

tation and logical deduction.

The history of model checking in software systems goes back to the early 1980s when Queille

and Sifakis presented CESAR as an interactive system for analysis of properties of parallel

systems [53]. The main idea was validating the system against a particular set of specifi-

cations expressed as formulas. The specification language of CESAR was branching time

logic and fixed points of monotonic predicate transformers considered as a specification

[40]. After automatic translation of program’s description into interpreted Petri nets, each

formula of the specifications is evaluated. At about the same time, Clarke and Emerson

also published their article using branching time temporal logic [10]. Nowadays, almost any

system has a vast number of states. The size of a model depends on the number of possible

states, and this number typically increases exponentially with the number of processes and

variables [63]. This is a major obstacle for model checking called state space explosion prob-

lem. Many techniques have been developed to reduce the complexity of the state in model

checking. Binary Decision Diagram, Partial Order Reduction, Compositional Reasoning

and Abstraction are some of the well-known techniques for this purpose. Another issue

of model-checking technique is the need of encoding the program properties into temporal

logic formulas which relies on the experienced user. Therefore, the adjustment of technique

is limited for an inexperienced user [17].

2.2.3 Static Analysis

The main goal of static analysis is to compute the set of states that arise during the execution

of the program by providing the set of initial states. The first step in static analysis

is to express the semantics of the program as a set of equations. Next step is to solve

the equations iteratively over some abstract domain. If the abstract domain satisfies the

ascending-chain condition, an iterative technique can produce the fixed-point of the equation

as the most precise solution for the equations. Difficulties may arise when the domain

8

contains infinite strictly-increasing chains which make the solution obtained imprecise. The

analyzer provides a positive or negative result for a property: we don’t know whether it is

true or false. The tool has to be calibrated with systems for which we know the answers.

Therefore, the result of the static analysis can be one of the true positive, true negative,

false positive, false negative

Positive Negative

True True Positive True Negative

False False Positive False Negative

Table 2.2: Outcomes of Static Analyzer Tool (SAT). Columns (Negative and Positive) are
SAT outcomes. Rows (True and False) shows the situations where SAT results are true or
false.

True positive indicates a correct result, accurately informing us of the existence or

non-existence of a property such as deadlock in the program. True negative means that

the system does not have the property and the analyzer says that it doesn’t. These two

correspond to the answers that we would like to get. The other entries contain answers

that we do not want but may have to tolerate: False negative means that the property is

present in the program, but that the analysis indicates that it is not. False negative is a

serious problem (worst answer). For example, the analyzer might declare program P to

be deadlock-free although it actually isn’t. On the other hand, false positive means the

program does not have the property but the analysis shows that it does. This is not as

harmful as false negative but may serve as a warning signal

Result Type Explanation

True Positive(TP) Program has defect and Analyzer says it does.

False Positive (FP) Program does not have defect, but Analyzer says it does.

False Negative (FN) Program does have defect, but Analyzer says it does not.

True Negative (TN) Program does not have defect and Analyzer says it does not.

Table 2.3: Summary of Static Analysis Tool Result Types.

9

2.3 Classical Static analysis Techniques

Static analysis is performed on the programs without executing them. Finding the right

approach for static analysis of Erasmus program is challenging. However, the chosen ap-

proach can be a combination of existing approaches. In classical static analysis four main

approaches to program analysis are introduced [51] :

• Data Flow Analysis

• Constraint Based Analysis

• Type and Effect Systems

• Abstract Interpretation

There are a lot of commonalities among these four approaches that motivated us to

look into each one of them. We explored the possibility of choosing one approach as a the

primary approach and utilizing the power of other approaches in our analysis.

2.3.1 Data Flow Analysis

In this analysis, the information about the possible values of program variables at each

program point is collected. These information is used to build a data flow equation system

for each node of control flow graph of the program. Then, the equation is solved repeatedly

until it reaches the fixed point. Data flow analysis was first introduced by Kildall [36].

By applying lattice theory to the static analysis, he brought a mathematical basis to the

analysis.

2.3.2 Constraint Based Analysis

Constraint based analysis is a type of control flow analysis. This analysis can be performed

in two steps. The first phase emits constraints that a solution to an intended analysis needs

to satisfy. The second phase solves the constraints. The advantage of this approach is that

the analysis presents itself in an intuitive form and allows for reusable constraint solving

software, independent of a particular analysis. A disadvantage of the approach is that the

10

resulting system of constraints might have high complexity[51]. Constraint based Analysis

has been used by many researchers [65, 32, 33, 48]. A more detailed information about this

analysis is given in [2].

2.3.3 Type and Effect Systems

In type checking technique, types are used to analyze the behaviours of programs and to

enforce the absence of some dynamic errors [50]. The technique is only applicable to typed

programming languages. A more detailed development of type and effect systems can be

found in chapter 5 of [51]. This technique is useful for analyzing Erasmus programs since

Erasmus already has a “type and effect” system: protocols. However, industrial program-

mers have not responded well to elaborate type systems and their complex formalisms, and

we decided to look for more user-friendly approaches.

2.3.4 Abstract Interpretation

The idea of Abstract Interpretation is based on abstracting the behaviour of the program

and performing the analysis on the abstract level instead of concrete level. Cousot and

Cousot added the solid mathematical foundation to classical static analysis [13]. This

theory is based on two fundamental keys: First, building the abstract semantic from con-

crete semantic and the correspondence between them through Galois connections, second

computation of fixed point of the abstract semantics. When infinite abstract domains are

considered, to ensure the scalability of fixed point analysis, this theory offers widening op-

erators (to get fast convergence) and narrowing operators (to improve the accuracy of the

resulting analysis) [11]. Abstract Interpretation technique is sound but not complete; for

example, if a property about the program can be proved using Abstract Interpretation,

then it is correct (sound), but we can not be certain that all properties about the program

can be determined using this technique (not complete). Section 2.5 provides a complete

description of Abstract Interpretation.

11

2.4 Erasmus

Erasmus is a process-oriented programming language that aims to reduce the complications

of writing concurrent programs by using only sequential processes that communicate by

exchanging messages. The main goal of the Erasmus project is to improve the structure and

maintainability of large programs. Erasmus programs contains cells and processes where cells

provide structure and processes describe actions within the cells. Cells may may contain

processes and processes may contain cells. Processes communicate by exchanging messages

through channels and a process can share variables only with other processes in the same

cell. Protocol is another part of Erasmus which defines communication type. The protocol

concept is similar to the Interface concept in Java language. However, a Java interface only

specifies the methods that are provided but does not specify allowed sequences of calls.

Erasmus protocol provides the methods as well as the sequences of method calls. Channels

are for facilitating the communication of processes or cells. Each channel is connected with

a protocol that defines the types of the messages that may be sent through the channel and

their processes. Processes have also ports that are connected to channels. A port can be

server or a client depends on its direction [30]. We model synchronous communication in

Erasmus programming language, defined as follows:

Two processes, P1 and P2, communicate synchronously if:

1. they are both connected to a channel, C; and either:

2. P1 sends a message on C and waits until P2 receives the message; or

3. P1 expects to receive a message on C and waits until it has received the

message from P2.

An example of the structure of cells and channel communications in Erasmus program-

ming language is provided in Figure 2.1. The Sleeping Barber is a classic inter-process

communication problem between multiple processes [19].

2.4.1 The Sleeping Barber

The Sleeping Barber Problem was first introduced by Dijkstra [19].

12

A barbershop has a single barber and a waiting-room with a number of chairs.

If the barber is not busy, he sleeps. If there is a customer, he wakes up and cuts

the customer’s hair. A new customer acts as follows:

• If the barber is asleep, the customer wakes him up and has his hair cut.

• If the barber is busy, and there are empty chairs in the waiting-room, the

customer waits in a chair.

• If the barber is busy and there are no free chairs, the customer goes away.

When the barber finishes with a customer, any waiting customer is served im-

mediately. If there are no waiting customers, the barber goes to sleep.

Figure 2.1 shows the structure of the barber program with cells and processes. In Figure

2.1, the cells have heavy borders and processes have light borders.

The following codes in Listing 2.1 and Listing 2.2 are the Erasmus implementation of

Sleeping Barber problem. In Listing 2.1 we represent a customer by a Text, consisting of

the customer’s name and an annotation. Client process is a process that first sends a query

and then receives a response. A minus sign (-) before the protocol name, indicates that the

process it is a client. The server has a plus sign (+) before the protocol name. The server

village

barberShop

customerGenerator reporter

barber

waitingRoom

arrives leaves
start finish

Figure 2.1: Barber Design Diagram

13

first receives the query from the client and then it sends the response.

The heart of the solution is the process waitingRoom, which simulates the waiting-room.

This process has four ports: arrives for customers arriving; leaves for customers leaving;

start for customers going to the barber; and finish for customers who have had their hair

cut. It shares the variable sleeping with process barber.

Waiting-room has a finite number of chairs. We use an indexed value to represent the chairs

in the waiting-room. Initially, each chair is empty. The rest of this process is a loop that

performs an action when a customer arrives or when a customer is finished. The first case

is split into two, depending on whether the barber is sleeping or busy.

The barber’s shop is represented by a Cell that contains instances of barber and wait-

ingRoom, the ports, and the shared variable. The process customerGenerator creates a

stream of customers. and the process reporter issues a message as each customer leaves the

shop. Finally, the village generates and reports on customers, and has a barber shop.

14

Listing 2.1: Sleeping barber problem- Part 1

prot = protocol {customer: Text }
NUM CHAIRS = constant 3;
barber = process start: +prot; finish : −prot{

customer: Text;
loop
{

customer := start.customer;
finish .customer := customer // ”had hair cut”;

}}

waitingRoom = process
arrives : +prot;
leaves : −prot;
start : −prot;
finish : +prot ; {

chairs : Word indexes Text;
customer: Text ;

for (c:=0 ;c≤ NUM CHAIRS ; c+=1)
{

chairs [c] := ””;
}
loop select policy random;
{

|| start .customer := arrives.customer
|| customer := arrives.customer;

any name in range chairs such that name =””
name := customer;

else
leaves .customer := customer // ' went away';

||
leaves .customer := finish .customer;

any name in range chairs such that name <> ””
{

start .customer := name;
name :=””
}
} }

15

Listing 2.2: Sleeping barber problem- Part2

barberShop = process arrives : +prot; leaves : −prot {
start , finish : prot ;
barber(start , finish);
waitingRoom(arrives, leaves , start , finish)

}
customerGenerator = process start: −prot {

for (custnum := 0; custnum≤ 20; custnum+=1)
{

start .customer := 'C' // custnum
} }

reporter = process finish : +prot {
loop
{

scrln(finish .customer // '\n')
} }

village = cell {
arrives , leaves : prot ;
customerGenerator(arrives); reporter(leaves);
barberShop(arrives , leaves) }

village ()

2.5 Abstract Interpretation

Before we explain the Abstract Interpretation (AI) theory and its use in static analysis of

Erasmus programs, we give a brief introduction to mathematical foundations(i.e: Lattice

theory and Fixed point) that are essential to understand the technique.

2.5.1 Mathematical Foundations

In this section, we review some of the mathematical foundations of Abstract Interpretation

technique [13, 5, 35]. Before we explain the theory of lattices, we define the following terms.

Definition 2.1. Partial order, Poset

A binary relation v on a set P is a partial order if and only if it satisfies for all x, y, z ∈

P the following conditions:

1. x v x (reflexivity)

16

2. x v y and y v x implies x = y (anti-symmetry), and

3. x v y and y v z implies x v z (transitivity). [35]

The ordered pair 〈P, v〉 is called a poset (partially ordered set) when v is a partial

order on P.

Definition 2.2. smallest (minimal) / greatest element (maximal)

Let 〈P, v〉 be a poset. An element y ∈ P is a smallest element of P if there is no element

x ∈ P that satisfies x v y and if x 6= y. Similarly, an element y ∈ P is a greatest element

of P if there is no element x ∈ P that satisfies y v x and x 6= y.

We should note that a smallest or greatest does not necessarily exist and if it does exist, it

is not necessarily unique.

Definition 2.3. upper bound/lower bound

Let S ⊆ P be a subset of a poset 〈P, v〉. Upper bound of S is an element x ∈ P which

is greater than or equal to every element of S. Similarly, lower bound of S is an element

x ∈ P which is smaller than or equal to every element of S.

For example if we define set S to be a set of some natural numbers: {4, 20, 44, 88, 99}, then

1 and 4 are the lower bounds of S. But 10 is not the lower bound. Also we can say 99 and

100 are upper bounds of S.

Definition 2.4. least upper bound (lub), greatest lower bound (glb)

Let S ⊆ P be a subset of a poset 〈P, v〉 and y be all upper bounds of S. An element x ∈ P

is called least upper bound of S, if

• x is an upper bound of S, and

• ∀y ∈ S we have x v y

Similarly, an element x ∈ P is called greatest lower bound of S, if

• x is an lower bound of S, and

• ∀y ∈ S we have y v x

17

Definition 2.5. least upper bound operation t

This operation that is also called “join” is defined as the unique least upper bound with

respect to a partially ordered set. We can say the “join” of two elements, x and y:

x t y for lub(x, y)

Example: let set S (12, 20) be a set of natural numbers. tS = 20

Definition 2.6. greatest lower bound operation u

A greatest lower bound operation also called as “meet” is defined as unique greatest lower

bound of a partial order set. We can say the “meet” of two elements, x and y:

x u y for glb(x, y)

For example if we perform the meet operation on a set of numbers (12, 20) 12 is the greatest

lower bound value. we note that 11 can be a lower bound but not the “greatest lower bound”.

Based on the notations above, a complete Lattice is a partially ordered set which all

subsets have unique minimal, maximal elements and greatest-lower-bound and least upper

bound operations. The formal definition follows:

Definition 2.7. Complete Lattice

A complete lattice,

L = 〈D,v,⊥,>,t,u〉

is including a set D and a partial ordering, v, on D a smallest element ⊥, a greatest element

>, a least upper bound operation, t and a greatest lower bound operation u.

A set of subsets of a finite lattice form a complete lattice.

Definition 2.8. Semi lattice

A partially ordered set that has a lug (a least upper bound) or glb (a greater lower bound)

for any nonempty finite subset.

Definition 2.9. bounded lattice

A lattice that has a min/max element.

18

Definition 2.10. Monotone

Let 〈P,vp〉 and 〈Q,vq〉 be two ordered sets. Let α : P → Q be a mapping.

This mapping is monotone, if x vp y implies α(x) vq α(y)

example: If we think of α as an electrical circuit mapping input to output, α is monotonic

if increasing the input voltage causes the output voltage to increase or stay the same.

Definition 2.11. Galois Connection

Galois connection is a specific relation between two partially ordered sets in order theory.

Suppose 〈A, v〉 and 〈B, ≤〉 are two partially ordered sets and Suppose F : A → B and

G : B → A . Then (F ;G) is a Galois connection of A and B iff for all x ∈ B and y ∈ A,

F (x) v y ≡ x ≤ G(y) :

F is called the lower adjoint. G is the upper adjoint.

2.5.1.1 Fixed Point

In our analysis we will use Fixed Point and Lattice theory to define some properties of

programs. In this section we start with basic definition of Fixed point. Then we explain

Knaster-Tarski theorem and Kleene fixed-point theorem. More detailed information about

these theories can be found in [28].

Definition 2.12. Fixed Point

A fixed point of a function f(x0) = x0 is a point x0 such that

f(x0) = x0

In another word, a fixed point is a point that the function does not change any more.

Theorem 2.1. Knaster Tarski

Let 〈D, v〉 be a a complete lattice and let let f : D → D be a monotonic function on 〈D, v〉.

Then:

19

• The set of fixed points of f in D is also a complete lattice under v.

• Since a complete lattice cannot be empty, f has at least one fixed point.

Definition 2.13. Ascending Kleene chain

Let 〈D, v〉 be a a complete lattice and let f : D → D be a monotonic function on 〈D, v〉.

We can obtain a chain by iterating f on the least element ⊥ as follow:

⊥ ≤ f(⊥) ≤ f(f(⊥)..... ≤ fn(⊥)

Theorem 2.2. Kleene fixed-point theorem

Let D be a complete partial order, and let f : D → D be a monotone function. Then f has

a least fixed point, which is the supermum of the ascending Kleene chain of f .

If f has a least fixed-point, lfp(f), that can be computed as limn→∞ fn(⊥).

lfp(f) : lim
n→∞

fn(⊥)

2.5.2 Static Analysis of Program by Fixed Point Theory

Using theoretical bases that we introduced above, we explain how Fixed Point theory can

be effective in static analysis of a given program. We define a behaviour of a program as a

set of reachable states that might happen during the execution of the program. Assuming

that Σ is a set of all reachable states of a program and s → s′ stands for a state transition:

we introduce the followings:

F : P(Σ) → P(Σ)

in which P(Σ) is the powerset of Σ, i.e., the set of all subsets of Σ.

A set of descendants of the initial state s0:

S = { s | s0 −→ ... −→ s }

20

We know that P(Σ) is a complete lattice with bottom element ∅ and top element Σ. Given

an initial state s0, we define F for an arbitrary set of states S by

F (S) = {s0} ∪
{

s′ | s ∈ S ∧ s −→ s′
}

.

Following convention, we define F 0(S) ≡ S and Fn(S) ≡ F (Fn−1(S)). F 0(s0) is the initial

state and for adequately large n, Fn(s0) will be the set of all states reachable from s0.

To guarantee that this process is practical, we need to prove that we reach an n such

that Fn+1(S0) = Fn(S0). To prove this we need to define a lattice on set of states of the

program. That is:

S0 = F 0(S0) w F 1(S0) w F 2(S0) w · · ·

with this condition, we can take advantage of Knaster-Tarski theorem that F has fixed-

points and that the sequence above converges to the least fixed-point, lfp(F).

2.5.3 Galois Connection in Abstract Interpretation

A model of a system S is a simpler system M that retains some of the properties of S. For

example, we might construct a model M with the property that S deadlocks if and only if

M deadlocks. This might be very difficult, so we might accept a simpler condition: if M

cannot deadlock, then S cannot deadlock. This leaves open the possibility of a false positive:

M might predict the possibility of deadlock, even though S cannot deadlock in practice.

In this sense, models approximate the behaviour of systems. Suppose, for example, that

Σ is the set of all states that the program can be in. Then Σ is ordered by the subset

relation, ⊆. Let S ⊆ Σ. Then if |S| = 1, we know exactly which state the program is in,

which is the best we can expect. But if S = Σ, we know nothing at all about the program.

