4 research outputs found

    Membership in moment polytopes is in NP and coNP

    Full text link
    We show that the problem of deciding membership in the moment polytope associated with a finite-dimensional unitary representation of a compact, connected Lie group is in NP and coNP. This is the first non-trivial result on the computational complexity of this problem, which naively amounts to a quadratically-constrained program. Our result applies in particular to the Kronecker polytopes, and therefore to the problem of deciding positivity of the stretched Kronecker coefficients. In contrast, it has recently been shown that deciding positivity of a single Kronecker coefficient is NP-hard in general [Ikenmeyer, Mulmuley and Walter, arXiv:1507.02955]. We discuss the consequences of our work in the context of complexity theory and the quantum marginal problem.Comment: 20 page

    On vanishing of Kronecker coefficients

    Full text link
    We show that the problem of deciding positivity of Kronecker coefficients is NP-hard. Previously, this problem was conjectured to be in P, just as for the Littlewood-Richardson coefficients. Our result establishes in a formal way that Kronecker coefficients are more difficult than Littlewood-Richardson coefficients, unless P=NP. We also show that there exists a #P-formula for a particular subclass of Kronecker coefficients whose positivity is NP-hard to decide. This is an evidence that, despite the hardness of the positivity problem, there may well exist a positive combinatorial formula for the Kronecker coefficients. Finding such a formula is a major open problem in representation theory and algebraic combinatorics. Finally, we consider the existence of the partition triples (λ,μ,π)(\lambda, \mu, \pi) such that the Kronecker coefficient kμ,πλ=0k^\lambda_{\mu, \pi} = 0 but the Kronecker coefficient klμ,lπlλ>0k^{l \lambda}_{l \mu, l \pi} > 0 for some integer l>1l>1. Such "holes" are of great interest as they witness the failure of the saturation property for the Kronecker coefficients, which is still poorly understood. Using insight from computational complexity theory, we turn our hardness proof into a positive result: We show that not only do there exist many such triples, but they can also be found efficiently. Specifically, we show that, for any 0<ϵ≤10<\epsilon\leq1, there exists 0<a<10<a<1 such that, for all mm, there exist Ω(2ma)\Omega(2^{m^a}) partition triples (λ,μ,μ)(\lambda,\mu,\mu) in the Kronecker cone such that: (a) the Kronecker coefficient kμ,μλk^\lambda_{\mu,\mu} is zero, (b) the height of μ\mu is mm, (c) the height of λ\lambda is ≤mϵ\le m^\epsilon, and (d) ∣λ∣=∣μ∣≤m3|\lambda|=|\mu| \le m^3. The proof of the last result illustrates the effectiveness of the explicit proof strategy of GCT.Comment: 43 pages, 1 figur

    Operator scaling with specified marginals

    Full text link
    The completely positive maps, a generalization of the nonnegative matrices, are a well-studied class of maps from n×nn\times n matrices to m×mm\times m matrices. The existence of the operator analogues of doubly stochastic scalings of matrices is equivalent to a multitude of problems in computer science and mathematics, such rational identity testing in non-commuting variables, noncommutative rank of symbolic matrices, and a basic problem in invariant theory (Garg, Gurvits, Oliveira and Wigderson, FOCS, 2016). We study operator scaling with specified marginals, which is the operator analogue of scaling matrices to specified row and column sums. We characterize the operators which can be scaled to given marginals, much in the spirit of the Gurvits' algorithmic characterization of the operators that can be scaled to doubly stochastic (Gurvits, Journal of Computer and System Sciences, 2004). Our algorithm produces approximate scalings in time poly(n,m) whenever scalings exist. A central ingredient in our analysis is a reduction from the specified marginals setting to the doubly stochastic setting. Operator scaling with specified marginals arises in diverse areas of study such as the Brascamp-Lieb inequalities, communication complexity, eigenvalues of sums of Hermitian matrices, and quantum information theory. Some of the known theorems in these areas, several of which had no effective proof, are straightforward consequences of our characterization theorem. For instance, we obtain a simple algorithm to find, when they exist, a tuple of Hermitian matrices with given spectra whose sum has a given spectrum. We also prove new theorems such as a generalization of Forster's theorem (Forster, Journal of Computer and System Sciences, 2002) concerning radial isotropic position.Comment: 34 pages, 3 page appendi
    corecore