1,730,778 research outputs found

    Medical Cyber-Physical Systems Development: A Forensics-Driven Approach

    Full text link
    The synthesis of technology and the medical industry has partly contributed to the increasing interest in Medical Cyber-Physical Systems (MCPS). While these systems provide benefits to patients and professionals, they also introduce new attack vectors for malicious actors (e.g. financially-and/or criminally-motivated actors). A successful breach involving a MCPS can impact patient data and system availability. The complexity and operating requirements of a MCPS complicates digital investigations. Coupling this information with the potentially vast amounts of information that a MCPS produces and/or has access to is generating discussions on, not only, how to compromise these systems but, more importantly, how to investigate these systems. The paper proposes the integration of forensics principles and concepts into the design and development of a MCPS to strengthen an organization's investigative posture. The framework sets the foundation for future research in the refinement of specific solutions for MCPS investigations.Comment: This is the pre-print version of a paper presented at the 2nd International Workshop on Security, Privacy, and Trustworthiness in Medical Cyber-Physical Systems (MedSPT 2017

    A review of human factors principles for the design and implementation of medication safety alerts in clinical information systems.

    Get PDF
    The objective of this review is to describe the implementation of human factors principles for the design of alerts in clinical information systems. First, we conduct a review of alarm systems to identify human factors principles that are employed in the design and implementation of alerts. Second, we review the medical informatics literature to provide examples of the implementation of human factors principles in current clinical information systems using alerts to provide medication decision support. Last, we suggest actionable recommendations for delivering effective clinical decision support using alerts. A review of studies from the medical informatics literature suggests that many basic human factors principles are not followed, possibly contributing to the lack of acceptance of alerts in clinical information systems. We evaluate the limitations of current alerting philosophies and provide recommendations for improving acceptance of alerts by incorporating human factors principles in their design

    A study of general practitioners' perspectives on electronic medical records systems in NHS Scotland

    Get PDF
    <b>Background</b> Primary care doctors in NHSScotland have been using electronic medical records within their practices routinely for many years. The Scottish Health Executive eHealth strategy (2008-2011) has recently brought radical changes to the primary care computing landscape in Scotland: an information system (GPASS) which was provided free-of-charge by NHSScotland to a majority of GP practices has now been replaced by systems provided by two approved commercial providers. The transition to new electronic medical records had to be completed nationally across all health-boards by March 2012. <p></p><b> Methods</b> We carried out 25 in-depth semi-structured interviews with primary care doctors to elucidate GPs' perspectives on their practice information systems and collect more general information on management processes in the patient surgical pathway in NHSScotland. We undertook a thematic analysis of interviewees' responses, using Normalisation Process Theory as the underpinning conceptual framework. <p></p> <b>Results</b> The majority of GPs' interviewed considered that electronic medical records are an integral and essential element of their work during the consultation, playing a key role in facilitating integrated and continuity of care for patients and making clinical information more accessible. However, GPs expressed a number of reservations about various system functionalities - for example: in relation to usability, system navigation and information visualisation. <b>Conclusion </b>Our study highlights that while electronic information systems are perceived as having important benefits, there remains substantial scope to improve GPs' interaction and overall satisfaction with these systems. Iterative user-centred improvements combined with additional training in the use of technology would promote an increased understanding, familiarity and command of the range of functionalities of electronic medical records among primary care doctors

    Protecting Patient Privacy: Strategies for Regulating Electronic Health Records Exchange

    Get PDF
    The report offers policymakers 10 recommendations to protect patient privacy as New York state develops a centralized system for sharing electronic medical records. Those recommendations include:Require that the electronic systems employed by HIEs have the capability to sort and segregate medical information in order to comply with guaranteed privacy protections of New York and federal law. Presently, they do not.Offer patients the right to opt-out of the system altogether. Currently, people's records can be uploaded to the system without their consent.Require that patient consent forms offer clear information-sharing options. The forms should give patients three options: to opt-in and allow providers access to their electronic medical records, to opt-out except in the event of a medical emergency, or to opt-out altogether.Prohibit and sanction the misuse of medical information. New York must protect patients from potential bad actors--that small minority of providers who may abuse information out of fear, prejudice or malice.Prohibit the health information-sharing networks from selling data. The State Legislature should pass legislation prohibiting the networks from selling patients' private health information

