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Abstract—We consider distributed medium access control in
a wireless network where each link layer user (transmitter) is
equipped with multiple transmission options as opposed to the
classical binary options of transmitting/idling. In each time slot,
a user randomly chooses a transmission option according to a
“transmission probability vector”. Packets sent by the users are
either received or lost depending on whether reliable decoding
is supported by the communication channel. We propose a
game theoretic model for distributed medium access control
where each user adapts its transmission probability vector to
maximize a utility function. Condition under which the medium
access control game has a unique Nash equilibrium is obtained.
Simulation results show that, when multiple transmission options
are provided, users in a distributed network tend to converge to
channel sharing schemes that are consistent with the well-known
information theoretic understandings.

I. INTRODUCTION

Classical medium access control (MAC) protocols assume
that a link-layer user (transmitter) should choose either to idle
in a time slot or to transmit a packet with pre-determined com-
munication parameters. Under this assumption, when users in
a distributed wireless network experience packet collision, the
only approach to control contention is to reduce and randomize
their transmission activities [1]. While such a model and
its derived contention control approaches are widely adopted
in distributed MAC protocols such as the DCF protocol in
802.11, they do not permit exploitation at the link layer of the
well known information theoretic result that parallel transmis-
sion with carefully controlled rates achieves the optimal sum
throughput of a multiple access system.

Recently, an extension of Shannon-style channel coding
theory to distributed communication systems was presented in
[2][3][4]. The new channel coding framework gave each trans-
mitter multiple transmission options corresponding to different
channel codes, which imply different values of communication
parameters such as power and rate. A transmitter can choose an
arbitrary option, denoted by a code index parameter, to send
its message in a time slot without sharing such a decision
with other transmitters or with the receiver. It was shown
that fundamental performance limitation of the system can be
characterized using an achievable region defined in the vector
space of code index parameters of all users [2]. If the code
index vector happens to locate inside the achievable region, the
receiver will decode the messages reliably, while if the code
index vector is outside the achievable region, the receiver will

report a collision reliably.
The new channel coding framework makes it possible to

extend the classical physical-link layer interface to give a
link layer user multiple transmission options corresponding
to different communication settings such as different rates and
powers. It also enables the derivation and analysis of link layer
channel model and medium access control performance using
physical layer channel properties. Consequently, link layer
users can now exploit advanced communication adaption ap-
proaches, such as rate adaptation, to improve channel sharing
efficiency in distributed networking. Understanding the impact
of the enhanced physical-link layer interface on the strategy
of link layer communication adaptation and contention control
therefore becomes an important research topic.

For a wide range of distributed networks, game theoretic
problem formulations and analysis have proven to provide
new insights to reverse/forward engineering of existing MAC
protocols for improved fairness and higher throughput, and
for decoupling contention control from handling failed packets
[5][6]. The key idea of a game theoretic MAC algorithm is
to control contention by distributively adapting transmission
probabilities of the users to optimize their individual utilities,
each being carefully chosen as a function of the transmission
cost and the experienced contention level of the corresponding
user. Utility function design often requires a good under-
standing on the expected contention level and the desired
transmission probability, derived from performance objectives
of the users. While contention control in a distributed wireless
network has been rigorously investigated using the classical
link layer model, extending the understandings to cases when
each link layer user has a handful or more transmission options
is a new research direction that deserves careful and rigorous
exploration.

As a first step effort, in this paper, we consider the
problem of distributed medium access control in a wireless
network with an enhanced physical-link layer interface. Under
the assumption that users are backlogged with messages,
we model the medium access control problem as a non-
cooperative game where each user adapts its communication
to maximize an individual utility function. We show that
existing understandings on stability and throughput of ran-
dom access communication over collision and multi-packet
reception channels can be exploited to design utility functions
in the new system. Conditions under which the distributed
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medium access control game has a unique Nash equilibrium
are obtained. Computer simulations show that, in a multiple
access environment with a large number of users each being
equipped with multiple communication rate options, the game
theoretic medium access control algorithm does favor low
rate and parallel channel access options over high rate and
exclusive channel access options. This is consistent with the
well-known understandings in information theory.

