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We present a new run-time system that supports object sharing in a distributed system. The key

insight in this system is that a handle-based implementation of such a system enables efficient

and transparent sharing of data with both fine-grained and coarse-grained access patterns. In

addition, it supports efficient execution of garbage-collected programs. In contrast, conventional
distributed shared memory (DSM) systems are limited to providing only one granularity with
good performance, and have experienced difficulty in efficiently supporting garbage collection.

A safe language, in which no pointer arithmetic is allowed, can transparently be compiled into
a handle-based system and constitutes its preferred mode of use. A programmer can also directly
use a handle-based programming model that avoids pointer arithmetic on the handles, and achieve
the same performance but without the programming benefits of a safe programming language.
This new run-time system, DOSA (Distributed Object Sharing Architecture), provides a shared

object space abstraction rather than a shared address space abstraction. The key to its efficiency

is the observation that a handle-based distributed implementation permits VM-based access and
modification detection without suffering false sharing for fine-grained access patterns.

We compare DOSA to TreadMarks, a conventional DSM system that is efficient at handling
coarse-grained sharing. The performance of fine-grained applications and garbage-collected appli-

cations is considerably better than in TreadMarks. The performance of coarse-grained applications
is nearly as good as in TreadMarks. Since the performance of such applications is already good
in TreadMarks, we consider this an acceptable performance penalty.
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1. INTRODUCTION

In recent years there has been increasing interest in supporting scientific comput-
ing in modern languages, in particular in Java (e.g.,[JavaGrande ]). Among these
efforts are numerous attempts at building fast Java virtual machines (e.g.,[Adl-
Tabatabai et al. 1998][Burke et al. 1999][Wilkinson 1996]), compilation into native
code (e.g.,[Timber ][Tower Technologies ]), compiler optimizations specifically for
scientific codes (e.g.,[Budimlic and Kennedy 1997][Budimlic and Kennedy 1999]),
development of suitable scientific runtime libraries (e.g.,[Casanova et al. 1997]), and
support for parallel and distributed computing (e.g.[Christiansen et al. 1997][Fox
and Furmanski 1996]). This paper falls in the latter category.

We investigate run-time support for executing multithreaded scientific codes in
modern languages on a cluster of PCs. The presence of a network between the
PCs in the cluster is transparent to the programmer. Specifically, object references
can be followed across machine boundaries, and no special API (such as, e.g.,
Java RMI) is necessary to access objects on another machine. The rationale is
similar to the rationale for conventional software distributed shared memory (DSM)
(e.g. [Li and Hudak 1989]): it allows for easier development and faster migration
of multithreaded codes to cluster environments.

This paper addresses the issue of building such a distributed sharing system that
exhibits good performance for a wide range of sharing patterns, from fine-grained to
coarse-grained. Building a single system that covers such a wide range has proven
to be a vexing problem. Indeed, DSM systems have been divided into those offer-
ing support for coarse-grained sharing or for fine-grained sharing. Coarse-grained
sharing systems are typically page-based, and use the virtual memory hardware for
access and modification detection. Although relaxed memory models [Gharachorloo
et al. 1990][Keleher et al. 1992] and multiple-writer protocols [Carter et al. 1995] re-
lieve the impact of the large page size, fine-grained sharing and false-sharing remain
problematic [Amza et al. 1997]. Fine-grained sharing systems typically augment the
code with instructions to detect reads and writes [Scales et al. 1996][Veldema et al.
2001], freeing them from the large size of the consistency unit in virtual memory-
based systems, but introducing per-access overhead that reduces performance for
coarse-grained applications [Dwarkadas et al. 1999]. Both types of systems experi-
ence problems when it comes to efficiently supporting garbage collection, because
they do not distinguish memory updates by the application from a memory update
caused by the garbage collector [Yu and Cox 1996].

Modern languages all offer some notion of language safety. For the purposes of
this paper language safety can be narrowly interpreted to mean absence of pointer
arithmetic. The key result of this paper is that, when a safe language is used, a
single system can transparently support sharing of both fine-grained and coarse-
grained objects across machine boundaries. Underlying the efficiency of our ap-
proach is the observation that in the absence of pointer arithmetic the compiler
can transparently indirect all access to objects through a handle table. This in
turn allows inexpensive per-object access and modification detection using virtual
memory protection [Brecht and Sandhu 1999][Itzkovitz and Schuster 1999]. Another
contribution of this paper is that handle-based systems interact much better with
garbage collection algorithms present in safe language implementations, leading to
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good performance for garbage-collected applications.
Our results are more broadly applicable and not necessarily restricted to safe

languages. For programs in unsafe languages, the same results apply but in a non-
transparent manner. The programmer must use a restrictive programming model,
using a handle to access all objects and refraining from pointer arithmetic on the
handles. Viewed in this light, this paper also contributes to the area of distributed
shared memory systems. We demonstrate that, when a handle-based programming
model is used without pointer arithmetic on the handles, a single system can in
fact support both fine and coarse granularities with good efficiency.
We have implemented these ideas in a system we call DOSA (Distributed Object