Thus S1 ⊆ S2 says that S1 has greater information than S2. We suppose that we can also

provide an ordering for the models. We will denote this order by ≤. Now we know that S

and M are partially ordered sets. Elements of S are concrete values and elements of M are

abstract values. Let a : S → M be a monotonic function called “abstract function”, and let

21

c : M → S be a monotonic function called “concretion function”.

Abstraction function: a : S → M

Concretion function: c : M → S

Figure 2.2 provides this view. We move from system to model using a and from model

to system using c. We should note that even though the system S and the model M are

both ordered, orderings are not the same (≤ and ⊆, respectively). We would like to have

c(a(s)) = s, but this is not possible in general because information is lost during abstraction.

However, we can choose a pair (a, c) that forms a Galois Connection.

m1 m2

s1 s2

a

i

c

E

Figure 2.2: A system S and its model M

m1 m2

s1 s2

c

a ◦ E ◦ c

a

E

Figure 2.3: Fixed-point approximation

Static Analysis using Abstract Interpretation is a way of executing the abstraction of a pro-

gram instead of the concrete program. To make sure the approximation is safe, we should

make sure that the significant properties of concrete model are included in abstract model.

Abstraction function a maps a set of concrete values into abstract values. Concretion func-

tion c maps elements from an abstract domain to the concrete one. Now that we have

the abstract model of our program, instead of computing an approximation to the least

fixed-point of E, we can compute E′ = lfp(a ◦ E ◦ c), which should be easier because the

22

calculations are performed in the model space. The Analyzer computes the abstract fixed

point by an iterative computation.

2.5.3.1 Example

The example below is originally obtained from [37]. In this example we illustrate the use

of Galois connection and Fixed Point theory in partial order of elements. The example is

shown in Figure 2.4. We have the followings:

• A system(concrete) domain D which is defined as a partial order 〈2Z , ⊆〉.

• A model (abstract) domain of D: D̂ which is defined as partial order 〈Sign, v〉

We define two functions that map the system(concrete) to the model(abstract) and vice

versa. These functions are defined in Figure 2.5. The functions are:

Abstraction function: α : D → D̂

Concretion function: γ : D̂ → D

To prove this abstraction is safe– meaning that by reasoning about the abstract program

we can learn about the behaviour of concrete program– programs α and γ have to satisfy

that they form a relation called Galois connection. That is:

α(x) ⊆ ŷ ⇔ x ≤ γ(ŷ) :

Therefore, we can perform the analysis in the the abstract domain 〈Sign, v〉, instead of

the concrete domain. As we explained earlier in this section, we consider the behaviour of

the program as a set of its reachable states. These states can be computed by fixed point

of function F that is an arbitrary set of states of program in domain D.

23

2.6 A Lattice for Erasmus

The first step toward abstracting Erasmus programs is to create an abstract domain for the

analysis. What is of interest for Erasmus programs is the order in which things happen

and, in particular, circumstances that could prevent them happening. Consequently, we

are looking for a mathematical structure S: a set of events, with properties of a complete

Lattice. Since communication in Erasmus is synchronous, we can consider a communication

between processes to be a single event. Formally:

An event is the simultaneous execution of a send command in one process and

a matching receive command in a distinct process.

In this definition, “matching” means that the two messages must be the same: If P sends x,

then Q must receive x. Also, the definition implies that a process cannot send messages to

itself, because to do so it would have to perform a send command and a receive command

simultaneously. Additionally, we need to define a relation between events that happen in a

given Erasmus program. To find this relation, we looked into some of the existing algorithms

to build a partial order of synchronous events. Next section explains these algorithms.

2.7 Algorithms for partial ordering of events in a distributed system

Determining the order, in which events happen in concurrent programs, has been an funda-

mental difficulty in concurrent programming. A trivial solution to this problem is to assign

a number representing the current time to a permanent record of the execution of each

event. However, practically it is not feasible for concurrent processes to access a precise

clock of the system [22]. Another possible solution can be introducing a separate clock in

every process, synchronized as much as necessary with timestamps of the system. Lamport

[39] extended these ideas and Duggan [21] has provided a simple exposition of them.

2.7.1 Lamport Logical Clock

One of the very first algorithms to determine the order of events in distributed system is

Lamport algorithm [39]. This algorithm captures the order of event numerically based on

25

Happened-Before-Relation. The algorithm has been used to analyze behaviours of concur-

rent systems. Before we explain the algorithm, we review the followings definitions:

Definition 2.14. Causality

Causality is the relation between two events when first event is the cause of the second

event. In another word, the second event is the consequence of the first event.

HBR is the relation between two events and it is denoted by→. This relation is originally

formulated by Leslie Lamport [39]. HBR captures the causal relationships between events:

• If a and b are the events in the same process, and a is executed before b then a → b

• If a is the sending of a message by one process and b is the receive then a → b

HBR relation has the same property as strict partial order relation. Strict partial order <

is a binary relation that is irreflexive, transitive and asymmetric. The formal definition of

HBR is follows:

Definition 2.15. Happened Before Relation(HBR) →

• ∀a a 9 a (irreflexivity) ;

• If a → b and b → c then a → c (transitivity) ;

• ∀a, b if a → b then b 9 a (asymmetric)

Figure 2.7 show the HBR relation between events of processes P , Q and R.

Figure 2.7: HBRs between events in processes P , Q and R are: a → b , b → f , c →
d , e → g , b → c , d → e , f → g , a → f .

26

Definition 2.16. Concurrent Relation ‖

If two events are not causally related, then they are concurrent.

For all pair of events a, b ∈ E and a 6= b

if a 9 b and b 9 a then a ‖ b.

In order to build a partial order of events in a distributed system, we need to measure

the times that events happen. However, since we are only interested in ordering events,

we do not need to use time units (hour, minute, second). Instead, we can use a positive

integer to just show the order of the events. This is called “ logical time”. The smaller

integers denotes earlier times and larger integers denotes later times. “ Logical Clock”

is the clock that keeps such logical time. Lamport introduced a system of logical clocks

to make the HBR relation between events possible. This logical clock is an incrementing

counter maintained in each process. The formal definition of Lamport Logical Clock follows.

Definition 2.17. Lamport Logical Clock

A function Ci is a logical clock that assigns a number Ci(e) to any event e in process i.
�

�

�

�
The Clock Condition:if a → b then C(a) ≤ C(b).

Definition 2.18. Lamport Clock Algorithm

Using above notations, the Lamport algorithm is as follows:

• The program keeps a “trace of clock” of every event that occurs as it executes.

• Each process maintains an integer value (logical clock): Ci.

• Logical clock(Ci) is initially zero for all the processes.

• Ci of each event is attached as a timestamp to the record of execution of the event.

• Rule 1: Whenever a new event e occurs in process i, increment the process clock, Ci,

thus: Ci := Ci + 1.

• Rule 2:

– If event e is sending a message, attach timestamp ts = Ci with the message.

27

– If the event e is receive, compare the value of the sender clock to the receiver

clock; advance the receiver clock to: Ci = Max {Ci, ts} +1

Limitations of Lamport Logical Clock

One of the problems of the Lamport Logical Clock is that C(a) ≤ C(b) does not necessarily

imply a 9 b. Another drawback for Lamport clock is that HBR algorithm is not applicable

to synchronous programs. Fidge [22] was the first to claim this issue. He proposed a solution

for this problem. His solution is to exchange timestamps when synchronous communication

happens. We address this solution to both issues in the next section by introducing Vector

Clock.

2.7.2 Vector Clock (VC)

VC is the data structure that contains timestamps for all (known) processes. The data

structure is defined as below:

Vector Clock

Let n be the number of processes in a distributed system, then, the timestamp Ci of an

event a of process i is a vector of n logical clocks.

The vector Clock is represented as an array with an integer clock value for all the processes.

[C1, C2, C3,, Cn]

Definition 2.19. Vector Clock algorithm

Vector Clock algorithm is to generate a partial order of events in a distributed system

[22, 43]. The algorithm applies Lamport’s logic clock [39] to synchronous programs. Vector

clock theory first was suggested by Fidge and Mattern [22, 43]. The main idea of the

algorithm is that every time communication happens in synchronous programs, the process

should exchange their timestamps. The algorithm maintains a “logical clock” for every

atomic action happens in the program. Every time a process has an atomic action it should

increment its logical clock value in the vector. Every time a communication happens the

clock updates its values. The update rule is as following:

28

• Process that sends the message (Sender):

– Increments its own logical clock in the vector by one.

– Sends its message with the entire vector to the receiver.

• Process that receives the message (Receive):

– Receives the message (if the communication is valid),

– Increments its own logical clock in the vector by one.

– Compares each value of the elements in Sender Vector to its own value of logical

clock and updates each element in its vector by taking the maximum value of

two vectors.

Compare to Lamport Clock, VC preserves more information about events. One of the

advantages of the VC is that we can compare two vector timestamps of events a and b in

different possible ways. These comparisons are presented in Table 2.4. Another advantages

of VC is that comparing vector timestamps we can tell if two events are causally related:

if V C(a) < V C(b) then a → b. In another word, event a causes event b if and only if

V C(a) < V C(b). The proof for this is presented in [22]. The properties of VC is defined as

follows:

Order Comparison Condition

Equal V Ca = V Cb iff ∀i, V Ca[i] = V Cb[i]

Not Equal V Ca 6= V Cb iff ∃i, V Ca[i] 6= V Cb[i]

Less Than or Equal To V Ca ≤ V Cb iff ∀i, V Ca[i] ≤ V Cb[i]

Not Less Than or Equal To V Ca � V Cb iff ∃i, V Ca[i] � V Cb[i]

Less Than V Ca < V Cb iff (V Ca ≤ V Cb and V Ca 6= V Cb)

Concurrent V Ca ‖ V Cb iff V Ca � V Cb and V Cb � V Ca)

Table 2.4: Comparing two vector timestamps [67]. a and b are referred to the process
events. V Ca is referred to the Vector Clock value for event a. The Vector Clock value of
event a in process i is denoted by V Ca[i]. Same applied to event b.

VC Property:

Considering events a and b, we have the followings:

• V C(a) denote the time at which event a occurs; the value of Vector Clock for event a

29

• V C(b) denote the Vector Clock of event b.

• if a happens before b; a → b then V C(a) < V C(b).

2.7.2.1 Scenario example

Vector Clocks are useful for Erasmus programs that are able to make choices. Making

choices increases the possibility of inconsistent information because of multiple paths. We

have adapted the following scenario from Fink [23] to illustrate the usage of Vector Clock.

The Listing 2.3 is based on Erasmus syntax and notations. Erasmus syntax is provided in

the Appendix of the thesis.

Philosophers Meeting Scheduling Problem.

• Four philosophers, named P , Q, R and S, are planning to meet next

week for a philosophy seminar.

• The planning starts with P suggesting they meet on Wednesday.

• Later, Q discuss alternatives with R and they decide on Thursday

instead.

• Q also exchanges email with S, and they decide on Tuesday.

• P pings everyone again to find out whether they still agree with

Wednesday’s suggestion.

• R claims to have settled on Thursday with Q.

• S claims to have settled on Wednesday with Q.

In above scenario no one is able to determine the order in which these com-

munications happened, and none of P , Q, R and S, know whether Tuesday

or Thursday is the correct choice.

30

Listing 2.3: Philosophers Meeting Scheduling Problem

prot = protocol { day: Word }
P = process p1, p2, p3: −prot; p4, p5, p6: +prot {

day: Word;
/∗ sends the chosen day to other philosophers . ∗/
p1.day := 'Wednesday'
p2.day := 'Wednesday'
p3.day := 'Wednesday'
/∗ receives the chosen day from other philosophers. ∗/
day := p4.day
day := p5.day
day := p6.day

}
Q = process q3, q4: −prot; q1, q2: +prot {

day: Word;
day := q1.day −− receives 'Wednesday' from P
select {

|| q3.day := 'Thursday' −−sends 'Thursday' to R
|| day := q2.day −− receives 'Tuesday' from S

}
q4.day := day −− sends back the chosen day to P [Thursday]

}
R = process r1: −prot; r2, r3: +prot {

day: Word;
day := r2.day −− receives 'Wednesday' from P
day:= r3.day −− receives 'Thursday' from Q
r1.day := day −− sends back the chosen day to P [Thursday]

}
S = process s2, s3: −prot; s1: +prot {

day: Word;
day := s1.day −− receives 'Wednesday' from P
s2.day := 'Tuesday' −− sends 'Tuesday' to Q
s3.day := day −− sends back the chosen day to P [Wednesday]

}

31

S P R

Q

wedthr

wed

thr
wed

wed

tue thr

Figure 2.8: Philosophers Meeting Scheduling Problem.

Vector clock is actually the solution for the above problem. If the clock value and

the sender of the message are piggy-backed on the actual message (here the message is

the meeting day), then philosophers would be able to know the latest information that is

exchanged.

2.7.2.2 Limitation of Vector Clock

Erasmus is designed to improve writing large and complex concurrent programs. Therefore,

while choosing the right technique to perform the analysis of the program, we should take

into account the size of the programs that can be fairly large. A main drawback of the

application of VC algorithm is the length of the vectors will grow proportionally with the

number of processes. Clearly, if we have n processes, the size of the vector clock must be

at least n [8]. In addition, to implement VC algorithm, the application requires unlimited

space since vector clocks grow unboundedly. The key challenge is to reduce the length and

size of Vector Clock. A number of researchers have recognized this problem and have looked

for ways of solving it. For example Arora et al [4] provided a bounded-space implementation

of the Vector Clock component. Their idea is to use a resettable vector clocks (RVC) instead

of VC and provide a realistic implementation of RVC.

32

2.8 Chapter Summary

This chapter presented an overview of existing approaches for verification and static analysis

of concurrent programs. The syntax of Erasmus language were explained in the third section

of the chapter. Abstract Interpretation framework and the related mathematical theorems

(e.g. lattice, fixed-point, etc) were explained this chapter. We also reviewed two well known

algorithms: Lamport Logical Clock and Vector Clock for dynamic partial order of events

in distributed systems. The imitations of these algorithms are also discussed at the end of

the chapter.

33

Chapter 3

DESIGN A NOVEL COMMUNICATION

ABSTRACT DOMAIN

In this chapter, we present an abstract interpretation framework for a synchronous process-

oriented programming language. The framework is built based on the concepts of Erasmus

programming language, but it might also be applicable to other process-oriented or message

passing programs.

Since our focus in this research is communication analysis, the existing domains in abstract

interpretation theory such as intervals, convex hull and polyhedra, etc [15] are not useful

for us. Therefore, the framework uses a novel communication abstract domain whose con-

cretization and abstraction function are introduced in this chapter.

The chapter is organized as follows: Section 3.1 explains case, loop and select controls

in Erasmus programs and the communication violations in these type of Erasmus programs.

Section 3.2 defines a concrete semantic domain. A fixed-point algorithm to computer the

reachable states of the program is presented in Section 3.2.2. Section 3.3 defines an ab-

stract domain which approximates the concrete semantic domain. Transfer operators are

presented in Section 3.4. Finally, Section 3.6 summarizes the materials discussed in this

chapter.

34

3.1 Preliminaries

Nondeterminism is a fundamental concept in concurrency. There are various meanings of

nondeterminism in computer science. External nondeterminism happens when given a set of

the fixed input, a concurrent program behaves differently in each execution and it produces

different results due to the external factors that effect the program behaviour. However,

nondeterminism has a very specific definition in CSP, the basis of Erasmus . If a process

makes a choice based on the environment, the choice is called “deterministic”, because

an inspector who is aware of the environment can tell what the process will do. But if a

process makes a choice not based on the environment, the choice is called “nondeterministic”

because the inspector cannot predict the outcome. Nondeterminism happens in Erasmus

when the code contains conditional blocks. In this section, we discuss Erasmus programs

that contain control structures (loop , select and case) and introduce the notations that

is used in this chapter.

3.1.1 Conditional Erasmus program

Consider an Erasmus program shown in Figure 3.1. The Erasmus code is provided in

Listing 3.1. The program consists of processes Electricity, Alarm and ChemicalP lant.

Assume that the process Alarm is connected to two channels. One is the channel that

ChemicalP lant is also connected to it and the other one is the same channel that Electricity

is connected. That is, processes can communicate. We define variable level in Alarm pro-

cess to show how critical is an emergency situation. For instance, if an emergency situation

happens with a level ≥ 0.5, the alarm should send a message to the ChemicalP lant process

with a shutdown message. If the level of criticalness of an emergency situation is smaller

than 0.5, then alarm sends a message to the Electricity process to shutdown the electricity.

We assume that process Alarm receives the variable level from an external process through

channel c2. This program is nondeterministic because the response depends on the [value

of the] level which is not known to the system environment.

35

Alarm

Electricity

ChemicalPlant

Figure 3.1: Chemical Plant Emergency Alarm System.

Listing 3.1: Chemical Plant Emergency Alarm System

Prot = protocol { level: Real ,, message: Word }

Electricity = process q: −Prot {
action : Word;
action := q.message;

}

ChemicalPlant = process r: −prot {
action : Word;
action = r.message;

}

Alarm = process c: +prot, c1: +prot c2: +prot {
{

level = c2. level ;
if level ≥ 0.5 then

c.message := 'Plant shutdown'
else if level < 0.5

c1.message= 'Electricity shutdown'
else exit;

}

3.1.2 Select and Loop Select Statements

Select statement makes a deterministic choice of communication based on the environment.

The effect of the statement will be determined during run-time and not compile time. In

Erasmus the policies for selection are fair, ordered, and random which are defined by a

enumeration type: Policy = enum {Fair, Ordered, Random}. Writing loop before select

indicates that the select statement should be executed repeatedly until an exit statement

36

has been executed. An example of Erasmus program with select statement is shown in

Listing 3.2.

Listing 3.2: Erasmus program with loop select and conditions

prot = protocol { w: Word }

P = process p1: −prot; p4: +prot
{
word: Word;
loop{

p1.w := 42
word := p4.w
}

}

Q = process q1,q3: +prot ; q2,q4: −prot
{
word: Word;
canAnswer:Boolean:=false;
loop select {

|| word := q1.w ;
case {
|canAnswer = true | q4.w := 45
|| q2.w := 45 }

|| word := q3.w ; q4.w := 44
}

}

R = process r2: −prot; r3: +prot
{
word: Word;
loop {

r2.w := 42;
word:= r3.w
}

}
controller = cell{

e1,e2,e3,e4: prot ;
R (e2,e3);
Q (e1,e2,e3,e4);
P (e1,e4);

}
controller ();

37

proce s s A:
0 : n := 1
1 : loop s e l e c t {
2 : | | snd (b , n)
3 : | | r e c (c , n)
}

proce s s B:
0 : n := 1
1 : loop s e l e c t {
2 : | | snd (b , n)
3 : | | r e c (c , n)
}

Figure 3.2: A Sender, A, and a receiver, B. Program does not deadlock.

