20,053 research outputs found

    Dynamic Change of Awareness during Meditation Techniques: Neural and Physiological Correlates

    Get PDF
    Recent fndings illustrate how changes in consciousness accommodated by neural correlates and plasticity of the brain advance a model of perceptual change as a function of meditative practice. During the mindbody response neural correlates of changing awareness illustrate how the autonomic nervous system shifts from a sympathetic dominant to a parasympathetic dominant state. Expansion of awareness during the practice of meditation techniques can be linked to the Default Mode Network (DMN), a network of brain regions that is active when the one is not focused on the outside world and the brain is restful yet awake (Chen et al., 2008). A model is presented illustrating the dynamic mindbody response before and after mindfulness meditation, and connections are made with prefrontal cortex activity, the cardiac and respiratory center, the thalamus and amygdala, the DMN and cortical function connectivity. The default status of the DMN changes corresponding to autonomic modulation resulting from meditation practice

    Meditation Experiences, Self, and Boundaries of Consciousness

    Get PDF
    Our experiences with the external world are possible mainly through vision, hearing, taste, touch, and smell providing us a sense of reality. How the brain is able to seamlessly integrate stimuli from our external and internal world into our sense of reality has yet to be adequately explained in the literature. We have previously proposed a three-dimensional unified model of consciousness that partly explains the dynamic mechanism. Here we further expand our model and include illustrations to provide a better conception of the ill-defined space within the self, providing insight into a unified mind-body concept. In this article, we propose that our senses “super-impose” on an existing dynamic space within us after a slight, imperceptible delay. The existing space includes the entire intrapersonal space and can also be called the “the body’s internal 3D default space”. We provide examples from meditation experiences to help explain how the sense of ‘self’ can be experienced through meditation practice associated with underlying physiological processes that take place through cardio-respiratory synchronization and coherence that is developed among areas of the brain. Meditation practice can help keep the body in a parasympathetic dominant state during meditation, allowing an experience of inner ‘self’. Understanding this physical and functional space could help unlock the mysteries of the function of memory and cognition, allowing clinicians to better recognize and treat disorders of the mind by recommending proven techniques to reduce stress as an adjunct to medication treatment

    Effects of meditation experience on functional connectivity of distributed brain networks

    Get PDF
    This study sought to examine the effect of meditation experience on brain networks underlying cognitive actions employed during contemplative practice. In a previous study, we proposed a basic model of naturalistic cognitive fluctuations that occur during the practice of focused attention meditation. This model specifies four intervals in a cognitive cycle: mind wandering (MW), awareness of MW, shifting of attention, and sustained attention. Using subjective input from experienced practitioners during meditation, we identified activity in salience network regions during awareness of MW and executive network regions during shifting and sustained attention. Brain regions associated with the default mode were active during MW. In the present study, we reasoned that repeated activation of attentional brain networks over years of practice may induce lasting functional connectivity changes within relevant circuits. To investigate this possibility, we created seeds representing the networks that were active during the four phases of the earlier study, and examined functional connectivity during the resting state in the same participants. Connectivity maps were then contrasted between participants with high vs. low meditation experience. Participants with more meditation experience exhibited increased connectivity within attentional networks, as well as between attentional regions and medial frontal regions. These neural relationships may be involved in the development of cognitive skills, such as maintaining attention and disengaging from distraction, that are often reported with meditation practice. Furthermore, because altered connectivity of brain regions in experienced meditators was observed in a non-meditative (resting) state, this may represent a transference of cognitive abilities “off the cushion” into daily life

    The meditative mind: a comprehensive meta-analysis of MRI studies

    Get PDF
    Over the past decade mind and body practices, such as yoga and meditation, have raised interest in different scientific fields; in particular, the physiological mechanisms underlying the beneficial effects observed in meditators have been investigated. Neuroimaging studies have studied the effects of meditation on brain structure and function and findings have helped clarify the biological underpinnings of the positive effects of meditation practice and the possible integration of this technique in standard therapy. The large amount of data collected thus far allows drawing some conclusions about the neural effects of meditation practice. In the present study we used activation likelihood estimation (ALE) analysis to make a coordinate-based meta-analysis of neuroimaging data on the effects of meditation on brain structure and function. Results indicate that meditation leads to activation in brain areas involved in processing self-relevant information, self-regulation, focused problem-solving, adaptive behavior, and interoception. Results also show that meditation practice induces functional and structural brain modifications in expert meditators, especially in areas involved in self-referential processes such as self-awareness and self-regulation. These results demonstrate that a biological substrate underlies the positive pervasive effect of meditation practice and suggest that meditation techniques could be adopted in clinical populations and to prevent disease