System Architecture). To evaluate its performance, we have compared the perfor-
mance of DOSA against that of the TreadMarks coarse-grained DSM system [Amza
et al. 1996] for a number of applications. We choose TreadMarks as the baseline for
performance comparison for two reasons. First, it is the most widely used coarse-
grained DSM system, and believed to be be the most efficient. Second, DOSA is
derived from the same code base as TreadMarks, minimizing the differences due
to coding. Unfortunately, there is no similarly available implementation of fine-
grained shared memory, so we cannot make an explicit comparison with such a
system. Our performance evaluation substantiates the following claims:

(1) The performance of fine-grained applications is considerably better than in
TreadMarks.

(2) The performance of coarse-grained applications is nearly as good as in Tread-
Marks.

(3) The performance of garbage-collected applications is considerably better than
in TreadMarks.

For the applications used in this paper, we observe performance improvements as
high as 98% for fine-grained applications and 65% for garbage-collected applica-
tions, while the maximum performance degradation for coarse-grained applications
is 6%.
The outline of the rest of this paper is as follows. Section 2 explains the key

technical idea: how handle-based systems allow efficient support for fine-grained
and coarse-grained objects. Section 3 describes the API and the memory model of
the DOSA system. Section 4 describes its implementation and various optimiza-
tions to the basic handle-based approach. Section 5 discusses the experimental
methodology that we have used. Section 6 presents overall results for fine-grained,
coarse-grained and garbage-collected applications. Section 7 presents a breakdown
of the contributions of the various optimizations. Section 8 discusses related work.
Section 9 concludes the paper.

2. KEY TECHNICAL CONCEPT

The key insight in this paper is that a handle-based implementation enables efficient
and transparent sharing of data with both fine-grained and coarse-grained access
patterns. We define a handle-based system as one in which all references to objects
are indirected through a handle for the object. No direct references to the object
are allowed, other than through the handle, and no pointer arithmetic is allowed on
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Fig. 1. Pointer safety in a safe language enables a handle-based implementation.
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Fig. 2. Objects with handles.

the handles. A handle table contains all the handles (see Figure 2). Each object in
the language is uniquely identified by an object identifier (OID) that also serves as
an index into the handle table for that object. A safe language in which no pointer
arithmetic is allowed can easily be compiled into a handle-based system (for exam-
ple, Sun’s classic JVM for Java, and early implementations of Smalltalk [Goldberg
and Robson 1983; Deutsch and Schiffman 1984]), and constitutes the preferred use
of the proposed run-time system.
In a handle-based run-time system, it is easy to relocate objects in memory.

It suffices to change the corresponding entry in the handle table after a reloca-
tion. No other changes need to be made, since all references are indirected through
the handle table. Extending this simple observation allows an efficient distributed
implementation of these languages. Specifically (see Figure 3), a handle table rep-
resenting all shared objects is present on each processor. A globally unique OID
identifies each object, and serves as an entry in the handle tables. As before, each
handle table entry contains a pointer to the location in memory where the object
resides on that processor. The consistency protocol can then be implemented solely
in terms of OIDs, because these are the only references that appear in any of the
objects. Furthermore, the same object may be allocated at different virtual mem-
ory addresses on different processors. It suffices for the handle table entry on each
processor to point to the proper location. In other words, although the programmer
retains the abstraction of a single object space, it is no longer the case that all of
memory is virtually shared, and that all objects have to reside at the same virtual
address at all processors, as is the case in conventional DSM systems.
In order to provide good performance for coarse-grained applications, we continue

to use the virtual memory system for access detection, thereby avoiding the over-
head of instrumentation incurred in previous fine-grained systems. Fine-grained
access using VM techniques is then provided as follows. Although only a single
physical copy of each object exists on a single processor, each object can be ac-
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Fig. 3. Shared objects identified by unique OIDs.
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Fig. 4. Access detection using the handle pointers. All three regions of virtual
memory point to the same region of physical memory, but the protection on each
of the tree regions is different: read-write, read-only, and invalid. Switching the
handle pointer of an object between the three regions causes the access protection
of the object to be changed accordingly, without affecting the access protection of
other objects in the same page.

