245,940 research outputs found

    On the Effect of Inter-observer Variability for a Reliable Estimation of Uncertainty of Medical Image Segmentation

    Full text link
    Uncertainty estimation methods are expected to improve the understanding and quality of computer-assisted methods used in medical applications (e.g., neurosurgical interventions, radiotherapy planning), where automated medical image segmentation is crucial. In supervised machine learning, a common practice to generate ground truth label data is to merge observer annotations. However, as many medical image tasks show a high inter-observer variability resulting from factors such as image quality, different levels of user expertise and domain knowledge, little is known as to how inter-observer variability and commonly used fusion methods affect the estimation of uncertainty of automated image segmentation. In this paper we analyze the effect of common image label fusion techniques on uncertainty estimation, and propose to learn the uncertainty among observers. The results highlight the negative effect of fusion methods applied in deep learning, to obtain reliable estimates of segmentation uncertainty. Additionally, we show that the learned observers' uncertainty can be combined with current standard Monte Carlo dropout Bayesian neural networks to characterize uncertainty of model's parameters.Comment: Appears in Medical Image Computing and Computer Assisted Interventions (MICCAI), 201

    Cloud Bioinformatics in a private cloud deployment

    No full text
    This chapter describes service portability for a private cloud deployment, including a detailed case study about Cloud Bioinformatics services developed as part of the Cloud Computing Adoption Framework (CCAF). The Cloud Bioinformatics design and deployment is based on Storage Area Network (SAN) technologies, details of which include functionalities, technical implementation, architecture, and user support. Bioinformatics applications are written on the SAN-based private cloud, which can simulate complex biological sciences and present them in a way that anyone without prior knowledge can understand. Several bioinformatics results are discussed, particularly brain segmentation, which demonstrates different parts of the brain simulated by the private cloud. In addition, benefits of CCAF are illustrated using several bioinformatics examples such as tumour modelling, brain imaging, insulin molecules, and simulations for medical training. The Cloud Bioinformatics solution offers cost reduction, time-saving, and user friendliness. </jats:p

    Cloud Storage and Bioinformatics in a private cloud deployment: Lessons for Data Intensive research

    No full text
    This paper describes service portability for a private cloud deployment, including a detailed case study about Cloud Storage and bioinformatics services developed as part of the Cloud Computing Adoption Framework (CCAF). Our Cloud Storage design and deployment is based on Storage Area Network (SAN) technologies, details of which include functionalities, technical implementation, architecture and user support. Experiments for data services (backup automation, data recovery and data migration) are performed and results confirm backup automation is completed swiftly and is reliable for data-intensive research. The data recovery result confirms that execution time is in proportion to quantity of recovered data, but the failure rate increases in an exponential manner. The data migration result confirms execution time is in proportion to disk volume of migrated data, but again the failure rate increases in an exponential manner. In addition, benefits of CCAF are illustrated using several bioinformatics examples such as tumour modelling, brain imaging, insulin molecules and simulations for medical training. Our Cloud Storage solution described here offers cost reduction, time-saving and user friendliness

    A Framework for Uncertain Cloud Data Security and Recovery Based on Hybrid Multi-User Medical Decision Learning Patterns

    Get PDF
    Machine learning has been supporting real-time cloud based medical computing systems. However, most of the computing servers are independent of data security and recovery scheme in multiple virtual machines due to high computing cost and time. Also, this cloud based medical applications require static security parameters for cloud data security. Cloud based medical applications require multiple servers to store medical records or machine learning patterns for decision making. Due to high Uncertain computational memory and time, these cloud systems require an efficient data security framework to provide strong data access control among the multiple users. In this work, a hybrid cloud data security framework is developed to improve the data security on the large machine learning patterns in real-time cloud computing environment. This work is implemented in two phases’ i.e. data replication phase and multi-user data access security phase. Initially, machine decision patterns are replicated among the multiple servers for Uncertain data recovering phase. In the multi-access cloud data security framework, a hybrid multi-access key based data encryption and decryption model is implemented on the large machine learning medical patterns for data recovery and security process. Experimental results proved that the present two-phase data recovering, and security framework has better computational efficiency than the conventional approaches on large medical decision patterns

    An Adaptive User Interface Framework for eHealth Services based on UIML

    Get PDF
    New sensory technologies and smaller, more capable mobile devices open opportunities for pervasive computing in the healthcare sector. Patients as well as medical professionals are, from a information and communication technology (ICT) point of view, better equipped than ever before. Despite this, many hospitals and other healthcare service providers have yet to exploit the potential unleashed by these technologies. In this paper, we present a framework for adaptive user interfaces for home care and smart hospital services. The framework uses the current context to provide healthcare professionals or patients with simpler, more efficient user interfaces. In a home care environment, user interface adaption is needed to tailor user interfaces to patients needs and impairments. In a smart hospital, user interface adaption considers medical professionals’ preferences and priorities. In addition, by using context to make input suggestions simplifies the input and limits the scope for errors. Our frameworks uses a modelbased approach and includes the current context in the interface generation process
    corecore