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Abstract
Most of the state–of–the–art speaker recognition systems use
a compact representation of spoken utterances referred to as
i–vectors. Since the ”standard” i–vector extraction procedure
requires large memory structures and is relatively slow, new ap-
proaches have recently been proposed that are able to obtain ei-
ther accurate solutions at the expense of an increase of the com-
putational load, or fast approximate solutions, which are traded
for lower memory costs. We propose a new approach particu-
larly useful for applications that need to minimize their memory
requirements. Our solution not only dramatically reduces the
storage needs for i–vector extraction, but is also fast. Tested on
the female part of the tel-tel extended NIST 2010 evaluation tri-
als, our approach substantially improves the performance with
respect to the fastest but inaccurate eigen-decomposition ap-
proach, using much less memory than any other known method.
Index Terms: Speaker recognition, i-vectors, i-vector extrac-
tion, Singular Value Decomposition.

1. Introduction
A simple and effective model for speaker recognition has been
introduced in [1, 2]. In this approach, speaker and channel
variabilities are modeled in a common constrained low dimen-
sional space, and a speech segment is represented by a low-
dimensional “identity vector” or i-vector. The low dimensional-
ity of i–vectors makes them suitable for fast classification using
either generative models based on Probabilistic Linear Discrim-
inant Analysis (PLDA) [3, 4], or discriminative classifiers such
as Support Vector Machines or Logistic Regression [5, 6].

Since the ”standard” i–vector extraction procedure requires
large memory structures and is relatively slow, new approaches
have recently been proposed that are able to obtain either fast
approximate solutions, [7, 8], possibly traded for lower mem-
ory costs, or accurate solutions at the expense of an increase
of the computational load [9, 10, 11]. In [7] a simplification of
the i–vector extraction is proposed based on an approximated si-
multaneous diagonalization of the terms composing the i–vector
posterior covariance matrix. This ”eigen–decomposition” ap-
proach is very fast and memory effective, and gives good per-
formance, but cannot reach the accuracy of the standard one.
In this paper we propose a new approach particularly useful for
applications that need to optimize their memory requirements.
The key idea in our solution is that it is possible to factorize
the variability sub–space matrixT so that it is not necessary to
store all its rows to perform i–vector extraction. These rows can
be obtained as a linear combination and rotation of the atoms of
a common dictionary.

Sandro Cumani is currently supported by Czech Ministry of Edu-
cation project No. CZ.1.07/2.3.00/30.0005.

The paper is organized as follows: Section 2 summarizes
the i–vector model for speaker recognition. Section 3 recalls the
eigen–decomposition i–vector estimation approach. Our novel
factorized sub–space approach is illustrated in Section 4. Sec-
tion 5 is devoted to the estimation of the dictionary and of the
other matrices needed for approximating matrixT. I–vector
extraction with our approach is illustrated in Section 6. The ex-
perimental results are presented and commented in Section 7,
and conclusions are drawn in Section 8.

2. I–vector model
The i–vector model [1, 2] constrains the GMM supervectors,
representing both speaker and channel characteristics of a given
speech segment, to live in a single sub–space according to:

s = m+Σ
1
2Tw , (1)

wherem is the UBM supervector,T is a low-rank rectangu-
lar matrix withC × F rows andM columns andC andF are
the number of GMM components and feature dimension, re-
spectively.T is normalized for convenience byΣ

1
2 , whereΣ

denotes the block–diagonal matrix whose diagonal contains the
UBM covariance matricesΣ(c). TheM columns ofT are vec-
tors spanning the variability space, andw is a random vector
of sizeM with a standard normal prior distribution. It is worth
noting that the i–vector model (1) is equivalent to the classi-
cal i–vector model, but takes advantage of the UBM statistics
whitening introduced in [7] to simplify the i–vector extraction.
Following [12] and the notation in [7], given a sequence of fea-
ture vectorsX = x1x2 . . .xt extracted for a speech segment,
the corresponding i–vectorwX is computed as the mean of the
posterior distributionp(w|X ):

wX = L
−1
X

T
∗
fX , (2)

whereL is the precision matrix of the posterior distribution:

LX = I+
∑

c

N
(c)
X

T
(c)∗

T
(c) . (3)

In these equations,N (c)
X

=
∑

t
γ
(c)
t are the zero–order statis-

tics estimated on thec-th Gaussian component of the UBM for
the set of feature vectors inX , T(c) is theF × M sub-matrix
of T corresponding to thec–th mixture component such that

T =
(

T(1)∗, . . . ,T(C)∗
)

∗

, andfX is the supervector stacking

the covariance–normalized first–order statisticsf
(c)
X

, centered
around the corresponding UBM means:

f
(c)
X

= Σ
(c)

−

1
2

[

∑

t

(

γ
(c)
t xt

)

−N
(c)
X

m
(c)

]

, (4)



wherext is thet–th feature vector inX , γ(c)
t is its occupation

probability andΣ(c)−1

is the UBM c–th component precision
matrix.

