574 research outputs found

    Urban food strategies in Central and Eastern Europe: what's specific and what's at stake?

    Get PDF
    Integrating a larger set of instruments into Rural Development Programmes implied an increasing focus on monitoring and evaluation. Against the highly diversified experience with regard to implementation of policy instruments the Common Monitoring and Evaluation Framework has been set up by the EU Commission as a strategic and streamlined method of evaluating programmes’ impacts. Its indicator-based approach mainly reflects the concept of a linear, measure-based intervention logic that falls short of the true nature of RDP operation and impact capacity on rural changes. Besides the different phases of the policy process, i.e. policy design, delivery and evaluation, the regional context with its specific set of challenges and opportunities seems critical to the understanding and improvement of programme performance. In particular the role of local actors can hardly be grasped by quantitative indicators alone, but has to be addressed by assessing processes of social innovation. This shift in the evaluation focus underpins the need to take account of regional implementation specificities and processes of social innovation as decisive elements for programme performance.

    Introducing integrated performance measurement into small and medium sized enterprises

    Get PDF
    This is a digitised version of a thesis that was deposited in the University Library. If you are the author and you have a query about this item please contact PEARL Admin ([email protected])Metadata merged with duplicate record (http://hdl.handle.net/10026.1/875) on 20.12.2016 by CS (TIS).The thesis extends current knowledge and understanding of integrated performance measurement (PM) development into the context of small and medium sized enterprises (SMEs). The research builds on existing knowledge of integrated PM development approaches and identifies the context-specific factors which affect its introduction into SMEs. These are used to design, develop and validate a new, continuous improvement based approach for the development of integrated PM systems, which is specifically designed for use in SMEs. First, a conceptual model of criteria for integrated PM development is synthesised from the literature and the characteristics of SMEs are established. An evaluation of current approaches for the development of integrated PM is undertaken and an approach which conforms to the conceptual model is selected for an empirical study in a SME. Along with a set of interviews examining the state of PM in SMEs, this study identifies several factors which affect integrated PM introduction in this environment. These factors enhance the conceptual model and indicate the need for a more effective development approach for SMEs. Design theory is used to inform and structure the design of the new approach, which is developed and refined for practical use through a SME case study. Two further cases are carried out to validate the new approach, in which cross-case comparisons are made. The results indicate the validity of both the new approach and the enhanced conceptual model. The formulation of an enhanced conceptual model of integrated PM development, detailing the context specific criteria for effective in use in SMEs, together with the validation of a new, continuous improvement based, approach for integrated PM system development in SMEs that conforms to the conceptual model, represents a significant contribution to both theory and practice from this research.The study was funded by Plymouth Business School and was carried out in collaboration with the University of Cambridge