3.1.3 Deadlock

In this section, we just explain how deadlock can happen when we have loop select and

loop statements in a given Erasmus code. Figure 3.2 shows two processes: A and B. For

simplicity, the example is not written in exact syntax of Erasmus and its based on CSP

notation. In particular, we use snd(c, n) to send a number n on channel c. Similarly,

rcv(c, n) receives n on channel c. The processes are assumed to run concurrently. A sends

one number to B and receives one number from B. Process B also sends one number to

A and receives one number from B. The key point of this example is that we do not want

to fix the order of processing because we do not know which operation will be executed

first, send or receive. We note that this program does not deadlock because in Erasmus

synchronous program, a send operation is not completed unless there is a receive operation

matching the send (or vice versa). Consequently, when the program terminates, we expect

either A to send its message and then receive a message from B (or vice versa).

Now, we do a slight modification to the previous example. The modification is that we

omit the select. The new program is shown in Figure 3.3. The process A sends the message

and then waits for B to receive the message. Meanwhile, process B sends a message to A.

We note that since both processes are waiting for a receive statement, they can not progress

anymore and program deadlocks.

38

proce s s A:
0 : n := 1
1 : loop {
2 : snd (b , n) ;
3 : r e c (c , n)
}

proce s s B:
0 : n := 1
1 : loop {
2 : snd (b , n) ;
3 : r e c (c , n)
}

Figure 3.3: A Sender, A, and a receiver, B. Program does deadlock.

3.2 Concerete Semantic Domain for Erasmus

Abstract Interpretation provides formal methods to approximate semantics. A semantics is

a mathematical characterization of a possible behaviour of the program. The first step to-

ward static analysis of Erasmus programs is to create a concrete and abstract domain for our

analysis. The precision and performance of the resulting static analyzer are almost entirely

determined by the choice of these domains. In theory of Abstract Interpretation various

domains are defined. Cousot [15] categorized these domains in two groups. Numerical do-

mains and Symbolic domains. Numerical domains are including intervals, affine equalities,

convex hull and polyhedra whereas symbolic domains include abstraction of sequences, trees

and graphs, binary decision diagrams, word and tree automata, pointer analysis.

Table 3.1 shows a list of possible domains for analysis of Erasmus . In this research, since

our focus is communication analysis, therefore the existing domains are not useful for us

and we need to define an abstract domain for communication between processes and cells

in Erasmus programs.

3.2.1 A Communication Lattice

Abstract Interpretation is based on theory of lattice. The first step toward abstracting

Erasmus programs is to find a partial order over program states or events. Having a lattice

39

Analysis
Abstract Domain

Type Compute type of each value.

Concrete Compute all of the possible states.

Array Bounds Compute array range.

Communication Compute if each sent/receive corresponds to receive/send.

Range Check Compute range of values in program.

Real-Time Compute the time taken for tasks.

Table 3.1: Possible Abstract Domains for Erasmus

makes it easier to interpret the program because we can build our mathematic model based

on the lattice and take advantage of existing theorems about lattice. (e.g., fixed-point theory

of lattice). Later, we can get the approximation of least fixed-point of the program and limit

the number of computation needed by using widening/narrowing techniques, if necessary.

Although we can use interval analysis for Erasmus , it would not be very helpful because

we will ignore the non-communication statements. Our interest in Erasmus program is the

order in which events happen and in particular, circumstances that could prevent them

happening. For example, we would like to know if processes can continue executing or they

might deadlock. Referring to the grammar (see attachments), “communications” appear as

p.v. In a left context (lvalue), p.x receives and stores in x; in a right context, p.e sends the

value of expression e. Statements that do not communicate are removed from the program.

This will leave empty control structures, e.g., a loop that does not communicate will now be

empty, and can be removed. What is left is a program with only control structures (case,

loop, select) and communications. This is the “abstract program” that we analyze. Since

calculations are discarded, AI techniques using intervals, polyhedra, etc., are of no use to

us.

We need to create a mathematical structure in our program with same properties as partial

order. The Followings explain our attempt to create partial order for communications

happen in an Erasmus program. Let E be an Erasmus program, we will ignore the non-

communication related statements and consider only the following components:

• E consists of processes P , Q, R.

40

• Each process executes statements in a sequence determined by its control structures.

• The control structures are sequence, conditional, and repeat.

Definition 3.1. An event is either a send statement or a receive statement.

According to Lamport’s Happened Before Relation (HBR) [39] theory we say that send

happens before receive in communication of processes. Therefore, the relation between the

two events send and receive is: e1 ≤ e2 means “event e1 occurs before e2. This binary

relation ≤ satisfies irreflexivity, asymmetry and transitivity. However, this relation is not a

partial order, because a partial order must be reflexive and antisymmetric. If an event e1

must precede an event e2 we say “e1 happens before e2”. Formally, HB (“happens before”)

is a relation, HB ⊆ E × E, defined formally as follows.

Definition 3.2. (e1, e2) ∈ HB if either:

• e1 and e2 are in the same process and if either e1 textually precedes e2 or e1 and

e2 are different occurrences of an event in a loop, in which case the HB relation is

determined by loop iterations; or:

• e1 and e2 are in different processes, e1 is a send statement, e2 is the corresponding

receive statement.

HB relation in loop iterations

Consider the following code, in which we write communication events as ei:

e1; loop { e2 }; e3

When this code is executed, e2 will occur zero or more times. We write the successive

occurrences of e2 as e12, e
2
2, . . . , e

n
2 , using superscripts to distinguish loop iterations. Using

this convention, for all n ≥ 1:

• If ej occurs within a loop, enj → en+1

j ;

• If ei occurs before a loop, and ej occurs within the loop, then ei → enj ;

• If ej occurs within a loop, and ek occurs after the loop, then enj → ek.

41

Since communication in Erasmus is synchronous, we define a constraint to be a pair of

send event and a matching receive.

Definition 3.3. Constraint

“A constraint is the simultaneous execution of a send command in one process and a match-

ing receive command in a distinct process.”

For simplicity, below examples is not written in exact syntax of Erasmus and its based

on CSP notation Example: The constraint is denoted by c: P
x

−→ Q in Figure 3.3 and in

Figure 3.4, the program E2 has two constraints P
x

−→ Q and Q
y

−→ R.

Listing 3.3: Program E1 with constraint P
x

−→ Q

P = process {send(x)}
Q = process {rcv(x)}

Listing 3.4: Program E2 with constraints P
x

−→ Q and Q
y

−→ R

P = process {snd(x)}
Q = process {select {rcv(x) | rcv(y)} }
R = process {snd(y)}

Constraints have the following properties:

• Each send or receive operations in a constraint have a event order value.

• The event order value of the first event(send) is always smaller than the second

event(receive).

• The constraint is inconsistent if event order value of the send is greater than the

receive.

• An inconsistent constraint implies that the program will deadlock.

Definition 3.4. A trace 〈 c1, c2, . . . , cn 〉 is simply an ordered list of events constraints in

which no constraint happens before a constraint that precedes it in the list.

Property:

A trace T = 〈 c1, c2, . . . , cn 〉 if j > i then cj 6→ ci.

42

We can not say the property that ci → ci+1 because ci and ci+1 might be concurrent.

A trace is an abstract representation of the execution of a program. A program may have

one or more possible traces. Examples:

• Program E1 (Figure 3.3) has one trace:
〈

(P
x

−→ Q)
〉

.

• Program E2 (Figure 3.4) has one trace:
〈

(P
x

−→ Q), (Q
y

−→ R)
〉

.

We define a partial ordering for event constraints (traces) denoted by v. The definition

follows:

Definition 3.5. Trace T1 = 〈 c1, c2, . . . , cm 〉 is a prefix of trace T2 = 〈 c′1, c
′

2, . . . , c
′

n 〉 (that

is, T1 v T2) if and only if m ≤ n and ci = c′i for 1 ≤ i ≤ m.

For example, 〈 c1, c2 〉 v (is a prefix of) 〈 c1, c2, c3 〉 but is not a prefix of 〈 c1, c3, c2 〉.

Trace 1 has less information than trace 2. We claim that v is a complete lattice with

following properties:

• The traces are ordered by v.

• 〈 〉 provides no information whatsoever about the program.

• If T v T ′, then T ′ tells us more about the program than T .

• The greatest element > contains all of the events that can occur in a program.

• Meet or greatest lower bound operation (u) operator is the trace that has less events

constraints. e.g: 〈 c1, c2 〉u〈 c1, c2, c4, c5 〉 = 〈 c1, c2 〉 and When the traces have nothing

in common, the meet is empty, e.g., 〈 c1, c2, c3 〉 u 〈 c4, c5, c6 〉 = 〈 〉 .

v is a partial order:

• Reflexive: A sequence T can be a prefix of itself. Thus T v T .

• Antisymmetric: Suppose T1 v T2 and T2 v T1. Then every event in T1 is also

contained in q2 and vice versa. Consequently, T1 = T2.

• Transitive: If T1 is a prefix of T2, and T2 is also a prefix of T3, then clearly T1 is also

prefix of T3.

43

Prefix of traces are ordered by the v relation. For example we have:

• 〈 e1, e2 〉 is subset v of 〈 e1, e2, e3 〉. Meaning that 〈 e1, e2, e3 〉 tells us more about the

program than 〈 e1, e2 〉.

• The bottom element of the lattice is an empty set: ⊥ = ∅.

• Top element > contains all of the events that can occur in a program. e.g. :> =

〈 e1, e2, e3 〉

• A u B is the information provided by both A and B e.g. : 〈 e1, e2 〉 u 〈 e1, e2, e3 〉 =

〈 e1, e2 〉

The behaviour of a program is a set of all the possible states that can occur during execution

of the program. General steps for the analysis of the code are: fixed-point calculation of

program semantics and detecting communication violations. The following section, explains

the fixed-point computation of program semantics.

3.2.2 Fixed-Point calculation of program semantics

We define the behaviour of a system as a set of all the reachable states of the program. We

calculate all the reachable states from a initial state of the program. We adapt the approach

of Deutsch [18] to calculate the fixed-point. We introduce a function F for an arbitrary set

of states S by

F (S) = {s0} ∪
{

s′ | s ∈ S ∧ s −→ s′
}

.

we define F 0(S) ≡ S and Fn(S) ≡ F (Fn−1(S)). Eventually, we will have Fn+1(S) ≡ Fn(S)

where Fn(s0) will be the set of all states reachable from s0.

F 0(s0) = the initial state

F 1(s0) = the states that can be reached in one step

· · ·

Fn(s0) = the states that can be reached in n steps

44

Algorithm 3.1 Calculate fixed-point of event order values(EOV) of all the processes

Require: Processes P1 and P2 ready to communicate.
Ensure: S: fixed-point of all distinct EOVs.
1: S := 0; // set of EOVs, 0 is the initial EOV
2: stable := true;
3: repeat
4:

5: stable := true;
6: v1 := new state of EOV of P1
7: if v1 is not in S: then
8: S := S U v1;
9: stable := false;
10: end if
11: update P1 state;
12: v2 := new state of EOV of P2
13: if v2 is not in S: then
14: S := S U v2;
15: stable := false;
16: end if
17: update P2 state;
18: until stable

3.3 Abstract Semantic

Definition 3.6. An Abstract Trace is a set of constraints in which different occurrences

of the same constraint are considered equal.

Abstract Trace is ordered by the subset relation, which is a complete partial order.

There is a lattice of abstract trace, with following properties:

• The sets are naturally ordered by ⊆.

• The least element ⊥ (∅) is the bottom element. it provides the least information about

the program.

• The greatest element > as the set of all event constraints.

• Meet or greatest lower bound operation (∩) of two abstract trace is the set that has

less number of constraints.

A binary relation ⊆ on a set of events is a partial order because it satisfies reflexivity,

anti-symmetry and transitivity.

46

Example: abstract trace is ordered by the subset relation:

• {e1, e3} ⊆ {e1, e2, e3} .

• ⊥ = ∅

• > = {e1, e2, e3}

• {e1, e3} u {e1, e2, e3} = {e1, e3}

3.4 Operators and Transfer Functions

Abstraction and Concretion functions Let E be the set of all abstract traces with

typical member s and Q be the set of all traces with typical member q. We define two

functions as follows:

• (A) Abstraction: a : Q → E .

a(q) = { e | e ∈ q } .

• (C) Concretization: c : E → Q.

c(s) = q such that a(q) = s and q is minimal.

3.4.0.1 Galois Connection

We claim that a and c constitute a Galois connection. To show this, we must show that

c(a(q)) v q (sequence ordering) and a(c(s)) ⊆ s (subset ordering).This

To show c(a(q)) v q:

• By (A), a(q) = { e | e ∈ q }. q may have superscripts, but a(q) does not.

• Therefore c(a(q)) = c ({ e | e ∈ q }).

• By (C), c ({ e | e ∈ q }) is a minimal sequence q′ such that a(q′) = a(q).

• Thus c(a(q)) = q′, where q and q′ have the same abstraction but q′ is minimal.

47

• Any difference between q and q′ must be due to the fact that q may have superscripts

but q′ does not, and therefore q′ v q.

• Since q′ = c(a(q)), we have c(a(q)) v q.

To show a(c(s)) ⊆ s:

• By (C), c(s) = q where q is such that a(q) = s and q is minimal.

• Therefore, a(c(s)) = a(q) = s.

• Consequently, a(c(s)) ⊆ s.

We introduce two more functions:

• exe : Q → Q represents execution of the program, mapping a sequence to a sequence.

• int : E → E represents abstract interpretation, mapping an event set to an event set.

q1 q2 q3

s1 s2

exe

a a

int

c

We consider execution of the program from an initial sequence q1 to a final sequence q2.

Abstract interpretation takes us from an initial event set s1 to a final event set s2. We have

q2 = exe(q1) (execution)

s2 = int(s1) (interpretation)

s1 = a(q1) (abstraction)

s2 = a(q2) (abstraction)

48

We can derive the correctness of the interpretation from these equations as

int(a(q1)) = int(s1)

= s2

= a(q2)

= a(exe(q1)).

We see that abstract interpretation may give us a result sequence q3 with fewer events than

the actual computed sequence q2 but it cannot give a result with more events. In this sense,

it is a “safe” approximation. In practice, we would start from an initial event, 〈 e0 〉, for

which the abstraction is the set a(〈 e0 〉) = {e0}. Then we compute the fixed point of the

abstract interpreter:

S = lim
n→∞

intn({e0})

which means in practice that we compute Sn = intn({e0}) until Sn+1 = Sn, which means

that we have arrived at the fixed point, S. (This process must terminate because the number

of events is finite.) The concretization of this set, c(S), is the sequence that we want.

3.5 Example

For the communication analysis of Erasmus programs, it’s unnecessary to inspect every

details of Erasmus code, since only a subset of statements influence the communication

behaviour of the program. Therefore, we create an abstract version of each process that

shows only the amount of detail which is relevant to communication behaviour. Then we

perform the analysis on abstract code that has communication instructions.We use the

Abstract Interpretation to remove the statements that have no effect in the communication

of the process. We also remove the loop control from the processes. As shown in Listing

3.6, E′ is an abstract version of processes in E. This abstraction of processes is shown in

Figure 3.5. We note that numbers at the right (0), (1) (2) are program states.

49

Listing 3.5: Program E

P = process −p1, +p4
{ loop (0)

{
p1.snd; (1)
p4.rcv

} }
Q = process +q1, −q2, +q3, −q4
{

loopselect (0)
{

|| q1.rcv ;
if canAnswer then (1) q4.snd else (2) q2.snd

|| q3.rcv ; (3) q4.snd
}}

R = process +r2, −r3
{ loop (0)

{
r2.rcv ; (1)
r3.snd

}}

Listing 3.6: Abstract Processes: E′

P = process −p1, +p4
{ p1.snd; (1)

p4.rcv
}
Q = process +q1, −q2, +q3, −q4
{
loopselect (0)

|| q1.rcv ;
if canAnswer then (1) q4.snd else (2) q2.snd

|| q3.rcv ; (3) q4.snd
}
R = process +r2, −r3
{ r2.rcv ; (1)

r3.snd
}

50

Term Explanation Example

event A send statement or a
receive statement.

Process P in program E′ has
two events: e1 = p1.snd
and e2 = p4.rcv. Conse-
quently, process P of program
E might include the events:
e11, e

1
2, e

2
1, e

2
2, e

3
1, e

3
2. We note

that ex is the xth successive
occurrences of an event in a
loop.

event set A set of events in which
different occurrences of
the same event are con-
sidered equal.

Process P of program E′ has
one event set: {e1, e2}. Pro-
cess P of program E has one
event set: {e1, e2}.

event sequence An ordered list of events
in which no event hap-
pens before an event
that precedes it in the
list.

Sequence of event in process P
of program E is q = 〈 e1, e2 〉

Table 3.2: Definitions

event statement

e1 p1.snd

e2 p4.rec

e3 q1.rec

e4 q4.snd

e5 q2.snd

e6 q3.rec

e7 q4.snd

e8 r2.rcv

e9 r3.snd

Table 3.3: Naming convention for events in program E

Going the other way:

Let s = {e1, e3, e4, e2}

then c(s) = q such that a(q) = s and q is minimal

i.e., c(s) = 〈 e1, e3, e4, e2 〉

and a(c(s) = a (〈 e1, e3, e4, e2 〉)

= {e1, e3, e4, e2}

⊆ {e1, e3, e4, e2}

= s. 52

We have proved that the abstraction from program E to program E′ is a safe approx-

imation. Meaning that by reasoning about program E′ we can learn about the behaviour

of program E. This makes our analysis approach applicable to the large scale Erasmus

programs. In the next chapters we explain how we reason about program E using AI

theory.

3.6 Chapter Summary

The goal of this research is to perform a communication analysis on process-oriented pro-

grams. Existing domains such as intervals, convex hull and polyhedra, etc [15] are not useful

for communication analysis. Therefore we need to create a novel communication abstract

domain. This chapter presented a novel communication abstract domain. We introduced

a lattice of communication events for both concrete and abstract domains. Transfer opera-

tions and fixed-point analysis are also presented.

The lattice presented in this chapter is based on theory of happened before relation of Lam-

port [39] and Vector Clock. The next chapter discusses this theory and explains advantages

and disadvantages of this approach. It then introduces an event order predictor that builds

a partial order of synchronous events of a POP program without actually running it.

53

Chapter 4

DESIGN AN EVENT ORDER PREDICTOR

Following the previous chapter’s goal : building a lattice for event communications for POP

programs, in this chapter, we propose an Event Order Predictor (EOP) where the events

orders are determined statically. Our approach is inspired by Vector Clock and it predicts

the order of events for all possible paths.