3. Approximate i–vector extraction

SinceT(c)∗T(c) is a symmetric and semi–definite positive ma-
trix, it can be eigen–decomposed as:

T
(c)∗

T
(c) = G

(c)
D

(c)
G

(c)∗ , (5)

whereG(c) is an orthogonal matrix, and matrixD(c) is diago-
nal.D(c) can be expressed, in terms ofG(c) andT(c), as:

D
(c) = G

(c)∗
T

(c)∗
T

(c)
G

(c) . (6)

A simultaneous approximate diagonalization of the matrices
T(c)∗T(c) has been introduced in [7] for fast computation of
the i–vectors with low memory resources. In this approach,
eachG(c) is replaced, for the sake of efficiency, by a single
matrixQ

D̂
(c) = Q

∗
T

(c)∗
T

(c)
Q (7)

and everyD̂(c), which is thus no more diagonal, is forced to be
diagonal by setting to zero its off-diagonal elements.
A suitable common orthogonalizing matrixQ has been pro-
posed in [7], based on the eigen–decompositionW = QΛQ−1

of the weighted average covariance matrix

W =
∑

c

ω(c)
T

(c)∗
T

(c) , (8)

whereω(c) is the weight of the UBMc–th component.
Substituting (7) in (3), one gets the approximated posterior dis-
tribution precision matrix

L̃X = QL̂XQ
∗ , (9)

whereL̂X = I +
∑

c
N

(c)
X

D̂(c). The approximated precision
L̃X can then be used in (2) to compute the i–vector. Assum-
ing thatD̂(c) in (7) is diagonal has the remarkable advantage
that L̂X can be computed byC element–wise products of two
vectors of dimensionM , and its inversion cost in (2) becomes
negligible.

This approach is very fast and memory effective, and its
performance is good, but it does not reach the accuracy of the
standard approach. Thus, alternative memory-aware accurate i–
vector extraction methods have been recently introduced, based
on a Variational Bayes formulation [9, 11], or on Conjugate
Gradient (CG) [11], which compute i–vectors as accurate as
the ones obtained by the standard technique, but require only
a fraction of its memory. Since these approaches save mem-
ory, but are slower than the standard one, we introduce in the
next section a new approach that substantially reduces the mem-
ory costs and gives higher performance compared to the eigen–
decomposition technique of the previous section, using compa-
rable processing resources.

4. Factorized sub–space estimation of
matrix T

The eigen–decomposition approach [7] does not reach the accu-
racy of the standard one because useful information conveyed
by the off–diagonal elements of̂D(c) is discarded. In order to
overcome this weakness, we propose a new approach that is able

to obtain more accurate estimates of theT(c)∗T(c) matrices.
Let’s rewrite (6) as(T(c)G(c))∗(T(c)G(c)) = D(c). Since
D(c) is diagonal, it can be proved thatT(c)G(c) can be decom-
posed as:

T
(c)

G
(c) = O

(c)
Π

(c)
M ,

whereO(c) is an orthonormalF × F matrix, andΠ(c)
M is an

F × M matrix having at most one non–null element per row.
Thus,T(c) can be obtained as:

T
(c) = O

(c)
Π

(c)
M G

(c)∗ . (10)

An accurate approximation̂T(c) of each matrixT(c) can be
obtained by replacing eachM × M matrix G(c) by a single,
larger,K ×M matrixQ as:

T̂
(c) ≈ O

(c)
Π

(c)
Q . (11)

whereΠ(c) is, in this case, a sparseF × K matrix with at
most one non–null element per row. Thus, each matrixT̂(c)

is obtained by a linear combination and rotation ofF vectors,
selected from a set ofK atoms collected in a shared dictionary
represented by theK ×M matrixQ.
Compared to the eigen–decomposition approach, our proposal
has substantial differences not only because the matricesQ,
O(c) and Π(c) are obtained by a completely different opti-
mization process, described in Section 5, but also and above
all because the size of the dictionaryQ is not constrained to
be M × M . We have the freedom to select the first dimen-
sion ofQ. Thus, settingK >> M allows us to estimate more
accurateT(c) matrices. Moreover, modelling directly the ma-
tricesT(c) allows to avoid storing the fullT matrix, needed in
the eigen–decomposition approach to compute (2), thus keeping
the storage cost small.

