3 research outputs found

    Medical image enhancement using threshold decomposition driven adaptive morphological filter

    Get PDF
    One of the most common degradations in medical images is their poor contrast quality. This suggests the use of contrast enhancement methods as an attempt to modify the intensity distribution of the image. In this paper, a new edge detected morphological filter is proposed to sharpen digital medical images. This is done by detecting the positions of the edges and then applying a class of morphological filtering. Motivated by the success of threshold decomposition, gradientbased operators are used to detect the locations of the edges. A morphological filter is used to sharpen these detected edges. Experimental results demonstrate that the detected edge deblurring filter improved the visibility and perceptibility of various embedded structures in digital medical images. Moreover, the performance of the proposed filter is superior to that of other sharpener-type filters

    A reconfigurable real-time morphological system for augmented vision

    Get PDF
    There is a significant number of visually impaired individuals who suffer sensitivity loss to high spatial frequencies, for whom current optical devices are limited in degree of visual aid and practical application. Digital image and video processing offers a variety of effective visual enhancement methods that can be utilised to obtain a practical augmented vision head-mounted display device. The high spatial frequencies of an image can be extracted by edge detection techniques and overlaid on top of the original image to improve visual perception among the visually impaired. Augmented visual aid devices require highly user-customisable algorithm designs for subjective configuration per task, where current digital image processing visual aids offer very little user-configurable options. This paper presents a highly user-reconfigurable morphological edge enhancement system on field-programmable gate array, where the morphological, internal and external edge gradients can be selected from the presented architecture with specified edge thickness and magnitude. In addition, the morphology architecture supports reconfigurable shape structuring elements and configurable morphological operations. The proposed morphology-based visual enhancement system introduces a high degree of user flexibility in addition to meeting real-time constraints capable of obtaining 93 fps for high-definition image resolution

    Erstellung quantitativer Imaging-Biomarker zur Detektion von fibrosiertem Lungengewebe im HR-CT

    Get PDF
    Ziel dieser Arbeit war die Erstellung von Imaging-Biomarkern, die robust zwischen fibrosiertem und gesundem Lungengewebe im HR-CT unterscheiden können. Mit Hilfe morphologischer Bildverarbeitungsverfahren sollten die Charakteristika von fibrosiertem Lungengewebe verstärkt und numerisch ausgewertet werden. Hierfür wurden HR-CT-Bilddaten von 78 Patienten mit fibrosiertem Lungengewebe und 23 Patienten mit unauffälligem Lungenparenchym untersucht. Zu Beginn erfolgte eine semiautomatische Segmentierung der Schnittbilder, um anschließend die für fibrosiertes Lungengewebe typischen morphologischen Charakteristika hervorzuheben. Da diese Merkmale bei Lungengesungen nicht vorliegen, führt diese Bearbeitung zu einer Verstärkung der Unterschiede zwischen Patienten mit Lungenfibrose und Lungengesunden. Dazu erfolgte nach der Segmentierung im zweiten Schritt eine Binarisierung durch drei festgelegte Schwellenwertbereiche, um morphologische Charakteristika des Lungengewebes hervorzuheben. Im dritten Schritt wurden diese Merkmale durch vier verschiedene Kombinationen aus Closing- und Opening-Strukturelementen verstärkt. Die Ergebnisse zeigen für alle vier erstellten Parameter statistisch hoch signifikante Gruppenunterschiede. Zur Klassifizierung der insgesamt 39 Datenreihen wurden, auf einer logistischen Regressionsanalyse basierend, die AUC-Werte der ROC-Kurven bestimmt. Eine erste Auswertung erfolgte nach der Binarisierung und eine zweite Auswertung nach der Verstärkung der morphologischen Charakteristika durch Closing- und Opening-Operationen. Schon nach der Binarisierung zeigten sich AUC-Werte bis zu 0,976. Der analysierte Schwellenwertbereich S3-500; -200 HE brachte für die meisten Parameter die prädiktivsten Werte hervor. Der Parameter Cluster-Pixel/CT-Seg-Pixel im Schwellenwertbereich S3 mit einem 5×5 Pixel großem Closing- und einem 3×3 Pixel großem Opening-Strukturelement erreichte einen maximalen AUC-Wert von 0,989. Durch den ersten Arbeitsschritt der Binarisierung konnte im Schwellenwertbereich S3 robust zwischen den Gruppen mit fibrosiertem und gesundem Lungengewebe unterschieden werden. Die Verstärkung der morphologischen Charakteristika konnte eine zusätzliche Verbesserung der AUC-Werte erzielen. Eingebettet in ein Konzept, wie z. B. von Radiomics, stellt dieses Modell einen funktionierenden und robusten Imaging-Biomarker dar.The purpose of this study was the creation of imaging biomarkers to distinguish patients with pulmonary fibrosis and healthy subjects in high-resolution CTs. Intensification of characteristics of pulmonary fibrosis, based on morphological image processing, was performed and evaluated numerically. Datasets of 78 patients with the diagnosis of pulmonary fibrosis and 23 healthy subjects were studied and compared. At first semiautomatic lung parenchyma segmentation was performed. After that, the segmented images were used to isolate and to enhance specif- ic morphological fibrosis characteristics. Next, binary images were created for each of three different Hounsfield unit (HU) threshold ranges. To intensify the morphological fibrosis characteristics, basic image processing methods like morphological opening and closing were applied, leading to different, parameterized image variations of the normal and the fibrotic group. Statistical analysis shows significant differences, between both patient groups, for all parameter settings. In order to find the best parameter settings, a logistic regression analysis was implemented and the values of the area under the receiver operator charac- teristic (ROC) curve (AUC) were computed. A first group comparison was performed after the binarization of the images and a second comparison after the enhancement of the specific fibrosis characteristics by the closing and opening operations. Based on the analysis of binary image, AUC values of up to 0,976 could be found. The threshold range of -500 to -200 HU lead to the highest AUC values. Application of the morpho- logical image processing operations lead to a slight increase up to AUC values being 0,989. These findings suggest that the evaluated image processing operations can serve as a valuable numerical image marker for a reproducible, and observer independent differen- tiation between normal and fibrotic lung parenchyma. The concept fits well into the current radiomics philosophy
    corecore