This chapter is organized as follows: Section 4.1 presents a An Event Order Predictor for

POP programs. The implementation details of Event Order Vector is also provided in this

section. Section 4.1.4 proposes a Vector Clock for Erasmus cells. Section 5.4 provides a

brief summary of the chapter.

In this chapter we use j , k to denote processes. A list of symbols that is used throughout

this chapter is given in Table 4.1.

4.1 An Event Order Predictor

Using AI theory for static analysis of POP programs, it is essential to know the order that

events happen in POP programs. There has been many research to dynamically define

the order of events in distributed systems (i.e : Vector Clock Algorithm, Resettable Vector

Clock). While considerable research has been devoted to the use of Vector Clock in dynamic

analysis, we have not found any existing research that applies the concept of Vector Clock

in the static analysis of concurrent programs. For example, Vo [64] used both Vector Clock

[22] and Lamport Clock [39] algorithms to develop a dynamic verifier for Message Passing

54

Symbols Explanation

j, k, P, Q, R processes

ei The individual events using different
values of i for distinct events

exi The xth successive occurrences of an
event in a loop.

DE(x, j) xth distinguished event of process j

m messages

e1 hb e2 e1 happened before e2
q sequence of events 〈 e1, e2, . . . , en 〉

VC vector clock

RVC resettable vector clock

EO event order

EOV event order vector

AI Abstract Interpretation

Table 4.1: Nomenclature

programs. Cain et al. [7] built an algorithm using Vector-timestamp to verify a multi-

threaded program. Resettable Vector Clock (RVC) was proposed by several researchers

[61, 44, 49, 58, 4]. The main idea is that instead of estimating the size of the VC; which

practically can be either too small or too large; only a necessary number of bits for the

size of VC is considered and then every time the counter that stores the value of VC, is

about to overflow, VC resets to zero. The reset rule varies in each research, depending

on the applicability and purpose of the program. For instance, Mostefaoui and Theel [49]

addressed this issue by proposing a reset rule; when VC reaches a predetermined limit, the

clocks of the processes resets to zero. The problem of their solution is that it is not possible

to compare timestamps of two events that happen before and after resetting the clock and

therefore, the causality relation in the application is changed. Arora et al. [4] argue that the

existing RVC rules do not satisfy the fault-tolerance property. Fault-tolerance is the ability

of a system to respond gracefully to an unexpected failure. For implementing RVC, when

the system is recovered after a failure, the casual relation of events should not be affected

by the failure. Arora et al. [4] propose a realistic implementation of RVC that satisfy the

fault-tolerance property. They suggest to reuse the timestamp of events in phase-based ap-

plications. When a process moves from one phase to another, it resets its own local clock.

RVC are useful for Erasmus programs with two properties: first, there is a possibility of in-

55

consistent information because of multiple paths. Second, the program works in “phases”,

allowing resetting at the end of a phase.

To the best of our knowledge, there has been no previous research that determines the

order of events without executing the program. Since some Erasmus applications are also

phase-based, we partially adapt the approach of Arora et al. [4] to implement our Event

Order Predictor (EOP). Our Event Order Predictor might be also applicable to the formal

analysis of other concurrent programs.

4.1.1 Event Order

We define a data structure, inspired by Vector Clock, that contains a counter number for

event orders for all (known) processes. The data structure is defined as below:

Definition 4.1. Event Order Vector

Let n be the number of processes in a POP system, Ci is the order event counter predictor

for process i for a particular event. The Event Order Vector is represented as an array with

an integer order value for all the processes.

[C1, C2, C3,, Cn]

Throughout the whole chapter, we use EOV to refer to the vector of event orders of the

processes of a program. There is an entry (counter) in the Event Order Vector for each

process of the program. Every time a communication happens, the entry for this process is

incremented.

Definition 4.2. EOV Ordering

The comparison of two VOCs follows the same order as Vector Clock timestamp as it is

provided in Table 2.4 on page 29.

Definition 4.3. EOV Property

Let a and b be two process events. EOV (a) is referred o the vector order value for event

a. Same applies to b. If EOV (a) < EOV (b) then a −→ b. In another word, event a causes

56

event b if and only if EOV (a) < EOV (b).

The event order value can give us some information about the relation betweens events

in the programs. For example, an event a with EOV of [1,0] happens before another event b

with EOV of [2,1] (we show a happens before b by: a → b). Reason: This follows the same

property of Vector Clock if Vector Clock of event a < Vector Clock of event b then a → b.

Since [1, 0] < [2, 1] then a → b. However, this counter value in a long run of the program

will overflow. To avoid the problem of counter overflow, we reset the value of the counter in

specific conditions to implement a bounded EOV. However, the challenge in implementing

EOV for Erasmus application is to guarantee that the order of events will not be affected

after resetting the counters. To make sure that events order will not be changed when we

reset the vector, the program has to satisfy some specific conditions that we explain in the

following sections. The terms used throughout this section are defined in Table 4.2.

Terms Definition

Order bound The maximum value for EOV, denoted by `.

Phase bound The maximum number of times that a program is able
to reset its counter, denoted by reset.

Time-frame Maximum time-frame that message m sent from pro-
cess j, will be received by another process k, denoted
by M .

Non-blocking reset The method is called every time a process moves from
one phase to another phase, without blocking other
processes.

reset[] An integer array to keep track of the number of the
times each process resets its EOV value.

Client of EOV A program that every time it performs a send or re-
ceive operations, it also calls the send and receive op-
erations of EOV.

Operations of EOV These methods are called by the client of EOV. These
methods are presented in Algorithms 4.3, 4.4 and 4.5
on page 62.

Table 4.2: Nomenclature

4.1.1.1 Communication Pattern

In order to implement EOV for Erasmus programs the program should behave according to

the communication pattern. The pattern says that all messages that originate within the

57

time-frame reach their destination within the time-frame. Following is the communication

pattern.

Listing 4.1: Communication Pattern [4]

DE(x, j) : xth distinguished event of process j

(∀k, j, x : x ∈ N :

(∃ek ∈ k :: (DE(x, j) hb ek) ∧

¬ (DE(M, j) hb ek))

∧ (∀mk :: ((DE(x, j) hb Send(mk))

∨ (Receive(mk) hb DE(M, j)))))

j
e1 e2 e3 ex eM

k
ex+1

Figure 4.1: Communication Pattern: j and k are two processes.
DE(1, j) = e1, DE(2, j) = e2 and DE(x + 1, k) = ex+1 We note that
e1 hb e2 hb e3 hb ex hb ex+1. All the events started in process j should
be delivered by process k within the time-frame M distinguished events of
j.

Definition 4.4. comm(M , `)

An Erasmus program satisfies comm(M , `) iff (1) it satisfies the communication pattern in

Listing 4.1 and (2) between any two adjacent distinguished events, the number of send or

receive or local events is less than `, ` ∈ Z+

According to [4], any phase-based application that satisfies the above conditions can

use the approach providing the suitable values of M and ` by considering bounds on the

process delay and message delay. In Erasmus , we try to avoid any dependencies on speed and

delay, therefore considering bounds on the process speed and message delay is problematic

for Erasmus . Instead, we use Abstract Interpretation technique to establish the values of

M and `, the conditions for the Theorem 4.1.

Theorem 4.1. Substitutability of VC with bounded-space RVC

58

Let P be a client of EOV and PD satisfy the communication pattern comm(M, l) for some

M, l ∈ Z+. Then a bounded-space EOV is substitutable for VC in P .

4.1.2 Reset Conditions for Erasmus

In this section, we present our approach in implementing EOV for Erasmus programs. The

input of EOV Algorithm 4.3 is two variables: order-bound denoted by `, maximum time-

frame for delivery of a message in a process denoted by M . We present our approach in

calculating these variables from a given Erasmus code in the following sections. We use the

example given in Figure 3.6 to illustrate our approach.

4.1.2.1 Order-bound value

Order bound is the maximum size of the Order Event Vector that a program needs. Al-

gorithm 4.1 shows how to compute this value from a given Erasmus code. The reason we

compute the maximum value of order-bound of each processes is because not all the pro-

cesses have the same number of events. Therefore we need to compute the order-bound for

every processes and taking the maximum of these order-bound values is the safest upper

bound for the size of the Order Event Vector that is shared between all of the processes.

Algorithm 4.1 Order-bound Computation algorithm

Require: N processes within program E′

Ensure: order-bound of the program : `
1: var order-bound : array [1..N] of integer , var c-bound = 0;
2: for all process lists of program j ∈ E′ do
3: for all c : communication statements ∈ j do
4: order-bound[j]++;
5: end for
6: end for
7: ` = 2 * getMax(order-bound[], N)

4.1.2.2 Time-Frame

Algorithm 4.2 is written based on the communication pattern that is presented in Listing

4.1. To compute a time-frame in which all messages originated within this time-frame reach

to their destination within this time-frame, we count the number of distinguished events

59

from a send statement in one process to the matching receive in other process(es). The

maximum value of these time-frames is a loose upper bound for the value M .

Algorithm 4.2 Time-Frame Computation algorithm

Require: N processes within program E′

Ensure: Time-Frame of the program : M
1: var time-frame : array [1..N] of integer , var M = 0;
2: for all process lists of program j ∈ E′ do
3: for all c : communication statements ∈ j do
4: if c: send statement then
5: for all ∀ k: k 6= j, k ∈ process lists of program E′ do
6: rec = FindMatch(send: c).
7: x: number of distinguish events from c to rec.
8: time-frame[j] = x;
9: end for
10: end if
11: end for
12: end for
13: M = getMax(time-frame[], N)

4.1.3 The Reset Rule

Before we explain the reset rule in Erasmus program, we explain the concept of “phase” in

Erasmus .

4.1.3.1 Phase-based applications

In phase-based applications, a process executes a phase and begins its next phase when the

previous phase is fully completed. Communications is Erasmus programs are synchronized

and therefore, the phases should be synchronized. According to [47] phases synchronization

should guarantee:

• No process begins its (k + 1)n phase until all the processes have completed their kn

phase k ≥ 0

• No process will be permanently blocked from executing its (k+1)n phase if all process

have completed their kn phase k ≥ 0

We note that the Erasmus phase definition is strictly for processes that contains loop and

loop select statements. We define phase as below:

60

A phase is a set of distinguished events with respect to other process(es) in a

loop select statement. When the process finish executing the loop select

statements, it should goes back to its original state. In another word, each

loop execution is a new phase.

Example: in the heating simulation system that is presented in Section 5.2.7 on page

75, process Pump completes one phase when it receives the order value information and

sends the temperature details to Thermostat. The next phase is either repeating the same

statements in phase one or to execute the second block of the loop select.

Listing 4.2: Process Pump in heating simulation

Pump = process c: +Clock; m: −Measure; t: −Therm
loop select
|| time: Integer := c. tick ;

if time % PUMP INT = 0 then
t .temp := m.temp

end
|| c.stop ; t .stop ; exit
end

Reset Rule: When a process moves from one phase to another, it should reset

its counter by calling the nonblocking-reset() method in Algorithm 4.5 on page

62. Algorithms 4.3 on page 62 shows the operations for implementing Event Order Predic-

tor. These algorithms are partially adapted from Arora et al. [4].

Theorem 4.2. The reset rule suffices to guarantee VC Property.

Proof. : See [4].

4.1.4 Event Order Predictor for Cells

An Erasmus program consists of cells and processes. The cells define the structure of the

program, and the processes define its behaviour. The internal representation of cell is

generally hidden from from the rest of the program by the cell wall. A cell may contain

cells, processes, and variables. Below is an example:

61

Algorithm 4.3 Event Order Predictor Algorithm [4]

Require: Process list, M, l
Ensure: event order vector value for each process.
var orders:array [1..N] of integer { to store latest event order value of processes.}
var reset:array [1..N] of integer { to keep track of number event order counter resets of
processes.}
initially:
(∀ j: j 6= k: orders .j[k] := 0 , reset.j[k] := 0)
reset-bound = max(3 ∗M + 1)
order-bound = `
if send event (j, ej , mj , flag) then

increment-vector(j)
end if
{ attach latest reset vector and event order vector of process j with the message.}
reset.mj , orders.mj := reset.j , orders.j;
{ attach latest reset vector and event order of process vector j with the event.}
reset.ej , orders.ej := reset.j , orders.j;
if receive event(j, ej , ml , flag) then

(∀k : k 6= j): {if ml has the newer information}
if (reset.j[k] < reset.ml[k] ∧ reset.j[k] + M + 1 > reset.ml[k]) ∨ (reset.j[k] >
reset.ml[k] ∧ reset.j[k] ≥ reset.ml[k] +(reset-bound - M) then

reset.j[k], orders.j[k] := reset.ml[k], orders.ml[k];
end if

else
if reset.j[k] = reset.ml[k] then

orders.j[k] := max (orders.j[k], orders.ml[k]) {if ml and j have the same infor-
mation}

else
{Do not update orders.j[k], reset.j[k]}

end if
increment-vector(j)

end if
reset.ej , orders.ej := reset.j , orders.j;

Algorithm 4.4 increment-vector [4]

Require: process j
Ensure: increment orders.j[j]
orders .j[j] := (orders.j[j] + 1) mod order-bound

Algorithm 4.5 nonblocking-reset [4]

Require: process j
Ensure: reset the counters at orders .j[j] { orders .j[j] is the order vector for process j at
index j.}
reset.j[j] := (reset.j[j] + 1) mod reset-bound {store the number of resets}
orders .j[j] := 0; {Reset the vector}

62

Algorithm 4.6 happened-before

Require: ej , ek
Ensure: boolean: casual relation of events ej and ek
1: (reset.ej [j] = reset.ek[j] ∧ orders .ej [j] ≤ orders .ek[j])
2: ∨ (reset.ej [j] < reset.ek[j] ∧ reset.ej [j] + n > reset.ek[j])
3: ∨ (reset.ej [j] > reset.ek[j] ∧ reset.ej [j] ≥ reset.ek[j] + m)

C1 C2

P3

P2

P4P1
arrives leaves

start finish

P5

P6

start finishc

Figure 4.2: Cell ownership in Erasmus.

In the previous section, we assigned an event order for each process of an Erasmus

program. Here, we define EOV for Erasmus cell. In Figure 4.2 we have two cells, C1 and

C2. C1 contains processes P1, P2, P3 and P4 whereas cell C2 has two processes, P5 and P6.

We define the size of cell EOV the number of processes within the cell. For example, EOV

size for Cell C1 in Figure 4.2 is four, since there are four processes within the cell C1. Also,

the EOV size of C2 is two.

• State of a cell is EOV value of a the process that is directly communicating with the

cell.

• The EOV is represented as a tuple of values. If we have n processes in the cell, we

have a tuple of size n.

63

4.2 Chapter Summary

In this chapter, we discussed the application of Event Order Predictor in POP programs. By

using Event Order Predictor we are able to determine the order of events that happen in the

program without actually executing it. We have proposed an Event Order Vector specifically

for Erasmus programs. The main challenges in implementing EOV is to guarantee that the

order of events will not be affected after resetting the counters. The theoretical conditions,

implementation details and algorithms were offered in the chapter. We also proposed an

Event Order Predictor for Erasmus Cells. In the next chapter, we will explain how we reason

about a POP program by using AI theory and Event Order Predictor.

64

Chapter 5

EVALUATIONAL ANALYSIS

In the previous chapters, we explained AI theory and EOP application for POP programs.

In this chapter, we use these two techniques to reason about synchronous Erasmus programs.

The chapter is organized as follows: Section 5.1 explains the reasoning steps. Section 5.2

presents an a practical evaluation to evaluate our reasoning methodology. These evaluations

are presented in Sections 5.2.1, 5.2.5 and 5.2.7. Section 5.3 compares our reasoning approach

with the existing tools and techniques. Section 5.4 provides a summary of the chapter.

5.1 Reasoning

We reason about non-deterministic large Erasmus programs that contain loop, select and

case. The methodology of the reasoning are as followings:

• Get an Erasmus code that contains loop, select and case.

• First level abstraction of the code: remove statements that are not related to the

communication.

• Second level abstraction of the code: abstract the loop controls.

• Static analysis of the code: compute the values of M and ` using Algorithms 4.1 and

4.2.

• Prove the abstraction is safe and the values are applicable to the original code.

65

• Update EOP operations provided in Algorithm 4.3 with values of M and `.

• Build a lattice of event orders values for the code.

• Compute the fixed-point of the lattice using Algorithm 3.1.

• Inspect the fixed-point to detect communication errors. We can detect a communica-

tion violation using vector timestamps by comparing the timestamp of a sender of the

message to the timestamp of the receiver of the message. According to vector clock

definition, If the sender’s timestamp is less than the receiver time vector, a (poten-

tial) causality violation has occurred. Properties of the vector colock are explained in

Section 2.19 in Chapter 2 of the thesis.

In the following sections we evaluate our reasoning methodology on detecting two prop-

erties of a given Erasmus program: successful communication and deadlock in a program.

5.2 Practical Evaluation

5.2.1 Cyclic Communication Pattern

The scenario in this section is developed based on an Erasmus program shown in Figure 5.1.

The program has three processes: P , Q and R. These processes are implemented in Listing

5.1 on page 67. Numbers in parentheses at the left denote program points(states). Messages

are not specified: we write just p.snd to mean “send on port p and p.rcv to mean “receive on

port p. A program is at its original state when its at program point (0). The communications

of processes are as followings:

Process P alternately sends a request on channel e1 to process Q and receives a reply from

Q on channel e4. Process Q receives a request from P and either answers it immediately

on channel e4 or forwards it to process R on channel e2. Process Q also passes replies from

R back to P using channels e3 and e4. Process R alternately receives a request on channel

e2 and replies on channel 3. In the next section, we abstract the program E and prove that

according to Abstract Interpretation theory, the abstraction is safe.

66

P Q R

e1 e2

e3e4

p1

p4

q1

q4

q2

q3

r2

r3

Figure 5.1: A chain of processes, P , Q and R

Listing 5.1: Program E

P = process −p1, +p4
{ loop (0)

{
p1.snd; (1)
p4.rcv

} }
Q = process +q1, −q2, +q3, −q4
{

loopselect (0)
{

|| q1.rcv ;
if canAnswer then (1) q4.snd else (2) q2.snd

|| q3.rcv ; (3) q4.snd
}}

R = process +r2, −r3
{ loop (0)

{
r2.rcv ; (1)
r3.snd

}}

5.2.2 Abstraction

In chapter 3 we have shown that the abstraction of program E to program E′ is a safe

approximation. We use program E′ to compute the values ofM and ` to implement bounded

EOV for program E. M is the maximum time-frame that message m sent from process P ,

will be received by another process Q and ` is the size of the event order vector. In the next

sections we explain our approach for computing these values from an Erasmus program.