5. Matrix T
(c) approximation

The matricesO(c), Π(c), andQ are obtained by minimizing a
weighted average square norm of the differences between ma-
tricesT(c) and their approximationŝT(c):

min
O(c)Π(c)Q

∑

c

ω(c)||T(c) −O
(c)

Π
(c)

Q||2 . (12)

The optimization is performed by updating a matrix while keep-
ing constant the others, according to the iterative sequence of
optimizations illustrated in Table 1.
In order to solve our optimization problem we rewrite the ob-
jective function (12) as:

min
O(c)Π(c)Q

∑

c

ω(c)
[

tr
(

T
(c)∗

T
(c)
)

+ (13)

tr
(

Q
∗
D

(c)
Q
)

− 2 tr
(

T
(c)∗

O
(c)

Π
(c)

Q
)]

,

whereD(c) = Π(c)∗Π(c) is a diagonal matrix.

5.1. Matrix Q optimization

We solve forQ by zeroing the gradient of (13) while keeping
fixedO(c) andΠ(c) obtaining:

Q =

(

∑

c

ω(c)
D

(c)

)

−1(
∑

c

ω(c)
Π

(c)∗
O

(c)∗
T

(c)

)

.

(14)



Table 1: Iterative optimization sequence.

Update Constant Constant
Π(c) eq. (21) Q O(c)

O(c) eq. (17) Q Π(c)

Q eq. (14) O(c) Π(c)

5.2. Matrix O(c) optimization

The optimization of each matrixO(c) can be done indepen-
dently from the others, by maximizing the third term in (13)
keeping constantsΠ(c) andQ:

max
O(c)

tr
(

T
(c)∗

O
(c)

Π
(c)

Q
)

(15)

s.t. O
(c)∗

O
(c) = I

Since the trace operator is invariant under cyclic permutations,
we can rewrite the argument of (15) as:

tr
(

T
(c)∗

O
(c)

Π
(c)

Q
)

= tr
(

O
(c)

Z
)

,

whereZ = Π(c)QT(c)∗. The Von Neumann’s trace inequality
[13, 14] states that:

∣

∣

∣
tr(O(c)

Z)
∣

∣

∣
≤

F
∑

i=1

σoiσzi ,

whereσoi andσzi are the sortedi–th singular values obtained
by Singular Value Decomposition (SVD) ofO(c) andZ, re-
spectively. SinceO(c) has to be orthonormal, its singular val-
ues have to be equal to1, thus for any feasible solutionO(c) the
objective function is bounded by

∣

∣

∣
tr(O(c)

Z)
∣

∣

∣
≤

F
∑

i=1

σzi , (16)

and can therefore be maximized if we find a matrixO(c) such
that the singular values ofO(c)Z andZ are exactly the same.
This condition is satisfied by matrix:

O
(c) = VZU

∗

Z , (17)

whereZ = UZΣZV
∗

Z is a SVD ofZ. This can be verified
substituting (17) in the left hand term of (16):

∣

∣

∣
tr(O(c)

UZΣZV
∗

Z)
∣

∣

∣
= |tr(VZU

∗

ZUZΣZV
∗

Z)| =

|tr(VZΣZV
∗

Z)| = |tr(ΣZ)| =
F
∑

i=1

σzi . (18)

5.3. Matrix Π(c) optimization

Considering again (13), the optimization can be done indepen-
dently for eachΠ(c) considering constantsO(c) andQ, as:

min
Π(c)

[

tr
(

Q
∗
Π

(c)∗
Π

(c)
Q
)

− 2 tr
(

T
(c)∗

O
(c)

Π
(c)

Q
)]

.

