3 research outputs found

    Convergence of Neural Networks with a Class of Real Memristors with Rectifying Characteristics

    Get PDF
    The paper considers a neural network with a class of real extended memristors obtained via the parallel connection of an ideal memristor and a nonlinear resistor. The resistor has the same rectifying characteristic for the current as that used in relevant models in the literature to account for diode-like effects at the interface between the memristor metal and insulating material. The paper proves some fundamental results on the trajectory convergence of this class of real memristor neural networks under the assumption that the interconnection matrix satisfies some symmetry conditions. First of all, the paper shows that, while in the case of neural networks with ideal memristors, it is possible to explicitly find functions of the state variables that are invariants of motions, the same functions can be used as Lyapunov functions that decrease along the trajectories in the case of real memristors with rectifying characteristics. This fundamental property is then used to study convergence by means of a reduction-of-order technique in combination with a Lyapunov approach. The theoretical predictions are verified via numerical simulations, and the convergence results are illustrated via the applications of real memristor neural networks to the solution of some image processing tasks in real time

    Memristor Circuits for Simulating Neuron Spiking and Burst Phenomena

    Get PDF
    Since the introduction of memristors, it has been widely recognized that they can be successfully employed as synapses in neuromorphic circuits. This paper focuses on showing that memristor circuits can be also used for mimicking some features of the dynamics exhibited by neurons in response to an external stimulus. The proposed approach relies on exploiting multistability of memristor circuits, i.e., the coexistence of infinitely many attractors, and employing a suitable pulse-programmed input for switching among the different attractors. Specifically, it is first shown that a circuit composed of a resistor, an inductor, a capacitor and an ideal charge-controlled memristor displays infinitely many stable equilibrium points and limit cycles, each one pertaining to a planar invariant manifold. Moreover, each limit cycle is approximated via a first-order periodic approximation analytically obtained via the Describing Function (DF) method, a well-known technique in the Harmonic Balance (HB) context. Then, it is shown that the memristor charge is capable to mimic some simplified models of the neuron response when an external independent pulse-programmed current source is introduced in the circuit. The memristor charge behavior is generated via the concatenation of convergent and oscillatory behaviors which are obtained by switching between equilibrium points and limit cycles via a properly designed pulse timing of the current source. The design procedure takes also into account some relationships between the pulse features and the circuit parameters which are derived exploiting the analytic approximation of the limit cycles obtained via the DF method

    Memristor standard cellular neural networks computing in the flux-charge domain

    No full text
    The paper introduces a class of memristor neural networks (NNs) that are characterized by the following salient features. (a) The processing of signals takes place in the fluxâ\u80\u93charge domain and is based on the time evolution of memristor charges. The processing result is given by the constant asymptotic values of charges that are stored in the memristors acting as non-volatile memories in steady state. (b) The dynamic equations describing the memristor NNs in the fluxâ\u80\u93charge domain are analogous to those describing, in the traditional voltageâ\u80\u93current domain, the dynamics of a standard (S) cellular (C) NN, and are implemented by using a realistic model of memristors as that proposed by HP. This analogy makes it possible to use the bulk of results in the SCNN literature for designing memristor NNs to solve processing tasks in real time. Convergence of memristor NNs in the presence of multiple asymptotically stable equilibrium points is addressed and some applications to image processing tasks are presented to illustrate the real-time processing capabilities. Computing in the fluxâ\u80\u93charge domain is shown to have significant advantages with respect to computing in the voltageâ\u80\u93current domain. One advantage is that, when a steady state is reached, currents, voltages and hence power in a memristor NN vanish, whereas memristors keep in memory the processing result. This is basically different from SCNNs for which currents, voltages and power do not vanish at a steady state, and batteries are needed to keep in memory the processing result
    corecore