71,775 research outputs found

    Non-equilibrium effects on charge and energy partitioning after an interaction quench

    Full text link
    Charge and energy fractionalization are among the most intriguing features of interacting onedimensional fermion systems. In this work we determine how these phenomena are modified in the presence of an interaction quench. Charge and energy are injected into the system suddenly after the quench, by means of tunneling processes with a non-interacting one-dimensional probe. Here, we demonstrate that the system settles to a steady state in which the charge fractionalization ratio is unaffected by the pre-quenched parameters. On the contrary, due to the post-quench nonequilibrium spectral function, the energy partitioning ratio is strongly modified, reaching values larger than one. This is a peculiar feature of the non-equilibrium dynamics of the quench process and it is in sharp contrast with the non-quenched case, where the ratio is bounded by one.Comment: 12 pages, 4 figure

    Graph partitioning applied to DAG scheduling to reduce NUMA effects

    Get PDF
    The complexity of shared memory systems is becoming more relevant as the number of memory domains increases, with different access latencies and bandwidth rates depending on the proximity between the cores and the devices containing the data. In this context, techniques to manage and mitigate non-uniform memory access (NUMA) effects consist in migrating threads, memory pages or both and are typically applied by the system software. We propose techniques at the runtime system level to reduce NUMA effects on parallel applications. We leverage runtime system metadata in terms of a task dependency graph. Our approach, based on graph partitioning methods, is able to provide parallel performance improvements of 1.12X on average with respect to the state-of-the-art.This work has been partially supported by the RoMoL ERC Advanced Grant (GA 321253), the European HiPEAC Network of Excellence and the Spanish Government (contract TIN2015-65316-P). I. Sánchez Barrera has been supported by the Spanish Government under Formación del Profesorado Universitario fellowship number FPU15/03612.Peer ReviewedPostprint (published version
    • …
    corecore