316,187 research outputs found

    Learning from Organizational Experience

    Get PDF
    Learning-in-action, the cyclical interplay of thinking and doing, is increasingly important for organizations as environments and required capabilities become more complex and interdependent. Organizational learning involves both a desire to learn and supportive structures and mechanisms. We draw upon three case studies from the nuclear power and chemical industries to illustrate a four-stage model of organizational learning: (1) local stage of decentralized learning by individuals and work groups, (2) control stage of fixing problems and complying with rules, (3) open stage of acknowledgement of doubt and motivation to learn, and (4) deep learning stage of skillful inquiry and systemic mental models. These four stages differ on whether learning is primarily single-loop or doubleloop, i.e., whether the organization can surface and challenge the assumptions and mental models underlying behavior, and whether learning is relatively improvised or structured. The case studies illustrate how organizations learn differently from experience, the details of learning practices, and the nature of stage transitions among learning practices

    Dynamic systems as tools for analysing human judgement

    Get PDF
    With the advent of computers in the experimental labs, dynamic systems have become a new tool for research on problem solving and decision making. A short review on this research is given and the main features of these systems (connectivity and dynamics) are illustrated. To allow systematic approaches to the influential variables in this area, two formal frameworks (linear structural equations and finite state automata) are presented. Besides the formal background, it is shown how the task demands of system identification and system control can be realized in these environments and how psychometrically acceptable dependent variables can be derived

    Visualisation techniques, human perception and the built environment

    Get PDF
    Historically, architecture has a wealth of visualisation techniques that have evolved throughout the period of structural design, with Virtual Reality (VR) being a relatively recent addition to the toolbox. To date the effectiveness of VR has been demonstrated from conceptualisation through to final stages and maintenance, however, its full potential has yet to be realised (Bouchlaghem et al, 2005). According to Dewey (1934), perceptual integration was predicted to be transformational; as the observer would be able to ‘engage’ with the virtual environment. However, environmental representations are predominately focused on the area of vision, regardless of evidence stating that the experience is multi sensory. In addition, there is a marked lack of research exploring the complex interaction of environmental design and the user, such as the role of attention or conceptual interpretation. This paper identifies the potential of VR models to aid communication for the Built Environment with specific reference to human perception issues

    What is Strategic Competence and Does it Matter? Exposition of the Concept and a Research Agenda

    Get PDF
    Drawing on a range of theoretical and empirical insights from strategic management and the cognitive and organizational sciences, we argue that strategic competence constitutes the ability of organizations and the individuals who operate within them to work within their cognitive limitations in such a way that they are able to maintain an appropriate level of responsiveness to the contingencies confronting them. Using the language of the resource based view of the firm, we argue that this meta-level competence represents a confluence of individual and organizational characteristics, suitably configured to enable the detection of those weak signals indicative of the need for change and to act accordingly, thereby minimising the dangers of cognitive bias and cognitive inertia. In an era of unprecedented informational burdens and instability, we argue that this competence is central to the longer-term survival and well being of the organization. We conclude with a consideration of the major scientific challenges that lie ahead, if the ideas contained within this paper are to be validated

    Structured evaluation of virtual environments for special-needs education

    Get PDF
    This paper describes the development of a structured approach to evaluate experiential and communication virtual learning environments (VLEs) designed specifically for use in the education of children with severe learning difficulties at the Shepherd special needs school in Nottingham, UK. Constructivist learning theory was used as a basis for the production of an evaluation framework, used to evaluate the design of three VLEs and how they were used by students with respect to this learning theory. From an observational field study of student-teacher pairs using the VLEs, 18 behaviour categories were identified as relevant to five of the seven constructivist principles defined by Jonassen (1994). Analysis of student-teacher behaviour was used to provide support for, or against, the constructivist principles. The results show that the three VLEs meet the constructivist principles in very different ways and recommendations for design modifications are put forward

    Vision-based deep execution monitoring

    Full text link
    Execution monitor of high-level robot actions can be effectively improved by visual monitoring the state of the world in terms of preconditions and postconditions that hold before and after the execution of an action. Furthermore a policy for searching where to look at, either for verifying the relations that specify the pre and postconditions or to refocus in case of a failure, can tremendously improve the robot execution in an uncharted environment. It is now possible to strongly rely on visual perception in order to make the assumption that the environment is observable, by the amazing results of deep learning. In this work we present visual execution monitoring for a robot executing tasks in an uncharted Lab environment. The execution monitor interacts with the environment via a visual stream that uses two DCNN for recognizing the objects the robot has to deal with and manipulate, and a non-parametric Bayes estimation to discover the relations out of the DCNN features. To recover from lack of focus and failures due to missed objects we resort to visual search policies via deep reinforcement learning

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications
    corecore