67

5.2.3 EOV Operations

We show that above Cyclic Communication Pattern (program E) satisfy the communication

pattern with M = 2 and ` = 4

Lemma 1. Program E satisfies the comm(2, 4).

Proof. Program E satisfies comm(2, 4) with ` = 4 because after running the Algorithm

4.1, we see that for every process of program E, there is maximum of two communication

statements. Process P has two statements: p1.snd and p4.rcv. Process Q either run q1.rcv;

q4.snd or else q1.rcv; q2.snd or q3.rcv; q4.snd. In any case, the maximum number of

communication statements that can happen in process Q is 2. Process R has also maximum

two communication statements: r2.rcv; r3.snd. Therefore, the upper bound for the size of

EOV is 4.

Program E satisfies comm(2, 4) with the time-frame: M = 2. We show that for every event

in program E all the message that are send within this time-frame will be received before

the end of the time-frame. We us the Algorithm 4.2 to compute the time-frame for the

delivery of every send in all of the processes. The maximum of these values give us the best

upper bound of the time-frame, which is 2 in this case.

Reset Rule: When all the process finish executing the loop simultaneously, each pro-

cess should reset its own vector.

5.2.4 Reasoning

To reason about the above program E, without executing the program, we use the EOV

operations provided in Algorithm 4.3 to compute the event order values of each processes.

Every time there is a send or receive operations in Erasmus code, the program should call

the send and receive operations of EOV.

The Event Order Vector length for the program E is equal to the number of the processes

of the program. Therefore, the length of the EOV for program E is three (We have three

processes: P , Q and R). Each index of the EOV points to the latest counter value of a

68

P Q R

P0

e1−→ P0 Q0

e3−→ Q1 R0

e8−→ R1

P1

e2−→ P0 Q0

e3−→ Q2 R1

e9−→ R0

Q0

e6−→ Q3

Q1

e4−→ Q0

Q2

e5−→ Q0

Q3

e4−→ Q0

Figure 5.2: Transition table for processes P , Q, and R

process. This is shown Table 5.1. We define an array vc : [P,Q,R] as a Event Order Vector.

Initially the Vector Value for all the processes is [0, 0, 0]. We show this initial state with

〈P0, Q0, R0〉.

Index Process

0 P

1 Q

2 R

Table 5.1: EOV indexes for program E (Listing 5.1)
.

In the followings, we use the naming conventions that are presented in Table 3.3 on page

52. Example: we use e1 instead of p1.snd. We look for events that can occur from state

〈P0, Q0, R0〉. One possibility is that event e1 can occur, causing P to transit from state 0

to state 1, then event e3 causes Q to transit from state 0 to state 1. But Q has two options

to do a transition from state 0. The eligible candidates are:

P0

e1−→ P1 Q0

e3−→ Q1 Q0

e3−→ Q2

Figure 5.2 shows all the possible states of the program E. We use this table to analyze

the behaviour of the program. In program E processes communicate in two scenarios. We

explain both scenarios and reason if communications can happen without any error.

Scenario 1:

Process P send a request to process Q, if process Q is able to answer to the request, it will

69

send the response to process P . Process P receive the response. All the processes go back

to their initial state: 〈P0, Q0, R0〉. There is no communication with process R. The path

for this scenario is 〈 e1, e3, e4, e2 〉.

Fixed-point Computation:

We define an event constraint c = (v1, v2) where v1 is the EOV value of the sender of the

event. (e.g. ([P1, Q0, R0]) and v2 is the EOV value of its matching receive.(e.g. [P1, Q1, R0]).

We then define the state of the program as the event trace of the particular program point.

The event trace is a sequence of events constraints. Example: 〈 (c) 〉. As it is explained in

Definition 3.5, the event traces make a partial order: v.

Now, we define function F (S) where S is the event trace for processes P , Q, R.

F (S) = {s0} ∪
{

s′ | s ∈ S ∧ s −→ s′
}

.

The states can only be added, never removed, as we iterate F . Consequently, for any S, we

have S v F (S). We can use Kleene’s theorem to find the least fixed-point of F as F∞(⊥),

where ⊥ = ([0, 0, 0]). The least fixed-point gives, for each program point, the set of all

states that can be reached by executing the program. Using Algorithm 3.1 the result of

computing the fixed-point of EOV values of the processes is :

s0 = 〈 [0, 0, 0] 〉
F 0(s0) = 〈 ([1, 0, 0], [1, 1, 0]) 〉
F 1(s0) = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [2, 2, 0]) 〉
S1 = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [2, 2, 0]) 〉

Figure 5.3: Finding the fixed-point of program E- Scenario 1.

Now processes P , Q, R are all simultaneously in a new phase, so, we reset the counter.

Scenario 2:

Process P send a request to process Q, Process Q is not able to response to this request.

Therefore, it will forward the request to process R. Process R receive the request and send

the response back to process Q. Q forwards this response to P . P receives the response.

70

All the processes are back to their initial state: 〈P0, Q0, R0〉. The path for this scenario is

〈 e1, e3, e5, e8, e9, e6, e4, e2 〉. We calculate the fixed-point of Event Order Vector value of the

program using Algorithm 3.1. Therefore, we have:

s0 = 〈 [0, 0, 0] 〉
F 0(s0) = 〈 ([1, 0, 0], [1, 1, 0]) 〉
F 1(s0) = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [1, 2, 1]) 〉
F 2(s0) = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [1, 2, 1]), ([1, 2, 2], [1, 3, 2]) 〉
F 3(s0) = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [1, 2, 1]), ([1, 2, 2], [1, 3, 2]), ([1, 4, 2], [2, 4, 2]) 〉
S2 = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [1, 2, 1]), ([1, 2, 2], [1, 3, 2]), ([1, 4, 2], [2, 4, 2]) 〉

Figure 5.4: Finding the fixed-point of program E- Scenario 2.

Now processes P , Q, R are all in the simultaneously in a new phase, therefore, we reset

the counter. Figure 5.5 shows the timestamp for all the event. The combination of S1, S2

is the reachable states for the program E in the specified paths. S = {S1 ∪ S2}. The next

step is to inspect this set to find a potential communication error.

time

P Q R

[1, 0, 0]
[1, 1, 0]

[1, 2, 0]
[1, 2, 1]

[1, 3, 2]
[1, 2, 2]

[1, 4, 2][2, 4, 2]

Figure 5.5: Scenario 2: Graph of events of program E.

Analysis:

Scope of analysis: Successful communication:

Condition: All the processes are making progress and for each process in the program, a

match for send/receive commands exists in another distinct process(es).In addition, there

is no deadlock in the system. These conditions are further explained in Section 6.3 in the

71

chapter 3 of the thesis. From the final state sets, we infer:

• All the processes have advanced their counter. This means there is no dead process

in the program.

• For every pair of sender and receiver of the message, EOV value of sender has been

always smaller than EOV value of the receiver. This ensures us that for every send

statement, a match of receive exists in another distinct process(es).

• Total number of distinct EOVs in fixed-point set is finite. Therefore, the program

terminates.

• The program can run without communication error in the specified two paths.

5.2.5 Cyclic Communication Pattern - Deadlock

No we update only process P of program E. In this version, process P does not require to

wait for the reply. It can perform two transitions: it can either send to p1 (p1.snd) or read

from P4 (p4.rcv). The code for process P follows:

P = proce s s −p1 , +p4

l o o p s e l e c t (0)

{

| | p1 . snd

| | p4 . rcv

}

The processes Q and R are the same as listed in Listing 5.1. We name this version of the

program: E1. In this section, we use the same notations that we introduced for previous

evaluation. The reset rule is the same as the rule in program E.

Reset Rule: when all the process finish executing the loop simultaneously, each process

should reset its own counter.

72

5.2.6 Reasoning

For this example, the least fixed-point will be the set that contains all of the trace events

shown in Figure 5.6 and Figure 5.7. Computing the fixed-point requires computing the

successor states of every state that can occur in an actual execution. In particular, we

will have to compute the states σ that follow 〈P0, Q0, R0〉. In doing so, we will discover

two invalid constraints in the third iteration of computing fixed-point: F 3(s0). These

constraints are: ([1, 2, 2], ∅) and (∅, [2, 4, 0]). These constraints do not qualify the condition

of “ timestamp of the sender of the message is always smaller than the timestamp of the

receiver. ” This state has no successors and is dead-locked states, because

P is waiting to send on q1 or receive on q4

Q is waiting to send on q2

R is waiting to send on q3

and no process can advance.

73

s0 = 〈 [0, 0, 0] 〉
F 0(s0) = 〈 ([1, 0, 0], [1, 1, 0]) 〉
F 1(s0) = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [2, 2, 0]) 〉
F 2(s0) = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [2, 2, 0), ([3, 2, 0], [3, 3, 0]) 〉
F 3(s0) = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [2, 2, 0), ([3, 2, 0], [3, 3, 0]), ([3, 4, 0], [3, 4, 1]) 〉
F 4(s0) = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [2, 2, 0), ([3, 2, 0], [3, 3, 0]), ([3, 4, 0], [3, 4, 1]), ([3, 4, 2], [3, 5, 2]) 〉
F 5(s0) = 〈([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [2, 2, 0), ([3, 2, 0], [3, 3, 0]), ([3, 4, 0], [3, 4, 1]), ([3, 4, 2], [3, 5, 2]),
([3, 6, 2], [4, 6, 2])〉
S1 = 〈([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [2, 2, 0), ([3, 2, 0], [3, 3, 0]), ([3, 4, 0], [3, 4, 1]), ([3, 4, 2], [3, 5, 2]),
([3, 6, 2], [4, 6, 2])〉

Figure 5.6: Finding the fixed-point of program E1- Scenario 1. The path is
〈 e1, e3, e4, e2, e1, e3, e5, e8, e9, e6, e7, e2 〉. At the 5th iteration, all the processes finished
one phase and they are in a new phase. So the counter should be reset.

s0 = 〈 [0, 0, 0] 〉
F 0(s0) = 〈 ([1, 0, 0], [1, 1, 0]) 〉
F 1(s0) = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [1, 2, 1]) 〉
F 2(s0) = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [1, 2, 1), ([1, 3, 0], [2, 3, 0]) 〉
F 3(s0) = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [1, 2, 1), ([1, 3, 0], [2, 3, 0]), ([1, 2, 2], ∅)(∅, [2, 4, 0]) 〉
S2 = 〈 ([1, 0, 0], [1, 1, 0]), ([1, 2, 0], [1, 2, 1), ([1, 3, 0], [2, 3, 0]), ([1, 2, 2], ∅)(∅, [2, 4, 0]) 〉

Figure 5.7: Finding the fixed-point of program E1- Scenario 2. The path is
〈 e1, e3, e5, e8, e9, e6, e1, e2 〉. Deadlock at timestamp [1,2,2] and [2,4,0].

74

time

P Q R

[1, 0, 0]

[2, 2, 0]

[3, 2, 0]

[1, 1, 0]

[1, 2, 0]

[3, 3, 0]

[3, 4, 0]

[3, 4, 2]

[3, 4, 1]

[3, 5, 2]

[3, 6, 2][4, 6, 2]

Figure 5.8: Graph of events of program E1. Since all of the processes are in their original
states, we reset the counter.

time

snd

snd

P Q R

[1, 0, 0]

[1, 2, 0]
[1, 2, 1]

[1, 1, 0]

[2, 3, 0] [1, 3, 0]

[2, 4, 0]

[1, 2, 2]

Figure 5.9: Graph of events of program E1. Deadlock happens at timestamps [1,2,2] and
[2,4,0]. P is waiting to send on p1, Q is waiting to send on q2.

5.2.7 Heating Simulation: Successful Communication:

We use a Heating simulation program to evaluate our approaches in implementing EOV for

Erasmus program and to perform a static analysis on the program. Figure 5.10 shows the

overall plan of the system. The system includes seven major processes as followings:

• Clock: sends the time to the three processes that perform a task at regular intervals:

75

Thermostat, Pump, and Reporter.

• Thermostat : reads the temperature of a room and uses the measurement to turn the

furnace on or off

• Pump: simulates a pump that moves water from the furnace to the rooms.

• Furnace: heats the water if it is switched on.

• Room 1: Water flows through the edges m3, t1, t2, and t3. It is heated by the furnace

and cools as it gives some of its heat to the rooms.

• Room 2: Different instance of process Room 1, running the same code.

• Reporter requests information from the rooms periodically and stores it in a file.

Client process is a process that first sends a query and then receives a response. In

this simulation, processes Clock, Thermostat, Pump and Reporter are from the type client.

A minus sign (-) before the protocol name, indicates that the process it is a client. The

server has a plus sign (+) before the protocol name. The server first receives the query from

the client and then it sends the response. Listing 5.2 presents the code of this simulation

written in Erasmus syntax.

76

Clock

Thermostat

Reporter

Pump

Furnace

Room 1 Room 2

Dummy

c1

c2

c3

s1

m1

m2

m3

t1

r1 r2

t2 t3

Figure 5.10: Heating Simulation

77

Listing 5.2: Heating Simulation- Part 1

Clock = protocol ∗tick: Integer; stop end
Print = protocol ∗↑desc: Text end
Therm = protocol ∗temp: Float; stop end
Measure = protocol ∗↑temp: Float; stop end
Switch = protocol ∗(on | off); stop end
MasterClock = process c1, c2, c3 : −Clock |

for now in 0 to MAXTIME do
c1. tick := now;
c2. tick := now;
c3. tick := now;

end;
c1.stop ;
c2.stop ;
c3.stop

end
Reporter = process c: +Clock; r1, r2, r3: −Print |

rep : OutputFile := file open write (” results . txt”);
loopselect
|| time: Integer := c. tick ;

if time % REP INT = 0 then
msg: Text := format(text time, 5);
file write (rep , msg + r1.desc + r2.desc + r3.desc + \n);
sys .err := msg + r1.desc + r2.desc + r3.desc + \n

end
|| c.stop ;

file close (rep);
exit end
end
Thermostat = process c: +Clock; s: −Switch; m: −Measure |

loopselect
|| time: Integer := c. tick ;

if time % THERM INT = 0 then
temp: Float := m.temp;
if temp < THERM SET − THERM TOL
then s .on

elif temp > THERM SET + THERM TOL
then s . off

end
end

|| c.stop ; exit
end

end

78

Listing 5.3: Heating Simulation- Part 2

Pump = process c: +Clock; m: −Measure; t: −Therm |
loopselect
|| time: Integer := c. tick ;

if time % PUMP INT = 0 then
t .temp := m.temp

end
|| c.stop ; t .stop ; exit
end

end
Furnace = process s: +Switch; m: +Measure; t: +Therm; r: +Print |

temp: Float := 20;
running: Bool := false;
state : Bool indexes Char;
state [false] := ” ”;
state [true] := ”∗”;
loopselect
|| s .on;

if not running
then running := true
end

|| s . off ;
if running
then running := false

end
|| m.temp := temp;

if running
then temp += HEAT INC;

end
|| temp += WATER UNIT ∗ (t.temp − temp);

temp += TANK ENV ∗ (ENV TEMP − temp)
|| r .desc := format(temp, 7, 2);
|| t .stop ; exit
end

end

79

Listing 5.4: Heating Simulation- Part 3

Room = process name: Text; m: +Measure; p: +Print; pred: +Therm; succ: −Therm |
temp: Float := 20;
loopselect
|| m.temp := temp
|| p.desc := format(temp, 6, 2)
|| inp: Float := pred.temp;

temp += WATER ROOM ∗ (inp − temp);
temp += ROOM ENV ∗ (ENV TEMP − temp);
inp += ROOM WATER ∗ (temp − inp);
succ.temp := inp

|| pred .stop ; succ.stop ; exit
end

end

Control = cell
c1, c2, c3: Clock;
MasterClock(c1, c2, c3);
r1, r2, r3: Print;
Reporter(c1, r1, r2, r3);
s1: Switch;
m1, m2, m3: Measure;
Dummy(m2);
Thermostat(c2, s1, m1);
t1 , t2 , t3 : Therm;
Pump(c3, m3, t1);
Furnace(s1, m3, t3, r1);
Room(”Room 1”, m1, r2, t1, t2);
Room(”Room 2”, m2, r3, t2, t3);

Control()

5.2.8 Reset Condition

We show that above Heating Simulation (HS) satisfy the communication pattern with M =

2 and ` = 8

Lemma 3. HS satisfies the comm(2, 8).

Proof. HS satisfies comm(2, 8) with ` = 8 because after running the Algorithm 4.1, we see

that for every process of HS, there is maximum of four communication statements which

gives us the upper bound of 8 for the size of our EOV. HS satisfies comm(2, 8) with the

time-frame: M = 2. We show that for every event in HS all the message that are send within

80

this time-frame will be received before the end of the time-frame. We us the Algorithm

4.2 to compute the time-frame for the delivery of every send in all of the processes. The

maximum of these values give us the best upper bound of the time-frame, which is 2 in this

case.

Reset Rule: when a process finish executing the loop, it should reset its own counter.

5.2.9 Reasoning

Now we apply the Algorithm 4.3 to calculate the vector counter value for all events of the

program. We note that that the length of the EOV is equal to the number of the processes

(seven in this case). Each index of the EOV points to the latest counter value of a process.

This is shown Table 5.2. We have:

array vc: [Clock, Thermostat, Room1, Furnace, Pump, Room2, Reporter]

Index Process

0 Clock

1 Thermostat

2 Room1

3 Furnace

4 Pump

5 Room2

6 Reporter

Table 5.2: EOV indexes for Heating Simulation system

81

time

Clock Thermostat Room1 Furnace

[0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0]

[1, 0, 0, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 0, 0]

c2

[1, 2, 0, 0, 0, 0, 0] [1, 2, 1, 0, 0, 0, 0]
m1

[1, 3, 0, 1, 0, 0, 0][1, 3, 0, 0, 0, 0, 0]
s1

Figure 5.11: Graph of events of Heating Simulation program using EOV. The path is
〈 c2,m1, s1 〉

time

Clock Pump Furnace Room1 Room2

[1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0]

[2, 0, 0, 0, 0, 0, 0]
[2, 0, 0, 0, 1, 0, 0]

c1

[2, 0, 0, 0, 2, 0, 0] [2, 0, 0, 1, 2, 0, 0]
m3

[2, 0, 0, 0, 3, 0, 0][2, 0, 1, 0, 3, 0, 0]
t1

[2, 0, 1, 0, 4, 0, 0] [2, 0, 1, 0, 4, 1, 0]
t2

Figure 5.12: Graph of events of Heating Simulation program using EOV. The path is
〈 c1,m3, t1, t2 〉

82

time

Clock Reporter Room1 Room2

[2, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0]

[3, 0, 0, 0, 0, 0, 0]
[3, 0, 0, 0, 0, 0, 1]

c3

[3, 0, 0, 0, 0, 0, 2] [3, 0, 1, 0, 0, 0, 2]
r1

[3, 0, 0, 0, 0, 0, 3][3, 0, 0, 0, 0, 1, 3]
t1

Figure 5.13: Graph of events of Heating Simulation program using EOV. The path is
〈 c3, r1, r3 〉.