cessed through three VM mappings. All three point to the same physical location
in memory, but with three different protection attributes: invalid, read-only, or
read-write. An object’s access protection is changed by switching the object’s han-
dle between the different mappings. This changes the access protection for that

object only. The access protection of the other objects in the same page remain
unaffected. Consider the example in Figure 4. A physical page on a processor
contains four objects A, B, C and D, one of which, D, is written on a differ-
ent processor. This modification is communicated between processors through the
consistency protocol, and results in the invalid mapping being set for this object.
Access to other objects can continue, unperturbed by this change, thus eliminating
false sharing between objects on the same page.

3. API AND MEMORY MODEL

We now turn to a detailed discussion of the system that we have implemented to
evaluate the efficiency of the handle-based implementation of shared object systems.
We first discuss the system’s interface. Its implementation is discussed in the next
section.
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3.1 API

The programming model is a shared space of objects, in which object references are
safe. The fields of an object must be accessed through a reference to the object.
No other access is allowed. In particular, no pointer arithmetic is allowed on the
references to access the fields of an object.
The programmer is responsible for creating and destroying threads of control,

and for the necessary synchronization to insure orderly access by these threads
to the object space. Various synchronization mechanisms may be used, such as
semaphores, locks, barriers, monitors, etc.
An individual object must not be concurrently written by different threads, even

if those threads write different data items in the object. If two threads write to
the same object, they should synchronize between their writes. Arrays are treated
as collections of objects, and therefore their elements can be written concurrently.
Of course, for correctness, the different processes must write to disjoint elements
in the arrays. Similarly, concurrent write and read accesses by different threads to
the same object are not allowed. The single-writer nature of individual objects is
not inherent to the design of our system, but we have found that it corresponds
to common usage, and is therefore not restrictive. As will be seen in Section 4, it
allows us to use an efficient single-writer protocol for individual objects.

3.2 Memory Model: Release Consistency

In order to combat long network latencies, many distributed shared memory or
shared object systems have adopted some form of relaxed consistency. DOSA’s
object space is release consistent (RC) [Gharachorloo et al. 1990]. In RC, ordinary
accesses to shared data are distinguished from synchronization accesses, with the
latter category divided into acquires and releases. An acquire roughly corresponds
to a request for access to data, such as a lock acquire, a wait at a condition variable,
or a barrier departure. A release corresponds to the granting of such a request, such
as a lock release, a signal on a condition variable, or a barrier arrival. RC requires
ordinary shared memory updates by a processor p to become visible to another pro-
cessor q only when a subsequent release by p becomes visible to q via some chain
of synchronization events. Parallel programs that are properly synchronized (i.e.,
have a release-acquire pair between conflicting accesses to shared data) behave as
expected on the conventional sequentially consistent shared memory model [Lam-
port 1979].

4. IMPLEMENTATION

We focus in this section on the consistency maintenance of individual objects. Syn-
chronization is implemented as in TreadMarks [Amza et al. 1996]. Lock and barrier
synchronization are supported. Each lock has a lock manager that keeps track of
which processor has most recently requested the lock. The lock manager forwards
a lock acquire request to that processor, where it is queued until that processor
releases the lock. Each barrier has a barrier manager that implements a barrier
by waiting for barrier arrival messages from all other processors, and then sending
barrier departure messages to all of them.
We first discuss our implementation of release consistency. Next, we describe
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the handle table and the supporting data structures. We then turn to the use
of the handle table to perform per-object access and modification detection using
virtual memory protection. We conclude this section with a discussion of various
optimizations.

4.1 Release Consistency Implementation

DOSA uses a single-writer, lazy invalidate protocol to maintain release consistency.
The lazy implementation delays the propagation of consistency information until
the time of an acquire. At that time, the releaser informs the acquiring processor
which objects have been modified, and these objects are then invalidated. Access to
an invalidated object causes a protection fault, which in turn causes an up-to-date
version of the object to be brought in.
To implement the lazy invalidate protocol, the execution of each process is divided

into intervals, defined as the epochs between consecutive synchronization operations
on a processor. Each interval is labeled with an interval number, which is simply
a count of the number of intervals on a processor. Intervals of different processors
are partially ordered [Adve and Hill 1990]: (i) intervals on a single processor are
totally ordered by program order, and (ii) an interval on processor p proceeds an
interval on processor q if the interval of q begins with the acquire corresponding to
the release that concluded the interval of p.
The above partial order can be represented concisely by assigning a vector times-

