37,417 research outputs found

    Memory-Centric Computing

    Full text link
    Memory-centric computing aims to enable computation capability in and near all places where data is generated and stored. As such, it can greatly reduce the large negative performance and energy impact of data access and data movement, by fundamentally avoiding data movement and reducing data access latency & energy. Many recent studies show that memory-centric computing can greatly improve system performance and energy efficiency. Major industrial vendors and startup companies have also recently introduced memory chips that have sophisticated computation capabilities. This talk describes promising ongoing research and development efforts in memory-centric computing. We classify such efforts into two major fundamental categories: 1) processing using memory, which exploits analog operational properties of memory structures to perform massively-parallel operations in memory, and 2) processing near memory, which integrates processing capability in memory controllers, the logic layer of 3D-stacked memory technologies, or memory chips to enable high-bandwidth and low-latency memory access to near-memory logic. We show both types of architectures (and their combination) can enable orders of magnitude improvements in performance and energy consumption of many important workloads, such as graph analytics, databases, machine learning, video processing, climate modeling, genome analysis. We discuss adoption challenges for the memory-centric computing paradigm and conclude with some research & development opportunities.Comment: To appear as an invited special session paper at DAC 202

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Contextual Media Retrieval Using Natural Language Queries

    Full text link
    The widespread integration of cameras in hand-held and head-worn devices as well as the ability to share content online enables a large and diverse visual capture of the world that millions of users build up collectively every day. We envision these images as well as associated meta information, such as GPS coordinates and timestamps, to form a collective visual memory that can be queried while automatically taking the ever-changing context of mobile users into account. As a first step towards this vision, in this work we present Xplore-M-Ego: a novel media retrieval system that allows users to query a dynamic database of images and videos using spatio-temporal natural language queries. We evaluate our system using a new dataset of real user queries as well as through a usability study. One key finding is that there is a considerable amount of inter-user variability, for example in the resolution of spatial relations in natural language utterances. We show that our retrieval system can cope with this variability using personalisation through an online learning-based retrieval formulation.Comment: 8 pages, 9 figures, 1 tabl
    • …
    corecore