In HS program, events can happen in different orders. Here, we explore this path of

events: 〈 c2,m1, s1, c1,m3, t1, t2, c3, r1, r3 〉. To complete the analysis, all the possible path

should be examined. Every time there is send or receive statement in the program, the EOV

operations will be called. This operations are presented in Algorithm 4.3 on page 62. The

next step is to calculate the reachable states of the program using Algorithm 3.1 on page 46.

We present the fixed-point result in three phases. When all of the processes finish executing

the loop and go back to their original states, they move to a new phase. The reason we

present the fixed-point of the system in three phases is to facilitate the understanding of

the system and the fixed-point data.

Fixed-points:

Set S1 contains the fixed-point of EOV of the program in phase 1. The fixed-point compu-

tation is shown in Figure 5.14.

s0 = 〈 [0, 0, 0, 0, 0, 0, 0] 〉
F 0(s0) = 〈 ([1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0]) 〉
F 1(s0) = 〈 ([1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0]), ([1, 2, 0, 0, 0, 0, 0], [1, 2, 1, 0, 0, 0, 0]) 〉
F 2(s0) = 〈([1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0]), ([1, 2, 0, 0, 0, 0, 0], [1, 2, 1, 0, 0, 0, 0]),
([1, 3, 0, 0, 0, 0, 0], [1, 3, 0, 1, 0, 0, 0])〉
S1 = 〈([1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0]), ([1, 2, 0, 0, 0, 0, 0], [1, 2, 1, 0, 0, 0, 0]),
([1, 3, 0, 0, 0, 0, 0], [1, 3, 0, 1, 0, 0, 0])〉

Figure 5.14: Finding the fixed-point of HS (1)

83

The processes Thermostat, Room1 and Furnace call the non-blocking reset method

(Algorithm 4.5) to resets their own counter. This is shown in Figure 5.11. Set S2 has the

fixed-point of EOV values of all the events of the program in phase 2. The fixed-point

computation is shown in Figure 5.15.

s0 = 〈 [0, 0, 0, 0, 0, 0, 0] 〉
F 0(s0) = 〈 ([2, 0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 1, 0, 0]) 〉
F 1(s0) = 〈 ([2, 0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 1, 0, 0]), ([2, 0, 0, 0, 2, 0, 0], [2, 0, 0, 1, 2, 0, 0]) 〉
F 2(s0) = 〈([2, 0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 1, 0, 0]), ([2, 0, 0, 0, 2, 0, 0], [2, 0, 0, 1, 2, 0, 0]),
([2, 0, 1, 0, 3, 0, 0], [2, 0, 0, 0, 3, 0, 0])〉
F 3(s0) = 〈([2, 0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 1, 0, 0]), ([2, 0, 0, 0, 2, 0, 0], [2, 0, 0, 1, 2, 0, 0]),
([2, 0, 1, 0, 3, 0, 0], [2, 0, 0, 0, 3, 0, 0]), ([2, 0, 1, 0, 4, 0, 0], [2, 0, 1, 0, 4, 1, 0])〉
S2 = 〈([2, 0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 1, 0, 0]), ([2, 0, 0, 0, 2, 0, 0], [2, 0, 0, 1, 2, 0, 0]),
([2, 0, 1, 0, 3, 0, 0], [2, 0, 0, 0, 3, 0, 0]), ([2, 0, 1, 0, 4, 0, 0], [2, 0, 1, 0, 4, 1, 0])〉

Figure 5.15: Finding the fixed-point of HS (2)

The processes Pump, Room1, Room2 and Furnace call the non-blocking reset method

to resets their own counter. This is shown in Figure 5.12.

Finally, set S3 contains the fixed-point of EOV values of all the events of the program in

phase 3. The fixed-point computation is shown in Figure 5.16.

s0 = 〈 [0, 0, 0, 0, 0, 0, 0] 〉
F 0(s0) = 〈 ([3, 0, 0, 0, 0, 0, 0], [3, 0, 0, 0, 0, 0, 1]) 〉
F 1(s0) = 〈 ([3, 0, 0, 0, 0, 0, 0], [3, 0, 0, 0, 0, 0, 1]), ([3, 0, 0, 0, 0, 0, 2], [3, 0, 1, 0, 0, 0, 2]) 〉
F 2(s0) = 〈([3, 0, 0, 0, 0, 0, 0], [3, 0, 0, 0, 0, 0, 1]), ([3, 0, 0, 0, 0, 0, 2], [3, 0, 1, 0, 0, 0, 2]),
([3, 0, 0, 0, 0, 1, 3], [3, 0, 0, 0, 0, 0, 3])〉
S3 = 〈([3, 0, 0, 0, 0, 0, 0], [3, 0, 0, 0, 0, 0, 1]), ([3, 0, 0, 0, 0, 0, 2], [3, 0, 1, 0, 0, 0, 2]),
([3, 0, 0, 0, 0, 1, 3], [3, 0, 0, 0, 0, 0, 3])〉

Figure 5.16: Finding the fixed-point of HS (3)

The processes Reporter, Room1, Room2 and Clock call the non-blocking reset method

to resets their own counter. This is shown in Figure 5.13. The combination of S1, S2 and

S3 is the reachable states for the program HS in the specified path. S = {S1 ∪ S2 ∪ S3}.

The next step is to inspect this set to find a potential communication error.

Analysis: We need to check the counter values of every pair of matching send and

84

receive statement. If in any of the pairs, the EOV of sender is smaller than EOV of receiver,

then there is a potential error. By looking at each pair of EOV for sender and receiver of

events in S, we observer that all the values of the EOV are greater than 0. This means that

all the processes are making progress and there is no dead process. In addition, the condition

EOV of sender < EOV of receiver has never become true during our analysis. Therefore,

the analysis shows that the communication in the run 〈 c2,m1, s1, c1,m3, t1, t2, c3, r1, r3 〉

is safe and contains no error. We can observe the other possible paths for the system with

the same approach.

5.3 Comparisons

5.3.1 Static analysis of process-oriented programs

There has been much research in the static analysis of computer programs for both sequen-

tial and concurrent programs. However, most of the existing research has been carried out

on object-oriented programs and is not targeted for message passing or process-oriented

languages. Despite the similarities of MPI and Erasmus language, we are not able to use

the existing static analyzer tools that are build for MPI programs because of some major

communications differences of both languages. The existing MPI analysis tools are mainly

targeted to detect communication violations such as deadlock, race analysis and symme-

try analysis of message passing programs. As stated in Section 2.4, processes in Erasmus

language do not have shared memory, thus race condition cannot occur between processes

in Erasmus . Therefore, finding race condition and shared memory related bugs are not

relevant to our investigation. To the best of our knowledge, no work has been done on

using Abstract Interpretation with Event Order concepts to build a static analyzer for con-

current programs. However, this confirms the novelty of our research and also shows that

our results may be applicable to the formal analysis of other concurrent programs.

Cousot [14] applied Abstract Interpretation concepts on some properties of CSP lan-

guage. However, to our knowledge, the future work of his research — characterizing the

other properties of CSP language by fixed point — has not been further developed. To ana-

lyze CSP programs, Taylor [60] created an algorithm to calculate the set of all possible pairs

85

of synchronized processes, but even after reducing the complexity of the algorithm by sym-

bolic execution, his algorithm is still exponential. Later on, Mercouroff [45] used abstract

interpretation technique in his algorithm to approximate the set of process communications.

However, this abstraction is applied to a number of communications in each channel and

is not sufficient to resolve the well-known issue of state-explosion problem. Siegel [57] also

emphasized this need in the conclusion of his paper about formal analysis of message pass-

ing.Our ultimate goal is to create a framework for static analysis of process-based programs

such as Erasmus .

5.3.2 Event Order Predictor

The closest work to us in implementing EOP for concurrent languages is Arora et al[4].

We have adapted the RVC operations and some of the proof of theories from their work.

However, since our goal is to implement Event Order Predictor for Erasmus and use it for

reasoning of the program, there are some major differences between our work and theirs.

The major differences follow. In Arora et al [4],

• EOP determines the order of events of a POP program without running the program.

RVC is for dynamic detection of order of events.

• The implemented RVC is targeted for asynchronous programs, Erasmus programs are

synchronous.

• The time-frame and order-bound values are computed based on the assumption that

each each process does the same communications with other processes. In Erasmus

every process can have different communications with different number of processes.

This has effected our approach in calculating variables of order-bound and time-frame.

• When there is a time-out situation (a large delay), the program calls a global-reset

method. In Erasmus we avoid time-out and because we try to avoid any dependencies

on speed and delay.

86

5.4 Chapter Summary

In this Chapter, we offered our reasoning approach to reason about nondeterministic syn-

chronous Erasmus programs that contain loop, select and case statements. We evaluated

our reasoning approach in detecting deadlock and successful communication in Erasmus

programs. A comparison of our approach with existing tools and techniques is provided at

the end of the chapter.

87

Chapter 6

IMPLEMENTATION

In this chapter, we investigate the possibility of reasoning about deterministic concurrent

synchronous programs by Event Order predictor and Abstract Interpretation theory. We

use the experiment to understand the EOP concept and the applicability of it for analysis

of Erasmus programs. The analysis result detects some communication errors such as cir-

cular wait that cause deadlock in deterministic programs with finite number of processes.

The static analysis in this chapter is targeted strictly for deterministic Erasmus programs.

Generally, concurrent programs are non-deterministic in their execution order, unless the

programmer carefully writes a deterministic concurrent program. We partially implement

some of the modules for Erasmus static analysis in this chapter.

The chapter is structured as follows: Section 6.1 describes Event Order Predictor pro-

gram. Section 6.2 explains our Event Order predictor program. Section 6.3 explains the

static analysis of Erasmus . Scope of the analysis is provided in this section. In Section 6.3.1,

we use an example to illustrate our approach in finding a circular wait in an Erasmus pro-

gram. Section 6.4 presents our observations from this proof of concept. Section 6.5 concludes

the chapter and discusses the future work.

6.1 Event Order Predictor algorithm

The terms used throughout this section are defined in Table 6.1.

88

Terms Definition

HB Lamport[40] happens before relation.

ei an individual event.

causality The relation between two events where the first event
(e1) is the cause and the second event (e2) is the
consequence of the first event. We show this by:
(e1, e2) ∈ HB and e1 → e2.

not causal if e1 is not the cause of e2 then: (e1, e2) /∈ HB and
e1 6→ e2.

concurrent e1 and e2 are concurrent if and only if e1 6→ e2 and
e2 6→ e1.

VC Vector Clock.

EOV Event Order Vector.

Table 6.1: Nomenclature

Event Order Predictor(EOP) is an algorithm to generate a partial order of events of

POP programs. Unlike Vector Clock algorithm that is used dynamically to detect causality

violations, EOP is meant to be used statically. Communications is Erasmus are synchronous

and therefore, we are interested to detect synchronous communication errors. In addition,

we would like to perform a static analysis –examine the source code and derive some prop-

erties of the program–.

For deeper understanding of EOP concept, we apply EOP algorithm to a synchronous Eras-

mus program. We scan the Erasmus code and every time we find a send statement and its

matching receive, we assign an event order vector value to both statements. The algorithm

is shown in Listing 6.1. We note that the sender order value is always smaller than receiver’s

order value. The example we use is the barber problem that is presented in Section 2.4.1

of Chapter 2 of thesis. Figure 6.1 shows the events order in a barber program using us-

ing EOP algorithm. The following is the scenario used for the events presented in Figure 6.1:

89

A Scenario in Barber Example

1. The system has four processes: CustomerGenerator, WaitingRoom,

Barber and Reporter.

2. The CustomerGenerator sends one customer to WaitingRoom.

3. Barber is asleep so WaitingRoom sends one customer to Barber.

4. Barber receives the customer and performs a hair cut.

5. Barber finishes the hair cut and sends a finish message to

WaitingRoom and goes to sleep.

6. WaitingRoom sends the message leave to Reporter.

7. CustomerGenerator sends another customer to WaitingRoom.

8. WaitingRoom waits for Reporter to receive the message.

9. WaitingRoom receives the customer from CustomerGenerator.

In above scenario, steps 6 and 7 are concurrent.

Algorithm 6.1 Original Vector Clock Algorithm [27]

Require: Process Pj

Ensure: Vector Clock value of the events of process Pj

1: var v:array [1..N] of integer
2: initially (∀ i: i 6= j: v[i] := 0) ∧ (v[j] := 1)
3: if send event (s, send,t) then
4: t.v := s.v
5: t.v[j] := t.v[j]+1
6: end if
7: if receive event(s, receive(u),t) then
8: for all (i := 1 to N) do
9: t.v[i] := max(s.v[i], u.v[i])
10: end for
11: t.v[j] := t.v[j]+1
12: end if
13: if internal event(s, internal, t) then
14: t.v := s.v
15: t.v[j] := t.v[j]+1
16: end if

90

time

CustomerGenerator WaitingRoom Barber Reporter

[0, 0, 0, 0]
[0, 0, 0, 0] [0, 0, 0, 0] [0, 0, 0, 0]

[1, 0, 0, 0]
[1, 1, 0, 0]

[1, 0, 0, 0]

[1, 2, 0, 0]

[1, 2, 0, 0]

[1, 2, 1, 0]

[1, 2, 2, 0]

[1, 2, 3, 0][1, 3, 3, 0]

[1, 2, 3, 0]

[2, 0, 0, 0]

send : waitng

[1, 4, 3, 1][1, 4, 3, 0]

[1, 4, 3, 1]

[1, 5, 3, 0][2, 5, 3, 0]
rec

Figure 6.1: Graph of events of barber program using EOP algorithm. Events at [2,0,0,0]
and [1,4,3,0] are concurrent. The sender’s order value is always smaller than receiver’s order
value.

6.2 Implementation details

We performed a slight modification to the algorithm. That is, if the communication is

successful, the order counter value of sender of the message is equivalent to the receiver ’s

value. Our modification to the EOV Clock algorithm is summarized in Rule 1. The rest of

the algorithm is as the original algorithm explained in Section 6.1.

Rule 1: when a successful communication happens between two processes, both sender and

receiver of the event should update their local order value to the maximum value of their

orders. The sender order value is equivalent to the receiver order value.

The main advantage of this approach is that by looking at the events orders generated by

Event Order Predictor we can recognize successful communications. And therefore, we can

observe the potential communication violations in the program.

We define a Statement class to assign a Order Event value to all the send or receive

operations in a given Erasmus code. Statement class has three attributes: Order Event

Vector value, process id, type of the operation. The classes for this implementation are

provided in Appendix A of thesis.

91

We simulate the behaviour of barber problem using the new algorithm. Figure 6.3 shows

the result of our simulation of barber Erasmus program using our modified EOV

time

CustomerGenerator WaitingRoom Barber Reporter

[0, 0, 0, 0]
[0, 0, 0, 0] [0, 0, 0, 0] [0, 0, 0, 0]

[1, 1, 0, 0]
[1, 1, 0, 0]

[1, 0, 0, 0]

[1, 2, 1, 0]

[1, 2, 0, 0]

[1, 2, 1, 0]

[1, 2, 2, 0]

[1, 3, 3, 0]

[1, 2, 3, 0]

[1, 3, 3, 0]

[1, 4, 3, 1]

[1, 4, 3, 0]

[1, 4, 3, 1]

[2, 5, 3, 1]

[2, 1, 0, 0]

[2, 5, 3, 1]

Figure 6.2: Graph of events of barber program using EOP algorithm. If a synchronous
communication is successful, order value of the sender is equal to the receiver’s order.

92

Figure 6.3: Event Order Vector values of events in barber program generated by Ana-
lyzer.java program.

6.3 Static analysis of Erasmus

Communications are essential in Erasmus . When one or more processes cannot make any

progress, we say deadlock has occurred. Deadlock can happen in Erasmus programs for

different of reasons. Table 6.2 shows the situations that potentially cause process(es) to

stop making progress in determinist Erasmus programs.

93

Situation Example

Channel conflict process A sends a message throughout channel π1 to
process B but process B receives this message from
channel π2.

Type conflict process A expects a message of type T1 but process B
offers a message of type T2.

Communication fault process A waits for process B to respond to its request.
Or process B waits for process A to send a request.

Sequence error process A sends x followed by y, but process B receives
y followed by x.

Circular dependency chain process A1 waits for process A2; A2 waits for . . . An;
An waits for A1.

Dead process process A has no communications with other pro-
cess(es).

Table 6.2: Deadlock Situations in Erasmus

In this analysis we investigate on detecting dependency chain and communication fault

that cause deadlock. Communication fault in an Erasmus program happens when a process

waits to receive a message that is never sent or when a process waits for another process to

receive its message but the message will be never received. For example, consider an Eras-

mus program consisting of processes P and Q and assume that the processes are connected

to the same channel π. That is, they can communicate. Process P sends an integer number

and waits for process Q to receive the message. Process Q also sends a message containing

a string value from channel π to process P . In this case, process P is waiting for process Q

to receive the message and process Q is waiting for process P to receive its message. None

of the processes can make progress. This is a cause for deadlock. This example is shown in

Listing 6.1.

To detect this fault we write an algorithm to examine the source code and detect pairs of

send and receive statements that have the same interface specifications. These specifica-

tions are: type, protocol, channel. If the algorithm finds a send statement, it perform a

search algorithm on the code until it finds the matching receive. otherwise, it adds the

message to pending list (vice versa for receive). At the end of the analysis, if the pending

list is not empty, it shows a communication fault.

94

Listing 6.1: Communication Fault in Erasmus

prot = protocol { users: Integer; word: Word}

P = process p1: −prot; p2: +prot
{

p1.users := 23; //send
word := p2.w; //receive

}
Q = process q1: −prot; q2: +prot
{

q2.word := ”start”; //send
word := q1.w; //receive

}

6.3.1 Circular Dependency Chain

Most processes have more than one port and are connected to more than one process.

Circular dependency chain occurs in systems that contain cycles. Even though, practically

not many distributed systems have cycles, but it is still possible for programmers to write

a cyclic Erasmus program. Therefore, we need to also check for the possibility of occurring

circular wait in these kind of systems. Consider the system shown in Figure 6.4. Th system

has three processes: P , Q and R. Processes P and Q are connected to channel C1. Q and

R are connected to channel C2. and R and P are connected to channel C3. Therefore,

processes can communicate.

