258,510 research outputs found

    Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics.

    Get PDF
    In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material's mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure is general and may inform the design of soft materials for use in complex mechanical environments. Three examples that demonstrate this are provided

    Dynamic mechanical properties of hydroxyapatite-reinforced and porous starch-based degradable biomaterials

    Get PDF
    It has been shown that blends of starch with a poly(ethylene-vinyl-alcohol) copolymer, EVOH, designated as SEVA-C, present an interesting combination of mechanical, degradation and biocompatible properties, specially when filled with hydroxyapatite (HA). Consequently, they may find a range of applications in the biomaterials field. This work evaluated the influence of HA fillers and of blowing agents (used to produce porous architectures) over the viscoelastic properties of SEVA-C polymers, as seen by dynamic mechanical analysis (DMA), in order to speculate on their performances when withstanding cyclic loading in the body. The composite materials presented a promising performance under dynamic mechanical solicitation conditions. Two relaxations were found being attributed to the starch and EVOH phases. The EVOH relaxation process may be very useful in vivo improving the implants performance under cyclic loading. DMA results also showed that it is possible to produce SEVA-C compact surface/porous core architectures with a mechanical performance similar to that of SEVA-C dense materials. This may allow for the use of these materials as bone replacements or scaffolds that must withstand loads when implanted

    How should we assess the mechanical properties of lower-limb prosthesis technology used in elite sport?: An initial investigation

    Get PDF
    Despite recent controversy, it is not yet formally recognised how lower-limb prosthesis should be assessed for their performance. To assist in this process, experiments are undertaken to investigate the linearity, stiffness and assessment of feet based energy return prosthesis technology typically used for elite level high speed running. Through initial investigations, it is concluded that static load testing would not be recommended to specify or regulate energy return prostheses for athletes with a lower-limb amputation. Furthermore, an assessment of energy return technology when loaded under dynamic conditions demonstrates changes in mechanical stiffness due to bending and effective blade length variation during motion. Such radical changes of boundary conditions due to loading suggest that any assessment of lower-limb prosthesis technology in the future should use methods that do not assume linear mechanical stiffness. The research into such effects warrants further investigation in the future

    Mechanical properties and energy absorbing capabilities of Z-pinned aluminum foam sandwich

    Get PDF
    Aluminum foam sandwich (AFS) structures are suitable for impact protection in lightweight structural components due to their specific energy absorption capability under compression. However, tailoring the deformation patterns of the foam cells is a difficult task due to the randomness of their internal architecture. The objective of this study is to analyze the effect of embedding aluminum pins into an AFS panel (Z-pinning) to better control its deformation pattern and improve its energy absorption capability. This study considers a closed-cell AFS panel and analyzes the effect of multi-pin layout parallel to the direction of the uniaxial compressive loading. The results of the experimental tests on the reference (without Z-pinning) AFS are utilized to develop numerical models for the reference and Z-pinned AFS structures. Physical experiments and numerical simulations are carried out to demonstrate the advantages of Z-pinning with aluminum pins. The results exhibit a significant increase in elastic modulus, plateau stress and energy absorption capability of the Z-pinned samples. Also, the effect of the pin size and Z-pinning layout on the mechanical performance of the Z-pinned AFS is also investigated using numerical simulations

    Verification of Job Mix Formula for Alaskan HMA

    Get PDF
    INE/AUTC 14.1

    Dynamic response of continuous beams with discrete viscoelastic supports under sinusoidal loading

    Get PDF
    Analysis of vibrations of continuous beams with discrete viscoelastic supports has been established through theoretical modeling and a finite element analysis. The theoretical model is based on the Euler-Bernoulli theory, and the Ritz approach was employed to obtain numerical results from which the attenuation of the beam's vibration was obtained. In parallel, a finite element analysis was carried out in ABAQUS using 3D beam elements. It is shown that the results of theoretical calculation agree well with those of the finite element analysis. Both models were applied to explore geometric and design variations, and then to a full model of a bridge expansion unit as an application example. The vibration of the beams in the design, the influence of the stiffness and the viscous damping coefficient of the supports were discussed, demonstrating the models' usefulness in helping with design optimization. © 2014 Elsevier Ltd

    Durability and Smart Condition Assessment of Ultra-High Performance Concrete in Cold Climates

    Get PDF
    The goals of this study were to develop ecological ultra-high performance concrete (UHPC) with local materials and supplementary cementitious materials and to evaluate the long-term performance of UHPC in cold climates using effective mechanical test methods, such as “smart aggregate” technology and microstructure imaging analysis. The optimal UHPC mixture approximately exhibited compressive strength of 15 ksi, elastic modulus of 5,000 ksi, direct tensile strength of 1.27 ksi, and shrinkage of 630 at 28 days, which are characteristics comparable to those of commercial products and other studies. The tensile strength and modulus of elasticity in tension, dynamic modulus, and wave modulus show slight increases from the original values after 300 freeze-thaw (F-T) cycles, indicating that UHPC has excellent frost resistance in cold climates. Although porosity deterioration was observed in the F-T cyclic conditioning process, no internal damage (cracks or fractures) was found during imaging analysis up to 300 cycles. Since structures for which UHPC would be used are expected to have a longer service life, more F-T cycles are recommended to condition UHPC and investigate its mechanical performance over time. Moreover, continuum damage mechanic-based models have the potential to evaluate damage accumulation in UHPC and its failure mechanism under frost attack and to predict long-term material deterioration and service life

    Crashworthiness assessment considering the dynamic damage and failure of a dual phase automotive steel

    No full text
    Analyzing crash worthiness of the automotive parts has been posing a great challenge in the sheet metal and automotive industry since several decades. The present contribution will focus on one of the most urging challenges of the crash worthiness simulations, namely, an enhanced constitutive formulation to predict the failure and cracking of structural parts made from high strength steel sheets under impact. A hybrid extended Modified Bai Wierzbicki damage plasticity model is devised to this end. The material model calibrated using the experimental data covering high strain rate deformation, damage and failure successfully predicted the instability and subsequent response of the crash box under impact. Simulation results provide the deformation shape and deformation energy in order to predict and evaluate the vehicle crashworthiness. The simulations further helped in discovering the irrefutable impact of strain rate and stress state on the impact response of the auto-body structure. The strain rate is found to adequately affect the energy absorption capacity of the crash box structure both in terms of impact load and fold formation whereas the complex stress state has a direct association to the development of instability within the structure and early damage appearance within the folds

    Numerical modeling of shape and topology optimisation of a piezoelectric cantilever beam in an energy-harvesting sensor

    Get PDF
    Piezoelectric materials are excellent transducers for converting mechanical energy from the environment for use as electrical energy. The conversion of mechanical energy to electrical energy is a key component in the development of self-powered devices, especially enabling technology for wireless sensor networks. This paper proposes an alternative method for predicting the power output of a bimorph cantilever beam using a finite-element method for both static and dynamic frequency analyses. A novel approach is presented for optimising the cantilever beam, by which the power density is maximised and the structural volume is minimised simultaneously. A two-stage optimisation is performed, i.e., a shape optimisation and then a “topology” hole opening optimisation
    corecore