II. THE LINK LAYER MODEL AND A GAME THEORETIC
PROBLEM FORMULATION

Consider a wireless network with K users. Each user is
equipped with M + 1 transmission options corresponding to
a set of M + 1 channel coding schemes, denoted by Gk =
{gk0, gk1, · · · , gkM}. Each element gkm, m = 0, · · · ,M , rep-
resents a particular transmission setting of User k that includes
the specifications of transmission power, communication rate,
etc. We assume that the first element gk0 always represents the
“idling” option. Time is slotted with each slot equalling the
length of a fixed number of channel symbols, and this is also
the length of a codeword. In each time slot, User k chooses one
of the transmission options and sends a packet with encoded
message to its receiver. The choice of transmission option of
a user is shared neither with other users nor with the receiver.
We assume that the communication channel is memoryless
and static. Depending on whether reliable message decoding is
supported by the channel or not, a transmitted packet is either
received successfully or lost. In the latter case, a collision
report is fed back to the transmitter. Note that, the link layer
model degrades to a classical one if each Gk only contains
two elements.

We assume that users are backlogged with messages. In
each time slot, User k randomly chooses a transmission
option according to an M -length vector pk = [pk1, · · · , pkM ]T

termed the “transmission probability vector”. Here pkm ≥ 0,
m = 1, · · · ,M , denotes the probability that User k chooses
option gkm, and 1 −

∑M
m=1 pkm ≥ 0 is the probability

that User k idles. We use P = [p1,p2, · · · ,pK ] to denote
the transmission probability vectors of all users, and use
P−k = [p1, · · · ,pk−1,pk+1, · · · ,pK ] to denote the transmis-
sion probability vectors of all users but User k. Conditioned
on User k transmitting with option gkm, let 0 ≤ qkm ≤ 1
be the probability that the message (or packet) is successfully
received. We define qk = [qk1, · · · , qkM ]T as the “conditional
success probability vector” of User k. Clearly, given the
communication channel, qk is a function of P−k.

We model medium access control as a non-cooperative
game where users distributively adapt their transmission prob-
ability vectors to maximize individual utility functions. The
utility function of User k is denoted by Uk(pk, qk), which
is a function of the transmission probability vector pk and
the conditional success probability vector qk. Given P−k and
consequently qk, the utility maximization problem of User k
is represented by

max
pk

Uk(pk, qk), s.t. pk ≥ 0,pT
k 1 ≤ 1, (1)

where 0 and 1 are vectors of all zeros and all ones, respec-
tively.

We say P is a Nash equilibrium of the medium access con-
trol game if for all k = 1, · · · ,K, pk maximizes Uk(pk, qk)
given P−k. The following theorem gives a sufficient condition
for the existence of Nash equilibrium.

Theorem 1: The medium access control game admits at
least one Nash equilibrium if, for all k = 1, · · · ,K, utility
function Uk(pk, qk) is concave in pk.

Theorem 1 is implied by [7, Theorems 1].
Given P , define Gkl(P ) as the second order partial deriva-

tive of Uk(pk, qk) with respect to pk and pl,

Gkl(P ) =
∂2Uk(pk, qk)

∂pk∂pl

. (2)

The following theorem gives a sufficient condition under
which Nash equilibrium of the medium access control game
is unique.

Theorem 2: Assume that the medium access control game
has at least one Nash equilibrium. Let P (1) and P (2) be two
Nash equilibria. For any 0 ≤ θ ≤ 1, let P = θP (1) + (1 −
θ)P (2). If P (1) ̸= P (2) implies

K∑
k=1

K∑
l=1

(p
(1)
k − p

(2)
k )TGkl(P )(p

(1)
l − p

(2)
l ) < 0, (3)

then Nash equilibrium of the medium access control game
must be unique.

Theorem 2 is implied by [7, Theorems 2, 6].

III. UTILITY DESIGN WITH A CLASSICAL PHYSICAL-LINK
LAYER INTERFACE

To help explaining the utility function design with a rela-
tively simple notation, in this section, we will first consider
wireless networks with the classical physical-link layer inter-
face where each user only has binary transmission options.
We choose to skip subscripts of the variables if this causes no
confusion.