P Q R

C1 C2

C3

Figure 6.4: Circular wait in program E1 causes deadlock. None of the processes can be
completed since each process is waiting for another process that is also waiting.

We give the code for the processes, showing only the principle control structures and

communication. For simplicity, we use CSP notations to describe the send and receive

statements; C1!x means “send x on port C1” and C1?x means “receive x on port p”. The

program contains three processes. P,Q, R as its shown in Figure 6.5. Each process perform

95

the following transitions:

• Process P can perform two transitions: it first sends message x to C1 and then reads

message y from C2.

• Process Q sends message y to C2 and then reads message z from C3.

• Process R sends message z to C3 and then reads message x from C1.

This program deadlocks because of the circular wait problem. Process P is waiting for

process Q to receive a message, process Q is waiting for R to perform receive operation and

process R is waiting for process Q to receive message z. So since all of the processes are

waiting for other processes to complete an operation, none of the processes can make any

progress.

P = process { C1 ! x; C3 ? z }

Q = process { C2 ! y; C1? x }

R = process { C3 ! z; C2 ? y }

Figure 6.5: Program E1 with events P
x

−→ Q and Q
y

−→ R and R
z

−→ P .

Our analysis to detect circular wait by using Event Order Vector in a given Erasmus

program, has five direct phases:

• Get the Abstract Syntax Tree of a given Erasmus program.

• Abstract the program; omitting constructs not involving communication.

• Construct a partial order of events from the abstract program using Event Order

predictor algorithm.

• Collect program specifications from the Abstract Syntax Tree.

• Interpret the result and detect circular wait.

Instead of operating directly on Erasmus code, we operate on Abstract Syntax Tree (AST)

of an Erasmus program. While the source code is translated to the AST, the Desi compiler

construct Control Flow Graph. Figure 6.6 show all the phases of the analysis. We explain

96

Erasmus Static Analysis Tool Modules

Code Abstractor

Event Order Generation

DeadLock Detection
Program

Specification

Abstract Syntax Tree of Erasmus

Figure 6.7: Modules of the analysis

each phase in the following sections. Figure 6.7 shows the internal modules of Erasmus

Static Analysis Tool (ESAT).

Erasmus Code UDC

ESAT

DIL JIT Machine Code

Abstract Syntax Tree (AST)

input output

Figure 6.6: Static analysis is performed on Abstract Syntax Tree instead of the source code.
UDC : Desi compiler, JIT : DIL compiler ESAT: Erasmus Static Analyzer

6.3.2 Event Order Vector

In this phase, we use the abstract version of the original code that has only communication-

related statements. First, we scan the code and then we assign a Event Order value (based

on Event Order predictor algorithm) to each statement of the program. The implementation

of this algorithm is provided in Listing A.2. The method name is GenerateOrders().

6.3.3 Program Specification

It is necessary to get the program specifications from the source code. The specification we

are looking for is specifically the sequence of operations in each process within the program.

Later, we check these specifications against the partial order of events generated by event

97

order value of each statement. We justify the behavioural specification of the program by

using Lamport’s Happened Before Relation (HBR) [39]. According to HBR theory if a and

b are two events in the same process, and a comes before b, we say a happened before b

and we show this by: a → b. In program E1 presented in Figure 6.5 the we define the

specification as followings:

Specification: Let Ti, T
′

i and T ′′

i be sequence of operations in processes P , Q and R without

considering their communications with other processes. We define the followings:

T1 ≡ C1!x

T2 ≡ C3?z

T ′

1 ≡ C2!y

T ′

2 ≡ C1?x

T ′′

1 ≡ C3!z

T ′′

2 ≡ C2?y

According to the sequence order of each operations in the program we have:

T1 → T2

T ′

1 → T ′

2

T ′′

1 → T ′′

2

Event Order Vector : We use the Event Order Predictor program to define the time at

which events occur. Using the method GenerateOrders() in Listing A.2 we assign a Event

Order Vector value for each operations of the processes P , Q and R of the program E1,

considering their synchronous communications with other processes. According to the Event

Order predictor algorithm, when a communication is synchronous, the send and receive

98

operations happen at the same time. We have:

T1 ≡ C1!x ≡ (P = 1, Q = 2, R = 0)

T2 ≡ C3?z ≡ (P = 2, Q = 2, R = 1)

T ′

1 ≡ C2!y ≡ (P = 2, Q = 2, R = 2)

T ′

2 ≡ C1?x ≡ (P = 1, Q = 2, R = 0)

T ′′

1 ≡ C3!z ≡ (P = 2, Q = 2, R = 1)

T ′′

1 ≡ C2?y ≡ (P = 2, Q = 2, R = 2)

The combination of the sequence order of the operations and the partial order of synchronous

events gives a contradiction:

T1 → T2

T ′

2 → T ′

1

T ′

1 → T ′

2

T ′′

1 → T ′′

2

This contradicts the Definition 2.15: Happend Before Relation is asymmetric.

if T ′

1 → T ′

2 then T ′

2 9 T ′

1 (asymmetric)

Therefore, the specification of the program implies that this equation is false and therefore,

there is no possible ordering of the events in time. So the communication is not successful.

6.4 Proof of Concept Results

The modules of this chapter are developed using Java programming language. The imple-

mentation goal was to gain deeper insight into the Event Order Vector operations and to

investigate the possibility of performing a static analysis on Erasmus program using Event

Order Vector. We tested these modules with various deterministic Erasmus programs, each

with a finite number of processes. The observations from this experiment are as followings:

99

Client1 Server Client2
q r

Figure 6.8: Three processes communicating over two channels. Client2 is waiting for Server
to become available.

Observation 1: This type of analysis is not capable of detecting starvation in the

scenario shown in Figure 6.8. The Erasmus code is presented in Listing 6.2. In this scenario

we have three processes that communicate over channels r and q. Client1 sends a request

to Server process. Client2 also sends a request to Server. Server process uses a loop

select statement to make a non-deterministic choice of communication between Client1

and Client2. Since there is no policy identifier in the select, the compiler assumes Ordered

policy. According to Ordered policy of Erasmus programs, the first communication (earliest)

in a select branch executes first. Consequently, Client2 starves to access the Sever.

Listing 6.2: Starvation in Erasmus

Client1 = process q: Prot {
MAX: Integer = 1000;
loop i := 0;
{
| i <MAX|

w: Word;
q.w = 'start '
i +=1;

}
}
Client2 = process r: Prot {

w: Word;
r .w = 'start ' ;

}
Server = process q: Prot; r: Prot

loop select
w1: Word;
w2: Word;
{

|w1:=q.w;
|w2:=r.w;

}

Solution: There are three policies for select statements in Erasmus programs. These

policies are Fair, Ordered and Random To avoid starvation in these kind of Erasmus pro-

grams, the programmer should use Fair for the select policy to give the chance of execution

100

to all the select branches.

Observation 2: The size of the Event Order Vector is directly proportional to the

number of processes in the program which can effect the efficiency of the analyzer.

6.5 Summary

This chapter presented our investigation is using Abstract Interpretation and Event Order

Predictor to reason a bout deterministic Erasmus program. The modules of the static

analyzer are implemented in this chapter. The next step is to adjust the modules so it can

be applicable for non-deterministic Erasmus programs. We believe Using a resettable Vector

for implementing Event Order Predictor as it is explained in Chapter 3 will potentially lead

us to create an analyzer the overcomes the efficiency limitation, thus being suitable for

non-deterministic programs.

101

Chapter 7

RELATED WORKS

In general, works related to ours can be divided in two categories: research that aim to

create new techniques to perform static analysis on concurrent programs; and research

directed towards Abstract Interpretation technique. We can also view existing research on

the static analysis of message passing programs as complementary to our work. In the

following section, we provide a summary of some of the existing static analysis tools and

their functionalities. We group them into three major categories: static analysis tools that

used Abstract Interpretation technique, static analysis tools targeted for CSP languages

and static analysis tools for MPI programs. A summary of these tools is provided in Table

7.1.

7.1 Static Analysis Tools by Abstract Interpretation

While doing our research, we found some static analysis tools for sequential and OOP pro-

grams that is built based on Abstract Interpretation. We only list the name and description

of few of them shortly here.

• “Astrée” [12] is a static analyzer designed to automatically prove the absence of run

time errors in programs written in the C programming language. The analyzer is

sound, semantic-based and automatic.

• “Thesee” [46] is another static analyzer for synchronous embedded C software which

102

is built based on Astrée [12]. The analyzer was successfully applied to prove the

absence of run-time errors in large critical control/command software from Airbus.

The major analysis is done on threads communicating through a shared memory with

weak consistency and scheduled according to strict priorities.

• “Polyspace” [1] is a commercial static analyzer tool that implements Abstract Inter-

pretation. The tool is available for C/C++ and Ada languages. It detects run-time

errors directly in code and includes file and class-level software component verification.

7.2 Static Analysis Tools for CSP languages

To the best of our knowledge, these are some of the CSP analyzer tools available:

• “SLAP” [52] is a static live-lock analyzer of processes. The main technique used in

this work is to flag the processes that can potentially cause live-lock using Failures-

Divergences refinement (FDR).

• “Dialyzer” [16] is an Erlang static analysis tool that detects some software defects

such as obvious type errors, unreachable code, redundant tests, unsafe virtual machine

byte code, etc. However, it also checks the program for some communication errors.

Communication issues arise when a program contains a message never understood and

messages that may not be handled. The approach used in Dialyzer to find these issues

is a behavioural type system.

• Christakis et al. [9] designed and implemented an analysis for asynchronous mes-

sage passing by constructing the communication graph. Their work is integrated to

Dialyzer.

7.3 Static Analysis Tools for Message Passing Programs

Message passing have been used more and more for the development of process communi-

cations in distributed systems. The communications in MPI are very similar to process-

oriented languages like ErasmusṪhis similarity motivated us to review some of the existing

103

works done in the static analysis of MPI programs. Based on our research partial order

reduction and symbolic reasoning are the most used techniques in these existing works. The

closest works in this area to us are as follows:

• Vakkalanka et al. [62] and Siegel [55] used partial order reduction to make the program

into smaller classes of behaviours before verification. “MPI-Spin” [55] combines model

checking and symbolic execution to verify MPI programs. It detects deadlock and

other message passing properties related to successful communication.

• Bronevetsky [6] made a compiler analysis framework that extends data to parallel

message passing applications on arbitrary numbers of processes. The goal of his

framework was to provide extra information about the properties of parallel message-

passing applications and to improve the quality of debugging performance.

• Sharma et al. [54] proposed a solution that automatically detects functionally irrele-

vant barriers in MPI programs using partial order reduction The suggested algorithm

named Fib is based on the POE Algorithm[62] with some improvements. Fib is ca-

pable of detecting deadlocks in MPI languages.

• Wang et al. [66] created a communicator-sensitive collective communication analyzer

to detect synchronization error in MPI programs. Kreaseck et al.[38] also performed

a depth analysis of MPI Programs.

7.4 Chapter Summary

In this chapter, we discussed some of the existing static analysis tools in three main cate-

gories, including Abstract Interpretation , CSP and MPI programs.

104

Concurrency Analysis Tools

Category Name Functionality Technique

OOP
Astrée [12] Threads Communica-

tion
Abstract interpretation

JULIA [59] Java Bytecode Analyzer Abstract interpretation
CIBAI [42] Modular Java Analyzer Abstract interpretation

CSP
DIALYZER [16] Message Communica-

tion
process calculus and
type system

MEB/CEB [41] Program Slicing Synchronized Control
Flow Graph

Mercouroff [45] Communication Errors Abstract Interpretation
SLAP [52] Live-lock BDD-based and SAT-

based

MPI
SPIN [56] Deadlock, Communica-

tion Errors
Model Checking, Sym-
bolic Execution

Bronevetsky [6] Communication Errors CFG

Table 7.1: Summary of some of the existing research in concurrency analysis tools

105

Chapter 8

CONCLUSION AND FUTURE WORK

This chapter summarizes the research in this thesis by providing conclusions and possible

future work. In Section 8.1, we provide the conclusions from the research in this thesis.

Section 8.3 reviews some possible future work.

8.1 Research Contributions

This thesis addressed the issue of static analysis of synchronous process-oriented programs

using formal methods. More specifically, we focused on static analysis of a process-oriented

language called ErasmusẆe developed a static analysis approach by using Abstract Interpre-

tation framework. Since our focus in this research is communication analysis, the existing

domains in abstract interpretation theory are not useful for us. Therefore, we offered a

novel communication domain. This abstract domain can be added to the existing abstract

domains in Abstract Interpretation theory [15].

Next, we offered a lattice for Erasmus programs. Having a lattice makes it easier to inter-

pret the program because we can build our mathematic model based on the lattice and take

advantage of existing theorems about lattice. (e.g., fixed-point theory of lattice). An algo-

rithm to compute the fixed-point from a lattice of Erasmus communications was presented

in the thesis. To build a lattice for event communications for POP programs, we proposed

an Event Order Predictor (EOP) where the events orders are determined statically. This

approach is inspired by Vector Clock and it predicts the order of events for all possible

106

paths. Event Order Predictor may be applicable to the formal analysis of other concur-

rent programs. We partially implemented EOP for deterministic Erasmus programs. By

doing this experiment, we realized that implementing EOP for non-deterministic Erasmus

programs is not practically possible. Therefore, we replaced the vector with a Resettable

Event Order Vector.

We introduced reset conditions for Event Order Vector and a reset method that should be

called when a given program moves from one phase to another phase. By doing this, we were

able to set a boundary for the size of the Event Order Vector and overcome the efficiency

limitation of our analysis approach, thus being suitable for large programs with loop. To

reason about Erasmus programs we proposed a generic approach by using AI and EOP for

static analysis of concurrent Erasmus programs that contain loop, select, loopselect and

case control structures.

8.2 Research Limitations

As Anderson[3] explains in his article about “The Use and Limitations of Static Analy-

sis Tools to Improve Software Quality”, metrics to evaluate the static analyzers generally

work in opposition to each other and therefore theoretically the possibilities of building an

analyzer that would have outstanding precision and excellent recall with high scalability,

given enough time and access to enough processing power, is less likely possible. We need

to strikes a proper balance between soundness and precision and scalability in our analysis.

In this research, by applying Abstract Interpretation technique, we accept that the ESAT

analysis is sound but not complete . Another limitation of ESAT is it does not handle

dynamic creation of processes.

8.3 Directions For Future Research

Our work suggests several directions for future work. These directions are as follows:

107

8.3.1 Applying AI concepts to Erasmus

One future direction of this research is related to applying AI concepts to Erasmus program.

In this research, we have introduced some abstractions for sequential and loop programs.

However, discovering more abstractions can reduce the amount of computation required for

analysis of the programs. In addition, introducing widening and narrowing operators in

Abstract Interpretation theory based on Cell concept in Erasmus can enhance the analyzer

thus being suitable for more complex programs.

8.3.2 Applying EOP concepts to Erasmus

Currently, EOP does the event ordering at the process level. By using the concept of Cell in

Erasmus and and allocating the EOP to cells, we can enhance the scalability of the analyzer.

Investigating Erasmus Cell with EOP is a possible direction for future work of this research.

8.3.3 Fully Implementation of the Analyzer

We have partially implemented some of the modules of our static analyzer and EOP al-

gorithms. The fully implementation of the approach is a project related to this research

that will be carried out in the future. Fully automatic derivation of the Erasmus Static

Analysis Tool from the Abstract Syntax Tree of the Erasmus code should be part of the

future implementation.

108

Appendix A

Java Classes for implementation

A.1 OrderVector and Statement Classes

Listing A.1: OrderVector and Statement Classes

public class OrderVector extends HashMap<Str ing , Integer> {
public void incrementOrder (S t r ing pUnit) ;
public St r ing [] getOrderedIDs () ;
public I n t eg e r [] getOrderedValues () ;
public St r ing toS t r i ng () ;
public I n t eg e r get (Object key) ; }

public class Statement {
private OrderVector vc ;
private St r ing name ;
private int p r c o e s s i d ; }

109

A.2 Event Order Predictor Class

Listing A.2: Event Order Predictor Algorithm

1 public class Analyzer {
2 VectorClock updateVector (OrderVector send , OrderVector r ec) {
3 OrderVector vqUpdated = rec ;
4 r ec = OrderVector .max(send , r e c) ;
5 r e c . incrementOrder (r e c . p) ;
6 vqUpdated = rec ;
7 l o gg e r . i n f o (” communication i s s u c c e s s f u l ”) ;
8 return vqUpdated ; }
9

10 public void GenerateOrders ()
11 {
12 for each proce s s P in program
13 OrderVector [] : array [1 . . .N] o f i n t e g e r
14 ve c t o r s [] : array [1 . . .N] o f OrderVector
15 i n i t i a l l y : OrderVector [i] = 0
16 for each communication event in P
17 i f (event e i s send)
18 {
19 ve c t o r s [i] . incrementOrder (P) ;
20 Statement send = new Statement (e , i , v e c t o r s [i]) ;
21 Statement rcv = FindMatch (pending rcvs , s1) ;
22 i f (Match i s not found)
23 Add send statement to the pending send l i s t ;
24 else
25 {
26 ve c t o r s [r e c . p] = updateVector (send . vc , r e c . vc) ;
27 sender . vc = vec to r s [r e c . p] . c l one () ;
28 Remove r e c e i v e from pending r e c e i v e l i s t ;
29 }
30 }
31 }

110

Appendix B

Erasmus Grammar

B.1 Terminal symbols

also and andb any assert case cell constant domain

else enum exit external false for if iff implicit

implies impliesb import in indexes loop mod nand

nandb nor norb not op or orb policy private

process protocol public range revimp revimpb routine

select such that true type xor xorb

Intrinsic NumericLiteral TextLiteral iden

‘#’ ‘%’ ‘%=’ ‘(’ ‘)’ ‘*’ ‘*=’ ‘+’ ‘+=’ ‘,’ ‘-’

‘-=’ ‘->’ ‘.’ ‘..’ ‘/’ ‘//’ ‘//=’ ‘/=’ ‘:’ ‘:=’

‘;’ ‘<’ ‘<<’ ‘<<=’ ‘<=’ ‘<==’ ‘<=>’ ‘<>’ ‘=’

‘==>’ ‘>’ ‘>=’ ‘>>’ ‘>>=’ ‘>>>’ ‘>>>=’ ‘?’ ‘@’

‘[’ ‘[]’ ‘]’ ‘^’ ‘and=’ ‘andb=’ ‘implies=’ ‘impliesb=’

‘nand=’ ‘nandb=’ ‘nor=’ ‘norb=’ ‘or=’ ‘orb=’ ‘revimp=’

‘revimpb=’ ‘xor=’ ‘xorb=’ ‘{’ ‘|’ ‘}’ ‘~’

111

B.2 Non-terminal symbols

ArithmeticOp Assert AssignOp Assignment BinaryOp

BitOp BooleanLiteral BooleanOp Case CellDefinition

ComparisonOp Comprehension ConstantDefinition Declaration

Definition EnumDefinition Exit ForAny Guard GuardedSequence

Import Invocation Literal Loop Lvalue MapLiteral Module

Parameters ProcessDefinition ProtocolDefinition ProtocolExpression

RoutineDefinition Rvalue Select Sequence ShiftOp Signal

Statement TextOp Type TypeDefinition TypeParameters UnaryOp

UnguardedSequence

B.3 Rules

Module = { [public | private] (Import | Definition | Invocation) } .