(19)
DefiningA(c) = O(c)∗T(c)Q∗, and noting that although the
dimension ofQQ∗ is huge, we need only its diagonal because
Π(c)∗Π(c) is diagonal, the arguments of objective function (19)

can be rewritten as:

F
∑

f=1

[

K
∑

k=1

q2k

(

π
(c)
f

∗

π
(c)
f

)

k,k
− 2 tr

(

π
(c)∗
f A

(c)
f

)

]

, (20)

whereq2k is thek–th element of the diagonal ofQQ∗, andπ(c)
f

is thef -th row ofΠ(c).
Since the terms in the summation of (20) can be factorized with
respect to the rowsπ(c)

f , we can optimize eachπ(c)
f indepen-

dently.
Since the row vectorπ(c)

f should have at most a single non-zero

elementvk, with indexk, the optimal indexkopt

f and its corre-

sponding valuevoptf are obtained as:

kopt

f = argmax
k

A
(c)2
f,k

q2k
voptf =

A
(c)

f,kopt

q2
kopt

. (21)

5.4. Initialization of matrices Q andO(c)

In order to initialize the dictionary matrixQ and all the matrices
O(c), we compute the SVD of each matrixω(c)T(c) as:

ω(c)
T

(c) = U
(c)

S
(c)

V
(c)∗

Matrix O(c) is then initialized by the corresponding matrix
U(c). Matrix Q is initialized by pooling together the rows of
the matricesV(c)∗ and keeping only the rows corresponding to
the largest pooled singular values.

Matrix Π(c) does not need to be initialized because, given
Q andO(c), Π(c) can be computed by (21) as illustrated in
Section 5.3. In our experiments, 10 iterations of alternate opti-
mizations ofΠ(c) andO(c) are performed before a new matrix
Q is estimated keeping fixedΠ(c) andO(c). This procedure is
repeated for 40 iterations.

It is worth noting that matrixΠ(c) is full rank only if it has
a single non–zero element per row, located in different columns.
Our optimization procedure introduced in Section 5.3, however,
is not able to directly impose such constraints on matrixΠ(c),
and it may happen that an estimated matrix is not full rank. Al-
though this does not affect sensibly the recognition accuracy, it
does not allow to fully exploit the potential of the method. We
developed, thus, a further optimization procedure for obtaining
full rank Π(c) matrices, which is not described here due to the
page limitations for this paper.

6. I-vector extraction
Using the approximated̂T(c) of (11), the posterior distribution
precision matrixLX in (3) can be computed as:

L̂X = I+
∑

c

N
(c)
X

Q
∗
Π

(c)∗
O

(c)∗
O

(c)
Π

(c)
Q

= I+Q
∗
∑

c

N
(c)
X

Π
(c)∗

Π
(c)

Q . (22)

From (2):

L̂X ŵX =
∑

c

T̂
(c)∗

f
(c)
X

= Q
∗
∑

c

Π
(c)∗

O
(c)∗

f
(c)
X

.

Since matrixL̂X is symmetric and positive definite, this linear
system of equations can be solved by the Conjugate Gradient
(CG) method. Since at each iterationn, the updates in this al-



gorithm are based on the residual:rn = c− L̂ŵn, it is possible
to reduce the high storage demands and the costs due to the
computation and inversion of matrix̂LX , because it appears in
the residual multiplied bŷwn [11]. Moreover, since matrices
Π(c) are sparse, much less operations are needed to compute
L̂ŵn with respect to the full CG–based i–vector extractor [11].

Due to the space limitation we cannot give a report of the
complexity analysis of various i–vector extraction approaches,
but memory and computation costs can be compared in Table
2, which summarizes the results of the set of experiments per-
formed to validate the factorized sub–space approach.

7. Experimental settings
Since this work was focused on memory and computational
costs of i–vector extraction, we did not devote particular care to
select the best combination of features, techniques, and training
data that allow obtaining the best performance. Thus, we tested
our systems only on the female part of the tel-tel extended NIST
2010 evaluation trials [15], which is known to be more difficult,
thus more often compared in the literature.

We did experiments using the “standard”, the Variational
Bayes, the eigen–decomposition, and the factorized sub–space
i–vector extraction techniques, with systems having the same
front–end, based on cepstral features. In particular, we ex-
tracted, every 10 ms, 19 Mel frequency cepstral coefficients
and the frame log-energy on a 25 ms sliding Hamming win-
dow. This 20–dimensional feature vector was subjected to short
time mean and variance normalization using a 3 s sliding win-
dow, and a 60-dimensional feature vector was obtained by ap-
pending the delta and double delta coefficients computed on
a 5–frame window. We trained a gender-independent UBM,
modeled by a diagonal covariance 2048-component GMM, and
also a gender-independentT matrix using only the NIST SRE
04/05/06 datasets. The i-vector dimension was fixed to 400 for
all the experiments, and the i–vectors were length–normalized
[16]. The classifier is based on Gaussian PLDA, implemented
according to the framework illustrated in [3] with i–vectors.
We trained models with full–rank channel factors, using 120
dimensions for the speaker factors. The PLDA models have
been trained using the same NIST datasets, and additionally the
Switchboard II, Phases 2 and 3, and Switchboard Cellular, Parts
1 and 2 datasets.

