2 research outputs found

    Media handling for conferencing in MANETs

    Get PDF
    Mobile Ad hoc NETworks (MANETs) are formed by devices set up temporarily to communicate without using a pre-existing network infrastructure. Devices in these networks are disparate in terms of resource capabilities (e.g. processing power, battery energy). Multihop Cellular Networks (MCNs) incorporate multihop mobile ad-hoc paradigms into 3G conventional single-hop cellular networks. Conferencing, an essential category of applications in MANETs and MCNs, includes popular applications such as audio/video conferencing. It is defined as an interactive multimedia service comprising online exchange of multimedia content among several users. Conferencing requires two sessions: a call signaling session and a media handling session. Call signaling is used to set up, modify, and tear down conference sessions. Media handling deals with aspects such as media transportation, media mixing, and transcoding. In this thesis, we are concerned with media handling for conferencing in MANETs and MCNs. We propose an architecture based on two overlay networks: one for mixing and one for control. The first overlay is composed of nodes acting as mixers. Each node in the network has a media connection with one mixer in the first overlay. A novel distributed mixing architecture that minimizes the number of mixers in end-to-end paths is proposed as an architectural solution for this first overlay. A sub-network of nodes, called controllers, composes the second overlay. Each controller controls a set of mixers, and collectively, they manage and control the two-overlay network. The management and control tasks are assured by a media signaling architecture based on an extended version of Megaco/H.L248. The two-overlay network is self-organizing, and thus automatically assigns users to mixers, controls mixers and controllers, and recovers the network from failures. We propose a novel self-organizing scheme that has three components: self-growing, self-shrinking and self-healing. Self-growing and self-shrinking use novel workload balancing schemes that make decisions to enable and disable mixers and controllers. The workload balancing schemes use resources efficiently by balancing the load among the nodes according to their capabilities. Self-healing detects failed nodes and recovers the network when failures of nodes with responsibilities (mixers and controllers) occur. Detection of failed nodes is based on a novel application-level failure detection architecture. A novel architecture for media handling in MCNs is proposed. We use mediator concepts to connect the media handling entities of a MANET with the media entities of a 3G cellular network. A media mediator assures signaling and media connectivity between the two networks and acts as a translator of the different media handling protocols

    SIP servlets-based service provisioning in MANETs

    Get PDF
    Mobile Ad-hoc NETworks (MANETs) are a part of the fourth generation networks vision. They are new wireless networks having transient mobile nodes with no need for a pre-installed infrastructure. They are of utmost interest for the future networks owing to their flexibility, effortlessness of deployment and related low cost. They come in two flavours: standalone MANETs and integrated with the conventional 3G network. Providing value-added services is the core concept of several paradigms and has been extensively studied in legacy network. However, providing such services in MANETs is a challenging process. Indeed, MANETs are known for their heterogeneous devices, limited resources, dynamic topology and frequent disconnections/connections. New SIP based solutions for signalling and media handling in these networks are emerging. Furthermore, SIP is the primary protocol for 3G networks. Therefore, SIP servlets become a promising paradigm for service provisioning in MANETs. This thesis addresses the service provisioning aspects in both standalone MANETs and integrated 3G/MANETs. The SIP servlets framework is considered as the starting point while Multihop Cellular Networks (MCNs), the widely studied networks, are used as an example of integrated 3G/MANETs. Background information is provided, architectures requirements are derived and related work is reviewed. A novel business model is proposed for service provision in standalone MANETs. The business model defines the business roles and the relationship and interfaces between them. We also propose a service invocation and execution architecture implementing the business model. The solution is based on overlay network and a distribution scheme of the SIP servlets engine. The overlay network enables self-organization and self-recovery to take into account MANETs characteristics. As for the integrated 3G/MANETs we propose high level architectural alternatives for service provisioning in MCNs. We identify the most interesting alternatives from the network operator point of view and proposed a detailed and concrete architecture for the promising alternative. Overall architecture, functional entities and procedures are presented. During this work, we built prototypes as proof-of-concept and made preliminary performance measurements, used SPIN as protocol validation tool and adopted OPNET for simulation. The results show that we can provide services in MANETs as we do in conventional networks with reasonable performance
    corecore