Import = import { TextLiteral }‘,’ [‘;’] .

Definition = [public | private] (ConstantDefinition | TypeDefinition

| EnumDefinition | ProtocolDefinition | RoutineDefinition |

ProcessDefinition | CellDefinition) .

ConstantDefinition = iden [‘:’ Type] ‘=’ constant Rvalue ‘;’ .

TypeDefinition = iden ‘=’ type [Type] ‘;’ .

EnumDefinition = iden ‘=’ enum ‘{’ { iden }‘,’ ‘}’ .

ProtocolDefinition = iden ‘=’ protocol ‘{’ ProtocolExpression ‘}’ .

ProcessDefinition = iden ‘=’ process Parameters (Sequence | external

TextLiteral ‘;’) .

CellDefinition = iden ‘=’ cell Parameters (Sequence | external TextLiteral

‘;’) .

112

RoutineDefinition = (iden | op (UnaryOp | BinaryOp)) ‘=’ [implicit] routine

TypeParameters Parameters (Sequence | ‘=’ Intrinsic ‘;’ |

external TextLiteral ‘;’) .

Type = iden

| Type indexes Type

| mod NumericLiteral .

ProtocolExpression = [‘^’] iden [‘:’ iden]

| ‘*’ ProtocolExpression

| { ProtocolExpression }‘;’

| { ProtocolExpression }‘|’

| ‘(’ ProtocolExpression ‘)’ .

TypeParameters = ‘<’ { iden }‘,’ ‘>’ .

Parameters = { Declaration }‘;’ [‘->’ { Declaration }‘;’] .

UnguardedSequence = ‘{’ { Statement } ‘}’ .

GuardedSequence = ‘{’ { Guard { Statement } } ‘}’ .

Sequence = UnguardedSequence

| GuardedSequence .

Guard = ‘|’ [Rvalue] ‘|’ .

Statement = Sequence

| Assert [‘;’]

| Assignment ‘;’

113

| Case

| Declaration ‘;’

| Exit

| ForAny

| Invocation

| Loop

| Select

| Signal .

Assert = assert ‘(’ Rvalue [‘,’ Rvalue] ‘)’ .

Assignment = Lvalue AssignOp Rvalue .

Case = case [Rvalue] GuardedSequence .

Declaration = { iden }‘,’ [‘:’ [‘+’ | ‘-’ | ‘@’] Type] [‘:=’ Rvalue] .

Exit = exit .

ForAny = (for | any) { Comprehension }also [such that Rvalue]

Statement [else Statement] .

Invocation = iden ‘(’ { Rvalue }‘,’ [‘->’ { Lvalue }‘,’] ‘)’ .

Loop = loop { Declaration }‘;’ Statement .

Select = [loop] select [policy iden ‘;’] { Declaration }‘;’

GuardedSequence .

Signal = iden { ‘[’ Rvalue ‘]’ } ‘.’ Rvalue .

Comprehension = ‘(’ Assignment ‘;’ Rvalue ‘;’ Assignment ‘)’

114

| iden in (domain | range) Rvalue

| iden in Type .

Lvalue = iden { ‘[’ Rvalue [‘..’ Rvalue] ‘]’ } [(‘.’ | ‘?’) Rvalue

] .

Rvalue = Lvalue

| Literal

| UnaryOp Rvalue

| Rvalue BinaryOp Rvalue

| Rvalue if Rvalue else Rvalue

| Rvalue in domain Rvalue

| Invocation

| ‘(’ Rvalue ‘)’ .

Literal = BooleanLiteral

| NumericLiteral

| TextLiteral

| MapLiteral .

BooleanLiteral = true

| false .

MapLiteral = ‘[]’ .

AssignOp = ‘:=’

| ‘+=’

115

| ‘-=’

| ‘*=’

| ‘/=’

| ‘%=’

| ‘//=’

| ‘<<=’

| ‘>>=’

| ‘>>>=’

| ‘and=’

| ‘nand=’

| ‘or=’

| ‘nor=’

| ‘xor=’

| ‘implies=’

| ‘revimp=’

| ‘andb=’

| ‘nandb=’

| ‘orb=’

| ‘norb=’

| ‘xorb=’

116

| ‘impliesb=’

| ‘revimpb=’ .

UnaryOp = ‘+’

| ‘-’

| ‘~’

| ‘#’

| not .

BinaryOp = ArithmeticOp

| ComparisonOp

| BooleanOp

| ShiftOp

| BitOp

| TextOp .

ArithmeticOp = ‘+’

| ‘-’

| ‘*’

| ‘/’

| ‘%’ .

ComparisonOp = ‘=’

| ‘<>’

117

| ‘<’

| ‘<=’

| ‘>’

| ‘>=’ .

BooleanOp = and

| nand

| or

| nor

| xor

| implies

| revimp

| iff

| ‘<=>’

| ‘==>’

| ‘<==’ .

ShiftOp = ‘<<’

| ‘>>’

| ‘>>>’ .

BitOp = andb

| nandb

118

| orb

| norb

| xorb

| impliesb

| revimpb .

TextOp = ‘//’ .

119

Bibliography

[1] Polyspace static analysis tools [online]. 1994. URL: http://www.mathworks.com/

products/polyspace/index.html [cited 3/8/13].

[2] Alexander Aiken. Introduction to set constraint-based program analysis. Sci. Comput.

Program., 35(2-3):79–111, November 1999.

[3] Paul Anderson. The use and limitations of static-analysis tools to improve software

quality. The Journal of Defense Software Engineering, 21(6), 2008.

[4] Anish Arora, Sandeep Kulkarni, and Murat Demirbas. Resettable vector clocks. J.

Parallel Distrib. Comput., 66(2):221–237, 2006.

[5] Garrett Brinkhoff. Lattice Theory, volume 25. American Mathematical Society, 3d

edition, 1967.

[6] Greg Bronevetsky. Communication-sensitive static dataflow for parallel message pass-

ing applications. In Code Generation and Optimization, CGO ’09, pages 1–12, Wash-

ington, DC, USA, 2009. IEEE Computer Society.

[7] Harold W. Cain and Mikko H. Lipasti. Verifying sequential consistency using vector

clocks. In Parallel Algorithms and Architectures, SPAA ’02, pages 153–154, New York,

NY, USA, 2002. ACM.

[8] Bernadette Charron-Bost. Concerning the size of logical clocks in distributed systems.

Inf. Process. Lett., 39(1):11–16, July 1991.

120

[9] Maria Christakis and Konstantinos Sagonas. Detection of asynchronous message pass-

ing errors using static analysis. In Practical Aspects of Declarative Languages, PADL

’11, pages 5–18, Berlin, Heidelberg, 2011. Springer-Verlag.

[10] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization

skeletons using branching-time temporal logic. In Logic of Programs, Workshop, pages

52–71, London, UK, 1982. Springer-Verlag.

[11] Agostino Cortesi and Matteo Zanioli. Widening and narrowing operators for abstract

interpretation. Computer Languages, Systems and Structures, 37(1):24 – 42, 2011.

[12] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.

The Astrée analyzer. In M. Sagiv, editor, Proceedings of the European Symposium on

Programming (ESOP ’05), volume 3444 of Lecture Notes in Computer Science, pages

21–30, Edinburgh, Scotland, 2005. Springer.

[13] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Principles

Of Programming Languages, POPL ’77, pages 238–252, New York, NY, USA, 1977.

ACM.

[14] Patrick Cousot and Radhia Cousot. Semantic analysis of communicating sequential

processes. In J.W. de Bakker and J. van Leeuwen, editors, Seventh International

Colloquium on Automata, Languages and Programming, volume 85 of Lecture Notes in

Computer Science, pages 119–133, Berlin, Germany, 1980. Springer.

[15] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. Logical abstract domains and

interpretations. In The Future of Software Engineering, pages 48–71. Springer-Verlag,

Heidelberg, 2010.

[16] Fabien Dagnat and Marc Pantel. Static analysis of communications for Erlang. In

In Proceedings of 8th International Erlang/OTP User Conference, Sweden, November

2002.

121

[17] Mourad Debbabi, Fawzi Hassäıne, Yosr Jarraya, Andrei Soeanu, and Luay Alawneh.

Verification and Validation in Systems Engineering. Springer Berlin Heidelberg, 2010.

[18] Alain Deutsch. Static verification of dynamic properties [online]. November

2003. URL: http://nesl.ee.ucla.edu/courses/ee202a/2005f/papers/Static_

Verification.pdf [cited 2/8/13].

[19] Edsger W. Dijkstra. Cooperating sequential processes, technical report ewd-123. Tech-

nical report, Technological University, Eindhoven, The Netherlands., 1965.

[20] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 1st edition, 1997.

[21] Dominic Duggan. Enterprise Software Architecture and Design: Entities, Services, and

Resources. Wiley-IEEE Computer Society., 2012.

[22] Colin J. Fidge. Timestamps in message-passing systems that preserve the partial or-

dering. Australian Computer Science Communications, 10:56–66, 1988.

[23] Bryan Fink. Why vector clocks are easy [online]. January 2010. URL: http://basho.

com/why-vector-clocks-are-easy/ [cited 6/8/13].

[24] Robert W. Floyd. Syntactic analysis and operator precedence. J. ACM, 10(3):316–333,

July 1963.

[25] RobertW. Floyd. Assigning meaning to programs. In Program Verification, volume 14

of Studies in Cognitive Systems, pages 65–81. Springer Netherlands, 1967.

[26] Center for Assured Software. On analyzing static analysis tools [online]. 2011.

URL: http://media.blackhat.com/bh-us-11/Willis/BH_US_11_WillisBritton_

Analyzing_Static_Analysis_Tools_WP.pdf [cited 3/8/13].

[27] Vijay K. Garg. Elements of distributed computing. Wiley-IEEE Press, New York, NY,

USA, 1st edition, 2002.

[28] Andrzej Granas and James Dugundji. Fixed Point Theory. Springer, 2003.

122

[29] David Gries. The Science of Programming. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 1st edition, 1987.

[30] Peter Grogono and Brian Shearing. Concurrent software engineering: preparing for

paradigm shift. In Proceedings of the 2008 C3S2E conference, C3S2E ’08, pages 99–

108, New York, NY, USA, 2008. ACM.

[31] Christian Haack, Marieke Huisman, and Clement Hurlin. Permission-based separation

logic for multithreaded Java programs. Nieuwsbrief van de Nederlandse Vereniging voor

Theoretische Informatica, 15:13–23, 2011. URL: http://doc.utwente.nl/76303/.

[32] Nevin Heintze and David Mcallester. On the cubic bottleneck in subtyping and flow

analysis. In Logic in Computer Science, LICS ’97, pages 342–351, 1997.

[33] Fritz Henglein. Simple closure analysis. DIKU Semantics Report D-193, DIKU, Uni-

versity of Copenhagen, Universitetsparken, 1, March 1992.

[34] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12:576–580, October 1969.

[35] Ralf Huuck. Software Verification for Programmable Logic Controllers. PhD thesis,

Christian-Albrechts-Universitat zu Kiel, Kiel, Germany, 2003.

[36] Gary A. Kildall. A unified approach to global program optimization. In Principles of

programming languages, POPL ’73, pages 194–206, New York, NY, USA, 1973. ACM.

[37] Soonho Kong. Bug catching: Automated program verification and testing Ab-

stract Interpretation [online]. November 2011. URL: http://www.cs.cmu.edu/~emc/

15414-f11/syllabus.html [cited 3/8/13].

[38] Barbara Kreaseck, Michelle Mills Strout, and Paul Hovland. Depth analysis of MPI

programs. In Proceedings of the First Workshop on Advances in Message Passing,

AMP 2010, June 2010.

[39] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, July 1978.

123

[40] Leslie Lamport. “Sometime” is sometimes “not never”: on the temporal logic of pro-

grams. In Principles of Programming Languages, POPL ’80, pages 174–185, New York,

NY, USA, 1980. ACM.

[41] Michael Leuschel, Marisa Llorens, Javier Oliver, Josep Silva, and Salvador Tamarit.

The MEB and CEB static analysis for CSP specifications. In Michael Hanus, editor,

Logic-Based Program Synthesis and Transformation, volume 5438 of Lecture Notes in

Computer Science, pages 103–118. Springer Berlin Heidelberg, 2009.

[42] Francesco Logozzo. Cibai: An abstract interpretation-based static analyzer for modular

analysis and verification of Java classes. In Byron Cook and Andreas Podelski, edi-

tors, Verification, Model Checking, and Abstract Interpretation, volume 4349 of Lecture

Notes in Computer Science, pages 283–298. Springer-Verlag, 2007.

[43] Friedemann Mattern. Virtual time and global states of distributed systems. In Cos-

nard M. et al., editor, Proc. Workshop on Parallel and Distributed Algorithms, pages

215–226. Elsevier Science Publishers B. V., 1989.

[44] Sigurd Meldal, Sriram Sankar, and James Vera. Exploiting locality in maintaining

potential causality. In Principles of Distributed Computing, PODC ’91, pages 231–239,

New York, NY, USA, 1991. ACM.

[45] N. Mercouroff. An algorithm for analyzing communicating processes. In Stephen

Brookes, Michael Main, Austin Melton, Michael Mislove, and David Schmidt, editors,

Mathematical Foundations of Programming Semantics, volume 598 of Lecture Notes in

Computer Science, pages 312–325. Springer Berlin / Heidelberg, 1992.

[46] Antoine Miné. Static analysis of run-time errors in embedded critical parallel c pro-

grams. In Programming Languages and Systems/ Theory and Practice of Software,

ESOP’11/ETAPS’11, pages 398–418, Berlin, Heidelberg, 2011. Springer-Verlag.

[47] Jayadev Misra. Phase synchronization. In Information Processing Letters, volume 38,

pages 101–105, Amsterdam, The Netherlands, April 1991. Elsevier North-Holland, Inc.

124

[48] Christian Mossin. Flow Analysis of Typed Higher-Order Programs. Ph.d. thesis, Com-

puter Science Department, University of Copenhagen, Copenhagen, Denmark, 1997.

[49] A. Mostefaoui and O. Theel. Reduction of timestamp sizes for causal event ordering.

IRSA, page 21, November 1996.

[50] Flemming Nielson and Hanne Riis Nielson. Type and effect systems. In Correct System

Design, Recent Insight and Advances Correct System Design, Recent Insight and Ad-

vances, (to Hans Langmaack on the occasion of his retirement from his professorship

at the University of Kiel), pages 114–136, London, UK, 1999. Springer-Verlag.

[51] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program

Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[52] Joel Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell. Static live-

lock analysis in CSP. In Concurrency Theory, CONCUR ’11, pages 389–403, Berlin,

Heidelberg, 2011. Springer-Verlag.

[53] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent

systems in CESAR. In Proceedings of the 5th Colloquium on International Symposium

on Programming, pages 337–351, London, UK, 1982. Springer-Verlag.

[54] Subodh Sharma, Sarvani Vakkalanka, Ganesh Gopalakrishnan, Robert M. Kirby, Ra-

jeev Thakur, and William Gropp. A formal approach to detect functionally irrelevant

barriers in MPI programs. In Recent Advances in Parallel Virtual Machine and Message

Passing Interface, pages 265–273, Berlin, Heidelberg, 2008. Springer-Verlag.

[55] Stephen F. Siegel. Model checking nonblocking MPI programs. In Verification, Model

Checking, and Abstract Interpretation, volume 4349 of Lecture Notes in Computer

Science, pages 44–58. Springer Berlin Heidelberg, 2007.

[56] Stephen F. Siegel and George S. Avrunin. Verification of halting properties for MPI

programs using nonblocking operations. In Recent Advances in Parallel Virtual Ma-

chine and Message Passing Interface, PVM/MPI’07, pages 326–334, Berlin, Heidel-

berg, 2007. Springer-Verlag.

125

[57] Stephen F. Siegel and Ganesh Gopalakrishnan. Formal analysis of message passing.

In Verification, Model Checking, and Abstract Interpretation, VMCAI ’11, pages 2–18,

Berlin, Heidelberg, 2011. Springer-Verlag.

[58] Mukesh Singhal and Ajay Kshemkalyani. An efficient implementation of vector clocks.

Inf. Process. Lett., 43(1):47–52, August 1992.

[59] Fausto Spoto. The nullness analyser of JULIA. In Logic for Programming, Artifi-

cial Intelligence, and Reasoning, LPAR ’10, pages 405–424, Berlin, Heidelberg, 2010.

Springer-Verlag.

[60] Richard N. Taylor. A general-purpose algorithm for analyzing concurrent programs.

Commun. ACM, 26(5):361–376, May 1983.

[61] Francisco Torres-Rojas and Mustaque Ahamad. Plausible clocks: constant size logical

clocks for distributed systems. Distrib. Comput., 12(4):179–195, 1999.

[62] Sarvani S. Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby. Dynamic ver-

ification of MPI programs with reductions in presence of split operations and relaxed

orderings. In Computer Aided Verification, CAV ’08, pages 66–79. Springer-Verlag,

2008.

[63] Antti Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic Models,

Advances in Petri Nets, pages 429–528, London, UK, 1998. Springer-Verlag.

[64] Anh Vo. Scalable Formal Dynamic Verification of MPI Programs Through Distributed

Causality Tracking. PhD thesis, School of Computing, University of Utah, August

2011. URL: http://books.google.ca/books?id=RIErYAAACAAJ.

[65] Mitchell Wand. A simple algorithm and proof for type inference. In Fundamental

Informaticae 10, pages 115–122, 1987.

[66] Panfeng Wang, Yunfei Du, Hongyi Fu, Xuejun Yang, and Haifang Zhou. Static analysis

for application-level checkpointing of MPI programs. In High Performance Computing

and Communications, HPCC ’08, pages 548–555, Washington, DC, USA, 2008. IEEE

Computer Society.

126

[67] Tong Lai Yu. Operating system concept and theory (lecture notes) [online]. March

2010. URL: http://cse.csusb.edu/tong/courses/cs660/notes/index.php [cited

3/8/13].

127

