4 research outputs found

    Pretenuring for Java

    Get PDF
    Pretenuring is a technique for reducing copying costs in garbage collectors. When pretenuring, the allocator places long-lived objects into regions that the garbage collector will rarely, if ever, collect. We extend previous work on profiling-driven pretenuring as follows. (1) We develop a collector-neutral approach to obtaining object lifetime profile information. We show that our collection of Java programs exhibits a very high degree of homogeneity of object lifetimes at each allocation site. This result is robust with respect to different inputs, and is similar to previous work on ML, but is in contrast to C programs, which require dynamic call chain context information to extract homogeneous lifetimes. Call-site homogeneity considerably simplifies the implementation of pretenuring and makes it more efficient. (2) Our pretenuring advice is neutral with respect to the collector algorithm, and we use it to improve two quite different garbage collectors: a traditional generational collector and an older-first collector. The system is also novel because it classifies and allocates objects into 3 categories: we allocate immortal objects into a permanent region that the collector will never consider, long-lived objects into a region in which the collector placed survivors of the most recent collection, and shortlived objects into the nursery, i.e., the default region. (3) We evaluate pretenuring on Java programs. Our simulation results show that pretenuring significantly reduces collector copying for generational and older-first collectors. 1

    Run-time Support for Distributed Object Sharing in Safe Programming Languages

    Get PDF
    We present a new run-time system that supports object sharing in a distributed system. The key insight in this system is that a handle-based implementation of such a system enables effcient and transparent sharing of data with both fine-grained and coarse-grained access patterns. In addition, it supports effcient execution of garbage-collected programs. In contrast, conventional distributed shared memory (DSM) systems are limited to providing only one granularity with good performance, and have experienced diffculty in effciently supporting garbage collection. A safe language, in which no pointer arithmetic is allowed, can transparently be compiled into a handle-based system and constitutes its preferred mode of use. A programmer can also directly use a handle-based programming model that avoids pointer arithmetic on the handles, and achieve the same performance but without the programming benefits of a safe programming language. This new run-time system, DOSA (Distributed Object Sharing Architecture), provides a shared object space abstraction rather than a shared address space abstraction. The key to its effciency is the observation that a handle-based distributed implementation permits VM-based access and modification detection without suffering false sharing for fine-grained access patterns. We compare DOSA to TreadMarks, a conventional DSM system that is effcient at handling coarse-grained sharing. The performance of fine-grained applications and garbage-collected applications is considerably better than in TreadMarks. The performance of coarse-grained applications is nearly as good as in TreadMarks. Since the performance of such applications is already good in TreadMarks, we consider this an acceptable performance penalty

    Measuring the Cost of Storage Management

    No full text
    We study the cost of storage management for garbage-collected programs compiled with the Standard ML of New Jersey compiler. We show that the cost of storage management is not the same as the time spent garbage collecting. For many of the programs, the time spent garbage collecting is less than the time spent doing other storage-management tasks. 1 Authors' addresses: David Tarditi, Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 152133891. e-mail: [email protected]. Amer Diwan, Department of Computer Science, University of Massachusetts, Amherst, MA 01003-4610. e-mail: [email protected]. This research is sponsored by the Defense Advanced Research Projects Agency, DoD, through ARPA Order 8313, and monitored by ESD/AVS under contract F19628-91-C-0168. David Tarditi is also supported by an AT&T PhD Scholarship. Views and conclusions contained in this document are those of the authors and should not be interpreted as representing the offic..
    corecore