    Contemplative Science: An Insider's Prospectus

    Get PDF
    This chapter describes the potential far‐reaching consequences of contemplative higher education for the fields of science and medicine

    Issues and perspectives in meditation research: in search for a definition

    Get PDF
    Despite the growing interest in the neurobiological correlates of meditation, most research has omitted to take into account the underlying philosophical aspects of meditation and its wider implications. This, in turn, is reflected in issues surrounding definition, study design, and outcomes. Here, I highlight the often ignored but important aspect of definition in the existing scholarship on neuroscience and meditation practice. For a satisfactory account of a neuroscience of meditation, we must aim to retrieve an operational definition that is inclusive of a traditional ontological description as well as the modern neurocognitive account of the phenomena. Moving beyond examining the effects of meditation practice, to take a potential step forward in the direction to establish how meditation works, it becomes crucial to appraise the philosophical positions that underlie the phenomenology of meditation in the originating traditions. This endeavor may challenge our intuitions and concepts in either directions, but issues pertaining to definition, design, and validity of response measures are extremely important for the evolution of the field and will provide a much-needed context and framework for meditation based interventions

    How Does the Body Affect the Mind? Role of Cardiorespiratory Coherence in the Spectrum of Emotions

    Get PDF
    The brain is considered to be the primary generator and regulator of emotions; however, afferent signals originating throughout the body are detected by the autonomic nervous system (ANS) and brainstem, and, in turn, can modulate emotional processes. During stress and negative emotional states, levels of cardiorespiratory coherence (CRC) decrease, and a shift occurs toward sympathetic dominance. In contrast, CRC levels increase during more positive emotional states, and a shift occurs toward parasympathetic dominance. Te dynamic changes in CRC that accompany different emotions can provide insights into how the activity of the limbic system and afferent feedback manifest as emotions. The authors propose that the brainstem and CRC are involved in important feedback mechanisms that modulate emotions and higher cortical areas. That mechanism may be one of many mechanisms that underlie the physiological and neurological changes that are experienced during pranayama and meditation and may support the use of those techniques to treat various mood disorders and reduce stress

    The neural mechanisms of mindfulness-based pain relief: a functional magnetic resonance imaging-based review and primer.

    Get PDF
    The advent of neuroimaging methodologies, such as functional magnetic resonance imaging (fMRI), has significantly advanced our understanding of the neurophysiological processes supporting a wide spectrum of mind-body approaches to treat pain. A promising self-regulatory practice, mindfulness meditation, reliably alleviates experimentally induced and clinical pain. Yet, the neural mechanisms supporting mindfulness-based pain relief remain poorly characterized. The present review delineates evidence from a spectrum of fMRI studies showing that the neural mechanisms supporting mindfulness-induced pain attenuation differ across varying levels of meditative experience. After brief mindfulness-based mental training (ie, less than 10 hours of practice), mindfulness-based pain relief is associated with higher order (orbitofrontal cortex and rostral anterior cingulate cortex) regulation of low-level nociceptive neural targets (thalamus and primary somatosensory cortex), suggesting an engagement of unique, reappraisal mechanisms. By contrast, mindfulness-based pain relief after extensive training (greater than 1000 hours of practice) is associated with deactivation of prefrontal and greater activation of somatosensory cortical regions, demonstrating an ability to reduce appraisals of arising sensory events. We also describe recent findings showing that higher levels of dispositional mindfulness, in meditation-naïve individuals, are associated with lower pain and greater deactivation of the posterior cingulate cortex, a neural mechanism implicated in self-referential processes. A brief fMRI primer is presented describing appropriate steps and considerations to conduct studies combining mindfulness, pain, and fMRI. We postulate that the identification of the active analgesic neural substrates involved in mindfulness can be used to inform the development and optimization of behavioral therapies to specifically target pain, an important consideration for the ongoing opioid and chronic pain epidemic
    corecore