Consider a multiple access system with a symmetric channel
and homogeneous users. Each user only has two transmis-
sion options, G = {g0, g1}, where g0 is the idling option.
According to the achievable region result [4][2], if multiple
users transmit in parallel, the packets should be received
successfully so long as sum rate of the users is supported
by the channel. Assume that packet transmissions should be
successful in a time slot if and only if no more than N users
transmit in parallel, and the value of N is known to all users.
Assume that K ≫ N ≥ 1 and users want to maximize their
symmetric throughput. With binary transmission options, the
system described is a random multiple access system over a
multi-packet reception channel [8][9]. Optimal sum throughput
of the system is approached when each user transmits at
probability x∗/K where x∗ is the solution of the following
maximization problem [9].

x∗ = argmax
x

e−x
N∑
i=1

xi

(i− 1)!
. (4)



When all users set their transmission probabilities at x∗/K,
conditional success probability experienced by each user can
be approximated by

q∗ = e−x∗
N−1∑
i=0

x∗i

i!
. (5)

Assume that a user estimates the total number of users to
be K̃. According to the above understanding, in the medium
access control game, we design the utility function of each
user as follows.

U(p, q) =
p

x∗ t(q)− h
p

x∗ log
p

ex∗/K̃
. (6)

The utility function contains two parts. The first part p
x∗ t(q)

is a linear function in p that intends to control the conditional
success probability q above its desired value shown in (5).
We require that t(q), which is a function of q, should satisfy
dt(q)
dq ≥ 0. We say that function t(q) is unbiased if t(q∗) = 0.

Note that, with an unbiased t(q) function, the p
x∗ t(q) term

alone tells a user to increase p when q < q∗ and to decrease
p when q > q∗1. The second part h p

x∗ log p

ex∗/K̃
in the

utility function, with h being a scaling parameter, is a convex
function in p that intends to keep the transmission probability
p around its targeted value x∗/K̃. Note that h p

x∗ log p

ex∗/K̃
is

minimized at p = x∗/K̃.
According to Theorem 3, if parameter h is chosen appropri-

ately, the non-cooperative medium access control game should
have a unique Nash equilibrium. Furthermore, if K̃ = K ≫ 1,
and the t(q) function is unbiased, then the Nash equilibrium
is represented by p = x∗/K for all users since

∂U(p, q)

∂p

∣∣∣∣
p=x∗/K,q=q∗

=
t(q∗)

x∗ − h

x∗

[
log

1

e
+ 1

]
= 0. (7)

To understand the idea behind the utility function design of
(6), we can think about the distributed channel sharing game
as a social event. Let us regard transmission probability p and
conditional success probability q as the “behavior” and the
measured “feedback” of a user. To participate in the social
event, each user chooses a behavior target x∗/K̃ and a feed-
back target q∗, which are calculated via utility maximization
in an envisioned network. In the above discussion for example,
the targets are computed via sum throughput optimization in
a random multiple access network with homogeneous users.
Once the targets are obtained, each user chooses a utility
function that specifies how the user should try to keep his
behavior around the behavior target, and how the user should
respond to the social force if the measured feedback differs
from the feedback target.

IV. UTILITY DESIGN WITH AN ENHANCED
PHYSICAL-LINK LAYER INTERFACE

Let us now consider the same system investigated in Section
III, but with each user having M ≥ 2 transmission options.

1For various reasons, users may prefer a biased t(q) function over an
unbiased one. Discussions on this issue is skipped in this paper due to page
limitation.

Assume that, each user, say User k, keeps an estimated total
number of users, denoted by K̃k. For each user and each non-
idling transmission option, say option gkm, User k chooses
two parameters: a targeted conditional success probability
q∗km and a targeted transmission probability x∗

km/K̃k. Given
these parameters, utility function of User k is designed as the
summations of two parts each is the summation of M items
corresponding to the M non-idling transmission options.

