6 research outputs found

    Memory and computation trade-offs for efficient i-vector extraction

    Get PDF
    This work aims at reducing the memory demand of the data structures that are usually pre-computed and stored for fast computation of the i-vectors, a compact representation of spoken utterances that is used by most state-of-the-art speaker recognition systems. We propose two new approaches allowing accurate i-vector extraction but requiring less memory, showing their relations with the standard computation method introduced for eigenvoices, and with the recently proposed fast eigen-decomposition technique. The first approach computes an i-vector in a Variational Bayes (VB) framework by iterating the estimation of one sub-block of i-vector elements at a time, keeping fixed all the others, and can obtain i-vectors as accurate as the ones obtained by the standard technique but requiring only 25% of its memory. The second technique is based on the Conjugate Gradient solution of a linear system, which is accurate and uses even less memory, but is slower than the VB approach. We analyze and compare the time and memory resources required by all these solutions, which are suited to different applications, and we show that it is possible to get accurate results greatly reducing memory demand compared with the standard solution at almost the same speed

    Fast and Memory Effective I-Vector Extraction Using a Factorized Sub-Space

    Get PDF
    Most of the state-of-the-art speaker recognition systems use a compact representation of spoken utterances referred to as i-vectors. Since the "standard" i-vector extraction procedure requires large memory structures and is relatively slow, new approaches have recently been proposed that are able to obtain either accurate solutions at the expense of an increase of the computational load, or fast approximate solutions, which are traded for lower memory costs. We propose a new approach particularly useful for applications that need to minimize their memory requirements. Our solution not only dramatically reduces the storage needs for i-vector extraction, but is also fast. Tested on the female part of the tel-tel extended NIST 2010 evaluation trials, our approach substantially improves the performance with respect to the fastest but inaccurate eigen-decomposition approach, using much less memory than any other known method

    Fast and Memory Effective I-Vector Extraction Using a Factorized Sub-Space

    Get PDF
    Most of the state–of–the–art speaker recognition systems use a compact representation of spoken utterances referred to as i–vectors. Since the ”standard” i–vector extraction procedure requires large memory structures and is relatively slow, new approaches have recently been proposed that are able to obtain either accurate solutions at the expense of an increase of the computational load, or fast approximate solutions, which are traded for lower memory costs. We propose a new approach particularly useful for applications that need to minimize their memory requirements. Our solution not only dramatically reduces the storage needs for i–vector extraction, but is also fast. Tested on the female part of the tel-tel extended NIST 2010 evaluation trials, our approach substantially improves the performance with respect to the fastest but inaccurate eigen-decomposition approach, using much less memory than any other known method

    Memory-aware i-vector extraction by means of subspace factorization

    Get PDF
    Most of the state–of–the–art speaker recognition systems use i– vectors, a compact representation of spoken utterances. Since the “standard” i–vector extraction procedure requires large memory structures, we recently presented the Factorized Sub-space Estimation (FSE) approach, an efficient technique that dramatically reduces the memory needs for i–vector extraction, and is also fast and accurate compared to other proposed approaches. FSE is based on the approximation of the matrix T, representing the speaker variability sub–space, by means of the product of appropriately designed matrices. In this work, we introduce and evaluate a further approximation of the matrices that most contribute to the memory costs in the FSE approach, showing that it is possible to obtain comparable system accuracy using less than a half of FSE memory, which corresponds to more than 60 times memory reduction with respect to the standard method of i–vector extraction

    Fast Scoring of Full Posterior PLDA Models

    Get PDF

    Factorized Sub-Space Estimation for Fast and Memory Effective I-vector Extraction

    Get PDF
    Most of the state-of-the-art speaker recognition systems use a compact representation of spoken utterances referred to as i-vector. Since the "standard" i-vector extraction procedure requires large memory structures and is relatively slow, new approaches have recently been proposed that are able to obtain either accurate solutions at the expense of an increase of the computational load, or fast approximate solutions, which are traded for lower memory costs. We propose a new approach particularly useful for applications that need to minimize their memory requirements. Our solution not only dramatically reduces the memory needs for i-vector extraction, but is also fast and accurate compared to recently proposed approaches. Tested on the female part of the tel-tel extended NIST 2010 evaluation trials, our approach substantially improves the performance with respect to the fastest but inaccurate eigen-decomposition approach, using much less memory than other method
    corecore