    Energyware engineering: techniques and tools for green software development

    Get PDF
    Tese de Doutoramento em Informática (MAP-i)Energy consumption is nowadays one of the most important concerns worldwide. While hardware is generally seen as the main culprit for a computer’s energy usage, software too has a tremendous impact on the energy spent, as it can cancel the efficiency introduced by the hardware. Green Computing is not a newfield of study, but the focus has been, until recently, on hardware. While there has been advancements in Green Software techniques, there is still not enough support for software developers so they can make their code more energy-aware, with various studies arguing there is both a lack of knowledge and lack of tools for energy-aware development. This thesis intends to tackle these two problems and aims at further pushing forward research on Green Software. This software energy consumption issue is faced as a software engineering question. By using systematic, disciplined, and quantifiable approaches to the development, operation, and maintenance of software we defined several techniques, methodologies, and tools within this document. These focus on providing software developers more knowledge and tools to help with energy-aware software development, or Energyware Engineering. Insights are provided on the energy influence of several stages performed during a software’s development process. We look at the energy efficiency of various popular programming languages, understanding which are the most appropriate if a developer’s concern is energy consumption. A detailed study on the energy profiles of different Java data structures is also presented, alongwith a technique and tool, further providing more knowledge on what energy efficient alternatives a developer has to choose from. To help developers with the lack of tools, we defined and implemented a technique to detect energy inefficient fragments within the source code of a software system. This technique and tool has been shown to help developers improve the energy efficiency of their programs, and even outperforming a runtime profiler. Finally, answers are provided to common questions and misconceptions within this field of research, such as the relationship between time and energy, and howone can improve their software’s energy consumption. This thesis provides a great effort to help support both research and education on this topic, helps continue to grow green software out of its infancy, and contributes to solving the lack of knowledge and tools which exist for Energyware Engineering.Hoje em dia o consumo energético é uma das maiores preocupações a nível global. Apesar do hardware ser, de umaforma geral, o principal culpado para o consumo de energia num computador, o software tem também um impacto significativo na energia consumida, pois pode anular, em parte, a eficiência introduzida pelo hardware. Embora Green Computing não seja uma área de investigação nova, o foco tem sido, até recentemente, na componente de hardware. Embora as técnicas de Green Software tenham vindo a evoluir, não há ainda suporte suficiente para que os programadores possam produzir código com consciencialização energética. De facto existemvários estudos que defendem que existe tanto uma falta de conhecimento como uma escassez de ferramentas para o desenvolvimento energeticamente consciente. Esta tese pretende abordar estes dois problemas e tem como foco promover avanços em green software. O tópico do consumo de energia é abordado duma perspectiva de engenharia de software. Através do uso de abordagens sistemáticas, disciplinadas e quantificáveis no processo de desenvolvimento, operação e manutencão de software, foi possível a definição de novas metodologias e ferramentas, apresentadas neste documento. Estas ferramentas e metodologias têm como foco dotar de conhecimento e ferramentas os programadores de software, de modo a suportar um desenvolvimento energeticamente consciente, ou Energyware Engineering. Deste trabalho resulta a compreensão sobre a influência energética a ser usada durante as diferentes fases do processo de desenvolvimento de software. Observamos as linguagens de programação mais populares sobre um ponto de vista de eficiência energética, percebendo quais as mais apropriadas caso o programador tenha uma preocupação com o consumo energético. Apresentamos também um estudo detalhado sobre perfis energéticos de diferentes estruturas de dados em Java, acompanhado por técnicas e ferramentas, fornecendo conhecimento relativo a quais as alternativas energeticamente eficientes que os programadores dispõem. Por forma a ajudar os programadores, definimos e implementamos uma técnica para detetar fragmentos energicamente ineficientes dentro do código fonte de um sistema de software. Esta técnica e ferramenta têm demonstrado ajudar programadores a melhorarem a eficiência energética dos seus programas e em algum casos superando um runtime profiler. Por fim, são dadas respostas a questões e conceções erradamente formuladas dentro desta área de investigação, tais como o relacionamento entre tempo e energia e como é possível melhorar o consumo de energia do software. Foi empregue nesta tese um esforço árduo de suporte tanto na investigação como na educação relativo a este tópico, ajudando à maturação e crescimento de green computing, contribuindo para a resolução da lacuna de conhecimento e ferramentas para suporte a Energyware Engineering.This work is partially funded by FCT – Foundation for Science and Technology, the Portuguese Ministry of Science, Technology and Higher Education, through national funds, and co-financed by the European Social Fund (ESF) through the Operacional Programme for Human Capital (POCH), with scholarship reference SFRH/BD/112733/2015. Additionally, funding was also provided the ERDF – European Regional Development Fund – through the Operational Programmes for Competitiveness and Internationalisation COMPETE and COMPETE 2020, and by the Portuguese Government through FCT project Green Software Lab (ref. POCI-01-0145-FEDER-016718), by the project GreenSSCM - Green Software for Space Missions Control, a project financed by the Innovation Agency, SA, Northern Regional Operational Programme, Financial Incentive Grant Agreement under the Incentive Research and Development System, Project No. 38973, and by the Luso-American Foundation in collaboration with the National Science Foundation with grant FLAD/NSF ref. 300/2015 and ref. 275/2016

    Integrity management in public organizations:content & design

    Get PDF

    Integrity management in public organizations:content & design

    Get PDF

    SPICA:revealing the hearts of galaxies and forming planetary systems : approach and US contributions

    Get PDF
    How did the diversity of galaxies we see in the modern Universe come to be? When and where did stars within them forge the heavy elements that give rise to the complex chemistry of life? How do planetary systems, the Universe's home for life, emerge from interstellar material? Answering these questions requires techniques that penetrate dust to reveal the detailed contents and processes in obscured regions. The ESA-JAXA Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission is designed for this, with a focus on sensitive spectroscopy in the 12 to 230 micron range. SPICA offers massive sensitivity improvements with its 2.5-meter primary mirror actively cooled to below 8 K. SPICA one of 3 candidates for the ESA's Cosmic Visions M5 mission, and JAXA has is committed to their portion of the collaboration. ESA will provide the silicon-carbide telescope, science instrument assembly, satellite integration and testing, and the spacecraft bus. JAXA will provide the passive and active cooling system (supporting the

    The Apertif Surveys:The First Six Months

    Get PDF
    Apertif is a new phased-array feed for the Westerbork Synthesis Radio Telescope (WSRT), greatly increasing its field of view and turning it into a natural survey instrument. In July 2019, the Apertif legacy surveys commenced; these are a time-domain survey and a two-tiered imaging survey, with a shallow and medium-deep component. The time-domain survey searches for new (millisecond) pulsars and fast radio bursts (FRBs). The imaging surveys provide neutral hydrogen (HI), radio continuum and polarization data products. With a bandwidth of 300 MHz, Apertif can detect HI out to a redshift of 0.26. The key science goals to be accomplished by Apertif include localization of FRBs (including real-time public alerts), the role of environment and interaction on galaxy properties and gas removal, finding the smallest galaxies, connecting cold gas to AGN, understanding the faint radio population, and studying magnetic fields in galaxies. After a proprietary period, survey data products will be publicly available through the Apertif Long Term Archive (ALTA, https://alta.astron.nl). I will review the progress of the surveys and present the first results from the Apertif surveys, including highlighting the currently available public data
    • …
    corecore