636 research outputs found

    Trustworthy Federated Learning: A Survey

    Full text link
    Federated Learning (FL) has emerged as a significant advancement in the field of Artificial Intelligence (AI), enabling collaborative model training across distributed devices while maintaining data privacy. As the importance of FL increases, addressing trustworthiness issues in its various aspects becomes crucial. In this survey, we provide an extensive overview of the current state of Trustworthy FL, exploring existing solutions and well-defined pillars relevant to Trustworthy . Despite the growth in literature on trustworthy centralized Machine Learning (ML)/Deep Learning (DL), further efforts are necessary to identify trustworthiness pillars and evaluation metrics specific to FL models, as well as to develop solutions for computing trustworthiness levels. We propose a taxonomy that encompasses three main pillars: Interpretability, Fairness, and Security & Privacy. Each pillar represents a dimension of trust, further broken down into different notions. Our survey covers trustworthiness challenges at every level in FL settings. We present a comprehensive architecture of Trustworthy FL, addressing the fundamental principles underlying the concept, and offer an in-depth analysis of trust assessment mechanisms. In conclusion, we identify key research challenges related to every aspect of Trustworthy FL and suggest future research directions. This comprehensive survey serves as a valuable resource for researchers and practitioners working on the development and implementation of Trustworthy FL systems, contributing to a more secure and reliable AI landscape.Comment: 45 Pages, 8 Figures, 9 Table

    Architectural Design of a Blockchain-Enabled, Federated Learning Platform for Algorithmic Fairness in Predictive Health Care: Design Science Study

    Get PDF
    Background: Developing effective and generalizable predictive models is critical for disease prediction and clinical decision-making, often requiring diverse samples to mitigate population bias and address algorithmic fairness. However, a major challenge is to retrieve learning models across multiple institutions without bringing in local biases and inequity, while preserving individual patients\u27 privacy at each site. Objective: This study aims to understand the issues of bias and fairness in the machine learning process used in the predictive health care domain. We proposed a software architecture that integrates federated learning and blockchain to improve fairness, while maintaining acceptable prediction accuracy and minimizing overhead costs. Methods: We improved existing federated learning platforms by integrating blockchain through an iterative design approach. We used the design science research method, which involves 2 design cycles (federated learning for bias mitigation and decentralized architecture). The design involves a bias-mitigation process within the blockchain-empowered federated learning framework based on a novel architecture. Under this architecture, multiple medical institutions can jointly train predictive models using their privacy-protected data effectively and efficiently and ultimately achieve fairness in decision-making in the health care domain. Results: We designed and implemented our solution using the Aplos smart contract, microservices, Rahasak blockchain, and Apache Cassandra-based distributed storage. By conducting 20,000 local model training iterations and 1000 federated model training iterations across 5 simulated medical centers as peers in the Rahasak blockchain network, we demonstrated how our solution with an improved fairness mechanism can enhance the accuracy of predictive diagnosis. Conclusions: Our study identified the technical challenges of prediction biases faced by existing predictive models in the health care domain. To overcome these challenges, we presented an innovative design solution using federated learning and blockchain, along with the adoption of a unique distributed architecture for a fairness-aware system. We have illustrated how this design can address privacy, security, prediction accuracy, and scalability challenges, ultimately improving fairness and equity in the predictive health care domain

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure

    Unleashing the Power of Edge-Cloud Generative AI in Mobile Networks: A Survey of AIGC Services

    Full text link
    Artificial Intelligence-Generated Content (AIGC) is an automated method for generating, manipulating, and modifying valuable and diverse data using AI algorithms creatively. This survey paper focuses on the deployment of AIGC applications, e.g., ChatGPT and Dall-E, at mobile edge networks, namely mobile AIGC networks, that provide personalized and customized AIGC services in real time while maintaining user privacy. We begin by introducing the background and fundamentals of generative models and the lifecycle of AIGC services at mobile AIGC networks, which includes data collection, training, finetuning, inference, and product management. We then discuss the collaborative cloud-edge-mobile infrastructure and technologies required to support AIGC services and enable users to access AIGC at mobile edge networks. Furthermore, we explore AIGCdriven creative applications and use cases for mobile AIGC networks. Additionally, we discuss the implementation, security, and privacy challenges of deploying mobile AIGC networks. Finally, we highlight some future research directions and open issues for the full realization of mobile AIGC networks

