1,188 research outputs found

    Semantic Video CNNs through Representation Warping

    Full text link
    In this work, we propose a technique to convert CNN models for semantic segmentation of static images into CNNs for video data. We describe a warping method that can be used to augment existing architectures with very little extra computational cost. This module is called NetWarp and we demonstrate its use for a range of network architectures. The main design principle is to use optical flow of adjacent frames for warping internal network representations across time. A key insight of this work is that fast optical flow methods can be combined with many different CNN architectures for improved performance and end-to-end training. Experiments validate that the proposed approach incurs only little extra computational cost, while improving performance, when video streams are available. We achieve new state-of-the-art results on the CamVid and Cityscapes benchmark datasets and show consistent improvements over different baseline networks. Our code and models will be available at http://segmentation.is.tue.mpg.deComment: ICCV 201

    Spatio-temporal Video Re-localization by Warp LSTM

    Full text link
    The need for efficiently finding the video content a user wants is increasing because of the erupting of user-generated videos on the Web. Existing keyword-based or content-based video retrieval methods usually determine what occurs in a video but not when and where. In this paper, we make an answer to the question of when and where by formulating a new task, namely spatio-temporal video re-localization. Specifically, given a query video and a reference video, spatio-temporal video re-localization aims to localize tubelets in the reference video such that the tubelets semantically correspond to the query. To accurately localize the desired tubelets in the reference video, we propose a novel warp LSTM network, which propagates the spatio-temporal information for a long period and thereby captures the corresponding long-term dependencies. Another issue for spatio-temporal video re-localization is the lack of properly labeled video datasets. Therefore, we reorganize the videos in the AVA dataset to form a new dataset for spatio-temporal video re-localization research. Extensive experimental results show that the proposed model achieves superior performances over the designed baselines on the spatio-temporal video re-localization task

    Visual Imitation Learning with Recurrent Siamese Networks

    Full text link
    It would be desirable for a reinforcement learning (RL) based agent to learn behaviour by merely watching a demonstration. However, defining rewards that facilitate this goal within the RL paradigm remains a challenge. Here we address this problem with Siamese networks, trained to compute distances between observed behaviours and the agent's behaviours. Given a desired motion such Siamese networks can be used to provide a reward signal to an RL agent via the distance between the desired motion and the agent's motion. We experiment with an RNN-based comparator model that can compute distances in space and time between motion clips while training an RL policy to minimize this distance. Through experimentation, we have had also found that the inclusion of multi-task data and an additional image encoding loss helps enforce the temporal consistency. These two components appear to balance reward for matching a specific instance of behaviour versus that behaviour in general. Furthermore, we focus here on a particularly challenging form of this problem where only a single demonstration is provided for a given task -- the one-shot learning setting. We demonstrate our approach on humanoid agents in both 2D with 1010 degrees of freedom (DoF) and 3D with 3838 DoF.Comment: PrePrin

    Language comprehension warps the mirror neuron system

    Get PDF
    abstract: Is the mirror neuron system (MNS) used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but (a) only for videos of biological motion, and (b) only when the effector implied by the language (e.g., the hand) matched the videos. These findings are signatures of the MNS.View the article as published at http://journal.frontiersin.org/article/10.3389/fnhum.2013.00870/ful
    • …
    corecore