Uk(pk, qk) =
M∑

m=1

pkm
x∗
km

dkmtkm(qkm)

−hk

M∑
m=1

pkm
x∗
km

log
pkm

skmex∗
km/K̃k

. (8)

The first part
∑M

m=1
pkm

x∗
km

dkmtkm(qkm) is a linear func-
tion in pk that intends to control the conditional success
probability vector qk above its desired values. We require
that dtkm(q)

dq ≥ 0. Differs from the case of binary trans-
mission options, we introduce a “steering vector” dk =
[dk1, dk2, · · · , dkM ]T , with dk ≥ 0,dT

k 1 ≤ 1, to al-
low each user to assign different weights to terms corre-
sponding to different transmission options. The second part
hk

∑M
m=1

pkm

x∗
km

log pkm

skmex∗
km

/K̃k
is a convex function in pk that

intends to keep the transmission probability vector pk around
a targeted value p∗

k. We introduce another “steering vector”
sk = [sk1, sk2, · · · , skM ]T , with sk ≥ 0, sTk 1 ≤ 1, and
construct the targeted transmission probability vector p∗

k as
p∗
k = [sk1x

∗
k1/K̃k, sk2x

∗
k2/K̃k, · · · , skMx∗

kM/K̃k]
T .

Without specifying how the q∗km and x∗
km/K̃k parameters

are determined, our key result is presented in the following
theorem, which shows that if the scaling parameters hk are
chosen appropriately, then the non-cooperative medium access
control game has a unique Nash equilibrium.

Theorem 3: Given the steering vectors dk, sk, k =
1, · · · ,K, the medium access control game has a unique
Nash equilibrium if the following inequality is satisfied for
all k = 1, · · · ,K and m = 1, · · · ,M

K̃k

K

hk

x∗2
km

e
−

t
(max)

km
hk ≥ max


(
t′
(max)
km

x∗
km

)2

, 1

 , (9)

where t
(max)
km = maxq tkm(q) and t′

(max)
km = maxq

dtkm(q)
dq .

Proof: According to Theorem 1, the medium access control
game has at least one Nash equilibrium. We will use Theorem
2 to prove that the Nash equilibrium must be unique.

Assume that P (1) and P (2) are two different equilibria of
the medium access control game. Let 0 ≤ θ ≤ 1. Define
P = θP (1)+(1−θ)P (2). Because P (1) is a Nash equilibrium,
the following inequality holds for all k = 1, · · · ,K and m =
1, · · · ,M ,

dkmtkm(q
(1)
km)− hk

(
log

p
(1)
km

skmx∗
km/K̃k

)
≥ 0, (10)

where q(1)km is the conditional success probability corresponding
to equilibrium P (1). Because dkm ≤ 1, we get from (10) that



p
(1)
km ≤ skmx∗

km

K̃k
e

t
(max)

km
hk . Since P (2) is also a Nash equilibrium

and therefore has to satisfy a similar inequality, from P =
θP (1) + (1− θ)P (2), we get

pkm ≤ skmx∗
km

K̃k

e
t
(max)

km
hk . (11)

Let Gkl(P ) be defined in (2). We first obtain the following
inequality according to (11).

K∑
k=1

[p
(1)
k − p

(2)
k ]TGkk(P )[p

(1)
k − p

(2)
k ]

= −
K∑

k=1

M∑
m=1

(p
(1)
km − p

(2)
km)2

hk

x∗
kmpkm

≤ −
K∑

k=1

M∑
m=1

(p
(1)
km − p

(2)
km)2

K̃khk

skmx∗2
km

e
−

t
(max)

km
hk

≤ −
K∑

k=1

 M∑
m=1

|p(1)km − p
(2)
km|

√
K̃khk

x∗2
km

e
−

t
(max)

km
hk

2

≤ −

 K∑
k=1

M∑
m=1

|p(1)km − p
(2)
km|

√
K̃k

K

hk

x∗2
km

e
−

t
(max)

km
hk

2

(12)

Next, we show that, for any k, l = 1, · · · ,K, l ̸= k, and
for any m,n = 1, · · · ,M , we have −1 ≤ ∂qkm