    PoFEL: Energy-efficient Consensus for Blockchain-based Hierarchical Federated Learning

    Full text link
    Facilitated by mobile edge computing, client-edge-cloud hierarchical federated learning (HFL) enables communication-efficient model training in a widespread area but also incurs additional security and privacy challenges from intermediate model aggregations and remains the single point of failure issue. To tackle these challenges, we propose a blockchain-based HFL (BHFL) system that operates a permissioned blockchain among edge servers for model aggregation without the need for a centralized cloud server. The employment of blockchain, however, introduces additional overhead. To enable a compact and efficient workflow, we design a novel lightweight consensus algorithm, named Proof of Federated Edge Learning (PoFEL), to recycle the energy consumed for local model training. Specifically, the leader node is selected by evaluating the intermediate FEL models from all edge servers instead of other energy-wasting but meaningless calculations. This design thus improves the system efficiency compared with traditional BHFL frameworks. To prevent model plagiarism and bribery voting during the consensus process, we propose Hash-based Commitment and Digital Signature (HCDS) and Bayesian Truth Serum-based Voting (BTSV) schemes. Finally, we devise an incentive mechanism to motivate continuous contributions from clients to the learning task. Experimental results demonstrate that our proposed BHFL system with the corresponding consensus protocol and incentive mechanism achieves effectiveness, low computational cost, and fairness

    Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

    Full text link
    Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions

    Privacy Preservation & Security Solutions in Blockchain Network

    Get PDF
    Blockchain has seen exponential progress over the past few years, and today its usage extends well beyond cryptocurrencies. Its features, including openness, transparency, secure communication, difficult falsification, and multi-consensus, have made it one of the most valuable technology in the world. In most open blockchain platforms, any node can access the data on the blockchain, which leads to a potential risk of personal information leakage. So the issue of blockchain privacy and security is particularly prominent and has become an important research topic in the field of blockchain. This dissertation mainly summarizes my research on blockchain privacy and security protection issues throughout recent years. We first summarize the security and privacy vulnerabilities in the mining pools of traditional bitcoin networks and some possible protection measures. We then propose a new type of attack: coin hopping attack, in the case of multiple blockchains under an IoT environment. This attack is only feasible in blockchain-based IoT scenarios, and can significantly reduce the operational efficiency of the entire blockchain network in the long run. We demonstrate the feasibility of this attack by theoretical analysis of four different attack models and propose two possible solutions. We also propose an innovative hybrid blockchain crowdsourcing platform solution to settle the performance bottlenecks and various challenges caused by privacy, scalability, and verification efficiency problems of current blockchain-based crowdsourcing systems. We offer flexible task-based permission control and a zero-knowledge proof mechanism in the implementation of smart contracts to flexibly obtain different levels of privacy protection. By performing several tests on Ethereum and Hyperledger Fabric, EoS.io blockchains, the performance of the proposed platform consensus under different transaction volumes is verified. At last, we also propose further investigation on the topics of the privacy issues when combining AI with blockchain and propose some defense strategies

    Blockchain for Internet of Things:Data Markets, Learning, and Sustainability

    Get PDF

    Metaverse for Wireless Systems: Architecture, Advances, Standardization, and Open Challenges

    Full text link
    The growing landscape of emerging wireless applications is a key driver toward the development of novel wireless system designs. Such a design can be based on the metaverse that uses a virtual model of the physical world systems along with other schemes/technologies (e.g., optimization theory, machine learning, and blockchain). A metaverse using a virtual model performs proactive intelligent analytics prior to a user request for efficient management of the wireless system resources. Additionally, a metaverse will enable self-sustainability to operate wireless systems with the least possible intervention from network operators. Although the metaverse can offer many benefits, it faces some challenges as well. Therefore, in this tutorial, we discuss the role of a metaverse in enabling wireless applications. We present an overview, key enablers, design aspects (i.e., metaverse for wireless and wireless for metaverse), and a novel high-level architecture of metaverse-based wireless systems. We discuss metaverse management, reliability, and security of the metaverse-based system. Furthermore, we discuss recent advances and standardization of metaverse-enabled wireless system. Finally, we outline open challenges and present possible solutions
    corecore