130,545 research outputs found

    Memory-Efficient Adaptive Optimization

    Full text link
    Adaptive gradient-based optimizers such as Adagrad and Adam are crucial for achieving state-of-the-art performance in machine translation and language modeling. However, these methods maintain second-order statistics for each parameter, thus introducing significant memory overheads that restrict the size of the model being used as well as the number of examples in a mini-batch. We describe an effective and flexible adaptive optimization method with greatly reduced memory overhead. Our method retains the benefits of per-parameter adaptivity while allowing significantly larger models and batch sizes. We give convergence guarantees for our method, and demonstrate its effectiveness in training very large translation and language models with up to 2-fold speedups compared to the state-of-the-art

    Uncertainty And Evolutionary Optimization: A Novel Approach

    Full text link
    Evolutionary algorithms (EA) have been widely accepted as efficient solvers for complex real world optimization problems, including engineering optimization. However, real world optimization problems often involve uncertain environment including noisy and/or dynamic environments, which pose major challenges to EA-based optimization. The presence of noise interferes with the evaluation and the selection process of EA, and thus adversely affects its performance. In addition, as presence of noise poses challenges to the evaluation of the fitness function, it may need to be estimated instead of being evaluated. Several existing approaches attempt to address this problem, such as introduction of diversity (hyper mutation, random immigrants, special operators) or incorporation of memory of the past (diploidy, case based memory). However, these approaches fail to adequately address the problem. In this paper we propose a Distributed Population Switching Evolutionary Algorithm (DPSEA) method that addresses optimization of functions with noisy fitness using a distributed population switching architecture, to simulate a distributed self-adaptive memory of the solution space. Local regression is used in the pseudo-populations to estimate the fitness. Successful applications to benchmark test problems ascertain the proposed method's superior performance in terms of both robustness and accuracy.Comment: In Proceedings of the The 9th IEEE Conference on Industrial Electronics and Applications (ICIEA 2014), IEEE Press, pp. 988-983, 201

    Online Learning of a Memory for Learning Rates

    Full text link
    The promise of learning to learn for robotics rests on the hope that by extracting some information about the learning process itself we can speed up subsequent similar learning tasks. Here, we introduce a computationally efficient online meta-learning algorithm that builds and optimizes a memory model of the optimal learning rate landscape from previously observed gradient behaviors. While performing task specific optimization, this memory of learning rates predicts how to scale currently observed gradients. After applying the gradient scaling our meta-learner updates its internal memory based on the observed effect its prediction had. Our meta-learner can be combined with any gradient-based optimizer, learns on the fly and can be transferred to new optimization tasks. In our evaluations we show that our meta-learning algorithm speeds up learning of MNIST classification and a variety of learning control tasks, either in batch or online learning settings.Comment: accepted to ICRA 2018, code available: https://github.com/fmeier/online-meta-learning ; video pitch available: https://youtu.be/9PzQ25FPPO

    Adaptive Regret Minimization in Bounded-Memory Games

    Get PDF
    Online learning algorithms that minimize regret provide strong guarantees in situations that involve repeatedly making decisions in an uncertain environment, e.g. a driver deciding what route to drive to work every day. While regret minimization has been extensively studied in repeated games, we study regret minimization for a richer class of games called bounded memory games. In each round of a two-player bounded memory-m game, both players simultaneously play an action, observe an outcome and receive a reward. The reward may depend on the last m outcomes as well as the actions of the players in the current round. The standard notion of regret for repeated games is no longer suitable because actions and rewards can depend on the history of play. To account for this generality, we introduce the notion of k-adaptive regret, which compares the reward obtained by playing actions prescribed by the algorithm against a hypothetical k-adaptive adversary with the reward obtained by the best expert in hindsight against the same adversary. Roughly, a hypothetical k-adaptive adversary adapts her strategy to the defender's actions exactly as the real adversary would within each window of k rounds. Our definition is parametrized by a set of experts, which can include both fixed and adaptive defender strategies. We investigate the inherent complexity of and design algorithms for adaptive regret minimization in bounded memory games of perfect and imperfect information. We prove a hardness result showing that, with imperfect information, any k-adaptive regret minimizing algorithm (with fixed strategies as experts) must be inefficient unless NP=RP even when playing against an oblivious adversary. In contrast, for bounded memory games of perfect and imperfect information we present approximate 0-adaptive regret minimization algorithms against an oblivious adversary running in time n^{O(1)}.Comment: Full Version. GameSec 2013 (Invited Paper

    Performance and Optimization Abstractions for Large Scale Heterogeneous Systems in the Cactus/Chemora Framework

    Full text link
    We describe a set of lower-level abstractions to improve performance on modern large scale heterogeneous systems. These provide portable access to system- and hardware-dependent features, automatically apply dynamic optimizations at run time, and target stencil-based codes used in finite differencing, finite volume, or block-structured adaptive mesh refinement codes. These abstractions include a novel data structure to manage refinement information for block-structured adaptive mesh refinement, an iterator mechanism to efficiently traverse multi-dimensional arrays in stencil-based codes, and a portable API and implementation for explicit SIMD vectorization. These abstractions can either be employed manually, or be targeted by automated code generation, or be used via support libraries by compilers during code generation. The implementations described below are available in the Cactus framework, and are used e.g. in the Einstein Toolkit for relativistic astrophysics simulations

    Power-Adaptive Computing System Design for Solar-Energy-Powered Embedded Systems

    Get PDF
    • …
    corecore