    Tailored Patient Information: Some Issues and Questions

    Full text link
    Tailored patient information (TPI) systems are computer programs which produce personalised heath-information material for patients. TPI systems are of growing interest to the natural-language generation (NLG) community; many TPI systems have also been developed in the medical community, usually with mail-merge technology. No matter what technology is used, experience shows that it is not easy to field a TPI system, even if it is shown to be effective in clinical trials. In this paper we discuss some of the difficulties in fielding TPI systems. This is based on our experiences with 2 TPI systems, one for generating asthma-information booklets and one for generating smoking-cessation letters.Comment: This is a paper about technology-transfer. It does not have much technical conten

    Using information to deliver safer care: a mixed-methods study exploring general practitioners’ information needs in North West London primary care

    Get PDF
    The National Health Service in England has given increasing priority to improving inter-professional communication, enabling better management of patients with chronic conditions and reducing medical errors through effective use of information. Despite considerable efforts to reduce patient harm through better information usage, medical errors continue to occur, posing a serious threat to patient safety.This study explores the range, quality and sophistication of existing information systems in primary care with the aim to capture what information practitioners need to provide a safe service and identify barriers to its effective use in care pathways.Data were collected through semi-structured interviews with general practitioners from surgeries in North West London and a survey evaluating their experience with information systems in care pathways.Important information is still missing, specifically discharge summaries detailing medication changes and changes in the diagnosis and management of patients, blood results ordered by hospital specialists and findings from clinical investigations. Participants identified numerous barriers, including the communication gap between primary and secondary care, the variable quality and consistency of clinical correspondence and the inadequate technological integration.Despite attempts to improve integration and information flow in care pathways, existing systems provide practitioners with only partial access to information, hindering their ability to take informed decisions. This study offers a framework for understanding what tools should be in place to enable effective use of information in primary care

    Medical Information Representation Framework for Mobile Healthcare

    Get PDF
    In mobile healthcare, medical information are often expressed in different formats due to the local policies and regulations and the heterogeneity of the applications, systems, and the adopted Information and communication technology. This chapter describes a framework which enables medical information, in particular clinical vital signs and professional annotations, be processed, exchanged, stored and managed modularly and flexibly in a mobile, distributed and heterogeneous environment despite the diversity of the formats used to represent the information. To deal with medical information represented in multiple formats the authors adopt techniques and constructs similar to the ones used on the Internet, in particular, the authors are inspired by the constructs used in multi-media e-mail and audio-visual data streaming standards. They additionally make a distinction of the syntax for data transfer and store from the syntax for expressing medical domain concepts. In this way, they separate the concerns of what to process, exchange and store from how the information can be encoded or transcoded for transfer over the internet. The authors use an object oriented information model to express the domain concepts and their relations while briefly illustrate how framework tools can be used to encode vital sign data for exchange and store in a distributed and heterogeneous environment

    Medical information management

    Get PDF
    With progress in information and communication technology, medical information has been converted to digital formats and stored and managed using computer systems. The construction, management, and operation of medical information systems and regional medical liaison systems are the main components of the clinical tasks of medical informatics departments. Research using medical information accumulated in these systems is also a task for medical informatics department. Recently, medical real-world data (RWD) accumulated in medical information systems has become a focus not only for primary use but also for secondary uses of medical information. However, there are many problems, such as standardization, collection, cleaning, and analysis of them. The internet of things and artificial intelligence are also being applied in the collection and analysis of RWD and in resolving the above problems. Using these new technologies, progress in medical care and clinical research is about to enter a new era
    corecore