2,567 research outputs found

    Coarse-Grained Model for Phospholipid/Cholesterol Bilayer

    Full text link
    We construct a coarse-grained (CG) model for dipalmitoylphosphatidylcholine (DPPC)/cholesterol bilayers and apply it to large-scale simulation studies of lipid membranes. Our CG model is a two-dimensional representation of the membrane, where the individual lipid and sterol molecules are described by point-like particles. The effective intermolecular interactions used in the model are systematically derived from detailed atomic-scale molecular dynamics simulations using the Inverse Monte Carlo technique, which guarantees that the radial distribution properties of the CG model are consistent with those given by the corresponding atomistic system. We find that the coarse-grained model for the DPPC/cholesterol bilayer is substantially more efficient than atomistic models, providing a speed-up of approximately eight orders of magnitude. The results are in favor of formation of cholesterol-rich and cholesterol-poor domains at intermediate cholesterol concentrations, in agreement with the experimental phase diagram of the system. We also explore the limits of the novel coarse-grained model, and discuss the general validity and applicability of the present approach

    Computational studies of biomembrane systems: Theoretical considerations, simulation models, and applications

    Full text link
    This chapter summarizes several approaches combining theory, simulation and experiment that aim for a better understanding of phenomena in lipid bilayers and membrane protein systems, covering topics such as lipid rafts, membrane mediated interactions, attraction between transmembrane proteins, and aggregation in biomembranes leading to large superstructures such as the light harvesting complex of green plants. After a general overview of theoretical considerations and continuum theory of lipid membranes we introduce different options for simulations of biomembrane systems, addressing questions such as: What can be learned from generic models? When is it expedient to go beyond them? And what are the merits and challenges for systematic coarse graining and quasi-atomistic coarse grained models that ensure a certain chemical specificity
    • …
    corecore