15,783 research outputs found

    Sphere-constrained ML detection for frequency-selective channels

    Get PDF
    The maximum-likelihood (ML) sequence detection problem for channels with memory is investigated. The Viterbi algorithm (VA) provides an exact solution. Its computational complexity is linear in the length of the transmitted sequence, but exponential in the channel memory length. On the other hand, the sphere decoding (SD) algorithm also solves the ML detection problem exactly, and has expected complexity which is a low-degree polynomial (often cubic) in the length of the transmitted sequence over a wide range of signal-to-noise ratios. We combine the sphere-constrained search strategy of SD with the dynamic programming principles of the VA. The resulting algorithm has the worst-case complexity determined by the VA, but often significantly lower expected complexity

    MIMO Detection for High-Order QAM Based on a Gaussian Tree Approximation

    Full text link
    This paper proposes a new detection algorithm for MIMO communication systems employing high order QAM constellations. The factor graph that corresponds to this problem is very loopy; in fact, it is a complete graph. Hence, a straightforward application of the Belief Propagation (BP) algorithm yields very poor results. Our algorithm is based on an optimal tree approximation of the Gaussian density of the unconstrained linear system. The finite-set constraint is then applied to obtain a loop-free discrete distribution. It is shown that even though the approximation is not directly applied to the exact discrete distribution, applying the BP algorithm to the loop-free factor graph outperforms current methods in terms of both performance and complexity. The improved performance of the proposed algorithm is demonstrated on the problem of MIMO detection

    Parallelizing RRT on large-scale distributed-memory architectures

    Get PDF
    This paper addresses the problem of parallelizing the Rapidly-exploring Random Tree (RRT) algorithm on large-scale distributed-memory architectures, using the Message Passing Interface. We compare three parallel versions of RRT based on classical parallelization schemes. We evaluate them on different motion planning problems and analyze the various factors influencing their performance

    On joint detection and decoding of linear block codes on Gaussian vector channels

    Get PDF
    Optimal receivers recovering signals transmitted across noisy communication channels employ a maximum-likelihood (ML) criterion to minimize the probability of error. The problem of finding the most likely transmitted symbol is often equivalent to finding the closest lattice point to a given point and is known to be NP-hard. In systems that employ error-correcting coding for data protection, the symbol space forms a sparse lattice, where the sparsity structure is determined by the code. In such systems, ML data recovery may be geometrically interpreted as a search for the closest point in the sparse lattice. In this paper, motivated by the idea of the "sphere decoding" algorithm of Fincke and Pohst, we propose an algorithm that finds the closest point in the sparse lattice to the given vector. This given vector is not arbitrary, but rather is an unknown sparse lattice point that has been perturbed by an additive noise vector whose statistical properties are known. The complexity of the proposed algorithm is thus a random variable. We study its expected value, averaged over the noise and over the lattice. For binary linear block codes, we find the expected complexity in closed form. Simulation results indicate significant performance gains over systems employing separate detection and decoding, yet are obtained at a complexity that is practically feasible over a wide range of system parameters

    An Alternating Trust Region Algorithm for Distributed Linearly Constrained Nonlinear Programs, Application to the AC Optimal Power Flow

    Get PDF
    A novel trust region method for solving linearly constrained nonlinear programs is presented. The proposed technique is amenable to a distributed implementation, as its salient ingredient is an alternating projected gradient sweep in place of the Cauchy point computation. It is proven that the algorithm yields a sequence that globally converges to a critical point. As a result of some changes to the standard trust region method, namely a proximal regularisation of the trust region subproblem, it is shown that the local convergence rate is linear with an arbitrarily small ratio. Thus, convergence is locally almost superlinear, under standard regularity assumptions. The proposed method is successfully applied to compute local solutions to alternating current optimal power flow problems in transmission and distribution networks. Moreover, the new mechanism for computing a Cauchy point compares favourably against the standard projected search as for its activity detection properties
    • 

    corecore