3 research outputs found

    Medium Access Control Game with An Enhanced

    Get PDF
    Abstract-We consider distributed medium access control in a wireless network where each link layer user (transmitter) is equipped with multiple transmission options as opposed to the classical binary options of transmitting/idling. In each time slot, a user randomly chooses a transmission option according to a "transmission probability vector". Packets sent by the users are either received or lost depending on whether reliable decoding is supported by the communication channel. We propose a game theoretic model for distributed medium access control where each user adapts its transmission probability vector to maximize a utility function. Condition under which the medium access control game has a unique Nash equilibrium is obtained. Simulation results show that, when multiple transmission options are provided, users in a distributed network tend to converge to channel sharing schemes that are consistent with the well-known information theoretic understandings

    Medium access control game with an enhanced physical-link layer interface

    No full text
    corecore