∂pln
≤ 0. Define

ξ(k)(P |gkm, gln) as the probability that the packet from User
k is received successfully conditioned on that User k chooses
transmission option gkm and User l chooses transmission
option gln. Define ξ(k)(P |gkm, gl0) as the probability that the
packet from User k is received successfully conditioned on
that User k chooses transmission option gkm and User l idles.
Because idling causes no more interference than transmitting
a packet, we have ξ(k)(P |gkm, gl0) ≥ ξ(k)(P |gkm, gln). Note
that

∂qkm
∂pln

=
∂
[
plnξ(k)(P |gkm, gln)

]
∂pln

+
∂
[(

1−
∑M

i=1 pli

)
ξ(k)(P |gkm, gl0)

]
∂pln

= ξ(k)(P |gkm, gln)− ξ(k)(P |gkm, gl0)

∈ [−1, 0]. (13)

From (13), we get
K∑

k=1

K∑
l=1,l ̸=k

[p
(1)
k − p

(2)
k ]TGkl(P )[p

(1)
l − p

(2)
l ]

≤
K∑

k=1

[
M∑

m=1

dkm
x∗
km

t′
(max)
km |p(1)km − p

(2)
km|

]

×

 K∑
l=1,l ̸=k

M∑
m=1

|p(1)lm − p
(2)
lm |


<

[
K∑

k=1

M∑
m=1

max

{
t′
(max)
km

x∗
km

, 1

}
|p(1)km − p

(2)
km|

]2
. (14)

Combining (12), (14) and assumption (9), we obtain

K∑
k=1

K∑
l=1

(p
(1)
k − p

(2)
k )TGkl(P )(p

(1)
l − p

(2)
l ) < 0. (15)

According to Theorem 2, the Nash equilibrium must be
unique.

To understand the utility function design and the signifi-
cance of Theorem 3, we can again think about the distributed
channel access game as a social event, and use pk, qk to
represent the “behavior” and the measured “feedback” of
User k. We assume that User k should choose a targeted
transmission probability x∗

km/K̃k and a targeted conditional
success probability q∗km for each of the non-idling transmission
options. Since a user now has M non-idling options, the
behavior target p∗

k is constructed using a steering vector sk
as p∗

k = [sk1x
∗
k1/K̃k, sk2x

∗
k2/K̃k, · · · , skMx∗

kM/K̃k]
T . The

term hk

∑M
m=1

pkm

x∗
km

log pkm

skmex∗
km

/K̃k
in the utility function,

which we call the “self-behavior preference” term, intends to
keep the behavior of User k around the targeted behavior p∗

k.
On the other hand, we construct the feedback target q∗

k as q∗
k =

[q∗k1, q
∗
k2, · · · , q∗kM ]T . The term

∑M
m=1

pkm

x∗
km

dkmtkm(qkm) in
the utility function, which we call the “social-behavior pref-
erence” term, specifies how User k should adapt his behavior
according to the social forces represented by the measured
feedback. Here the steering vector dk is introduced to allow
User k to emphasize or ignore social forces corresponding
to different transmission options. Online adaptations of the
steering vectors dk and sk will be illustrated using an example
in Section V. Note that, if the the scaling parameters hk

are large enough, then the self-behavior preference term will
dominate the utility function of each user. Consequently, users
will keep their behaviors around their pre-determined targets,
and this can easily lead to a unique Nash equilibrium for the
distributed channel access game. Theorem 3 showed that, to
achieve such an effect, so long as the estimated total number
of users K̃k is not too far from the true value K, the values
of hk do not need to scale in the total number of users K or
the total number of non-idling transmission options M .

V. SIMULATION RESULTS

In this section, we use computer simulations to show that,
once multiple transmission options are provided for each user,
distributed networks often prefers low rate and parallel channel
access options over high rate and exclusive channel access
options. Such a property, being consistent with the well-known
information theoretic understanding, can demonstrate the po-
tential impact of the enhanced physical-link layer interface on
the design of medium access control algorithms.