Table 2 summarizes the performance of the evaluated ap-
proaches on the female part of the extended telephone condition
in the NIST 2010 evaluation. The recognition accuracy is given
in terms of Equal Error Rate (EER) and Minimum Detection
Cost Functions defined by NIST for the 2008 (minDCF08) and
2010 (minDCF10) evaluations [15].

The baseline results, corresponding to the standard i–vector
extraction, were obtained 14 times faster than the correspond-
ing slow approach. However, the latter requires only 188 MB
for storing matrixT, whereas the former needs 5 times more
memory to store the termsT(c)∗T(c) required to speed–up the
computation of (3). The approximate i–vector extraction based
on eigen-decomposition [7] is extremely fast and requires al-
most the same amount of memory required for the accurate slow
approach. However, it is not able to reach the accuracy of the
baseline system.
The Variational Bayes system [11] is able to get the same results
of the baseline systems, it is approximately 1.3 times slower
than the standard approach, but it uses only 1/4 of its memory,
slightly more than the fast, but inaccurate, eigen–decomposition
approach.

Table 2: %EER, minDCF08×1000 and minDCF10×1000 for
the female NIST SRE2010 extended tel–tel condition using dif-
ferent i–vector extraction approaches. FSE–K–S refers to the
Factorized sub–space estimation approach with a dictionary of
K atoms, and stopping thresholdS.

System
Memory time (%) min min

(MB) ratio EER DCF8 DCF10
Fast baseline 815 4.70 3.59 181 566
Slow baseline 188 66.54 3.59 181 566
Variational Bayes 221 5.27 3.53 183 572
Eigen-dec. 191 1.00 4.27 201 692
FSE-2k-10 32 0.76 3.70 191 575
FSE-2k-100 32 0.57 4.04 194 581
FSE-3.5k-10 35 0.97 3.76 195 551
FSE-3.5k-100 35 0.68 4.08 201 588
FSE-5k-10 38 1.16 3.49 185 580
FSE-5k-100 38 0.78 3.69 191 606
FSE-10k-10 48 2.30 3.56 185 584
FSE-10k-100 48 1.43 3.76 190 589

I–vector extraction with our Factorized Sub–space Estimation
(FSE) approach has been tested by training four systems, based
on different dictionary dimensions:K = 2000, 3500, 5000,
and10000, respectively. The i–vectors were obtained by the
Conjugate Gradient procedure illustrated in Section 6 and in
[11], stopping the iterations when the CG residual is less than
two different thresholdsS = 102 orS = 101, respectively. The
results show that the FSE performance is always better than the
eigen–decomposition approach, and depending on the dimen-
sion of the dictionary it can reach an accuracy comparable to
the standard approach. FSE dramatically reduces the memory
cost of i–vector extraction by 20 times compared to the stan-
dard approach, but also by 5 times compared to the other mem-
ory aware approaches. It is also extremely fast: faster than the
standard method, and even faster than the eigen–decomposition
approach for large UBM models and small dictionary sizes.
The small CG-2K systems perform surprisingly well, consider-
ing that they use1/5 of the memory of the eigen–decomposition
approach, but obtains results similar to the standard technique.

8. Conclusions

A new approach has been presented that accurately approxi-
mates the components of the total variability matrix by means
of a linear combination and rotation of the atoms of a dictionary.
The use of a common dictionary not only allows the memory re-
quired to be reduced with respect to the standard approach, but
also with respect to the eigen–decomposition technique, which
cannot avoid storing theT matrix. Our approach is not as fast as
the eigen–decomposition technique, but allows obtaining accu-
rate i–vectors and results, and requires substantially less mem-
ory than any other technique.

Although this optimization is particularly useful for small
footprint applications, it can be also relevant for speaker identi-
fication and verification applications, where the duration of the
available speaker segments is short.
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