Example: Consider a multiple access system where K =
100 users stays on a circle centered around the receiver. The
multiple access channel is memoryless with additive Gaussian
noise of zero mean and variance N0. The channel gains from
all the users to the receiver are assumed to be unit-valued. Each
user has three non-idling transmission options, denoted by g1,



g2, and g3. The three non-idling options all correspond to ran-
dom Gaussian block channel codes at the physical layer with
transmission power P , but with rates r1 = 1

14 log
(
1 + 7P

N0

)
,

r2 = 1
6 log

(
1 + 3P

N0

)
, r3 = 1

2 log
(
1 + P

N0

)
, respectively.

We set P/N0 = 10. Assume that the total number of users
is known, i.e., K̃ = 100. For every transmission option
gi, i = 1, 2, 3, targeted conditional success probability q∗i
and transmission probability x∗

i /100 are chosen to maximize
the sum throughput of a classical system with each user
having binary transmission options of {g0, gi}. In other words,
(q∗1 , x

∗
1), (q

∗
2 , x

∗
2), (q

∗
3 , x

∗
3) are determined using (5) and (4) by

setting N at 7, 3, 1, respectively. We choose ti(qi) = x∗
i diriqi,

which is a biased function since ti(q
∗
i ) ̸= 0. We also set the

scaling parameter h at the minimum value satisfying (9).
We initialize the transmission probability vectors of all users

at p = [1/4, 1/4, 1/4]T , and their steering vectors at d = s =
[1/3, 1/3, 1/3]T . During the distributed channel sharing game,
each user first uses 200 time slots to measure the conditional
success probability vector q. If during this time interval a user
does not have a sufficient number of transmission attempts
using a particular option gi, then qi is set to a small but none-
zero value. After measuring the conditional success probability
vector q, each user then updates its transmission probability
vector p in the gradient direction that maximizes the utility
function. Steering vector s is updated in the gradient direction
that minimizes the term

∑M
m=1

pm

x∗
m
log pm

smex∗
m/K̃

. Steering
vector d is updated to increase the weights of feedback
terms with larger values of ti(qi). The procedure iterates till
transmission probability vectors of all users converge. Figure
1 illustrated the sum throughput of the system in bits/symbol
in each iteration (one iteration takes 200 time slots). The three
dashed-red lines respectively correspond to the targeted sum
throughput of the systems where each user only has binary
transmission options of {g0, g1}, {g0, g2}, {g0, g3}. In this
example, transmission probability vectors of all users converge
quickly to p = [0.0507, 0, 0]T . In other words, users will only
use the low rate option to share the multiple access channel.
Note that the resulting sum throughput is slightly higher than
the top dashed-red line because the targeted probability x∗

1/K
is only approximately optimal for a finite K.

In this example, we update steering vector s to minimize the
“self-behavior preference” term. Let us define the following
region of the transmission probability vector,

Rp =
{
p|∃s̃, s̃ ≥ 0, s̃T1 = 1, such that

p = [s̃1x
∗
1/K̃, s̃2x

∗
2/K̃, · · · , s̃Mx∗

M/K̃]T
}
. (16)

Note that, if we take the adaptation of s into
consideration, the self-behavior preference term
mins,s≥0,sT 1≤1

∑M
m=1

pm

x∗
m
log pm

smex∗
m/K̃

achieves the same

minimum value of −K̃ at any p ∈ Rp. Therefore, with
the help of the steering vector adaptation, the self-behavior
preference term only intends to keep the behavior p of a user
around region Rp. It however does not provide any preference
on which transmission option should be more favorable to
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Fig. 1. Convergence of the sum throughput in bits/symbol. P/N0 = 10.
One iteration takes 200 time slots.

the user. On the other hand, the “social-behavior preference”
term intends to help a user to find the best transmission
option based on feedback received from the system. If we fix
steering vector d at d = [1/3, 1/3, 1/3]T , then each user will
assign positive probabilities to all entries of the transmission
probability vector. Adaptation of steering vector d helps a
user to favor the transmission option with the best feedback,
which maximizes ti(qi).

VI. CONCLUSION

We investigated the problem of distributed medium access
control with an enhanced physical-link layer interface where
each link layer user is provided with a handful of transmission
options. We formulated the problem as a non-cooperative game
and obtained a condition under which the game has a unique
Nash equilibrium.
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