tamp to each interval. On processor i, the ith element of the vector timestamp
for a particular interval is equal to its interval number. The elements j 6= i of the
vector timestamp are equal to the interval number of processor j at the time of the
last acquire from i to j. The current vector timestamp on processor i is the vector
timestamp of the current interval on processor i. Vector timestamps are maintained
by the consistency protocol. When processor i performs an acquire from processor
j, processor j sends its current vector timestamp to processor i. Processor i then
computes the pairwise maximum of the elements in its current vector timestamp
and in the one it received in the message from j. The result of this computation
becomes the current vector timestamp of processor i.
Each object that was modified during an interval is recorded in a write notice.

Each write notice has an associated processor identifier and vector timestamp,
indicating where and when the modification of the object occurred. Arrival of
a write notice for an object causes the acquiring processor to invalidate its local
copy, and to set the last writer field in the handle table entry to the processor
identifier in the write notice. A processor incurs a page fault on the first access to
an invalidated object, and obtains an up-to-date version of that object from the
processor indicated in the last writer field.
To avoid repeated sending of write notices, a processor i performing an acquire

sends its current vector timestamp, and the responding processor sends only those
write notices with a vector timestamp between the vector timestamp received from
i and its own current vector timestamp.
Creating one write notice per object allows consistency to be maintained on a

per-object basis. For applications with a large number of objects, this is inefficient.
In Section 4.5, we describe a number of optimizations that largely remove this
inefficiency.
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4.2 Data Structures

A handle table is present on each processor. The handle table is indexed by a
globally unique object identifier (OID). Each entry in the handle table contains
the corresponding object’s address in local virtual memory. This address may be
different from processor to processor (see Figure 3). The object’s local state, i.e.,
invalid, read-only, or read-write, is implicitly reflected in the handle table entry.
Depending on the object’s state, the handle pointer points to one of three possible
VM mappings for the object’s local physical address (see Section 4.3). The handle
table entry contains a last writer field, indicating from which processor to fetch
an up-to-date copy of the object on an access miss. Finally, a handle table entry
contains a field linking it with the handle table entries of other objects allocated in
the same page.
A few auxiliary data structures are maintained as well. An inverse object table,

implemented as a hash table, is used by the page fault handler to translate a fault-
ing address to an OID. Each processor maintains a per-page linked list of objects
allocated in that page. This list is used to implement communication aggregation
(see Section 4.5.2). Finally, each processor maintains its vector timestamp and an
efficient data structure for sending write notices when responding to an acquire.
To avoid translation between OIDs and local memory addresses on different pro-

cessors during the exchange of objects, the handle table is located at the same
virtual address on all processors, and OIDs are simply assigned as the virtual ad-
dresses of the entries in the handle table.
Objects are instantiated by a new operation or the equivalent. An OID is gener-

ated, and memory is allocated on the local processor to hold the object. In order
to minimize synchronization overhead for unique OID generation, each processor is
allocated a large chunk of OIDs at once, and this chunk allocation is protected by
a global lock. Each processor then independently generates OIDs from its chunk.

4.3 Switching Protection

DOSA relies on hardware page protection to detect accesses to invalid objects and
write accesses to read-only objects. We create three non-overlapping virtual address
regions that map to the same physical memory (see Figure 4). An object can thus be
viewed through any of the three corresponding addresses from the three mappings.
DOSA assigns the access permissions to the three mappings to be invalid, read-
only, and read-write, respectively. During program execution, it regulates access
to a shared object by adjusting the object’s handle to point to one of the three
mappings. In addition to providing per-object access control, this approach has the
substantial additional benefit that no kernel-based memory protection operations
are necessary after the initialization of all mappings.
As a practical matter, the three mappings of a shared object differ only in the

two leading bits of their addresses. Therefore, changing protection is a simple bit
masking operation.

4.4 Handling Page Faults

When a page fault occurs on access to an invalid object, the up-to-date value of
the object is fetched. When a page fault occurs as a result of a write access to a
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read-only object, a write notice for that object is created. In either case, protection
is changed and the faulting instruction is restarted.
Some care has to be taken to properly restart the faulting instruction. Accessing

an object through a handle involves two memory dereferences: the first to obtain
the object’s address and the second to read or write the data field within the
object. On most architectures these two dereferences are implemented by two
distinct instructions. The first instruction loads the address of the object into a
register, and the second instruction uses that register to read or write a field in the
object. The page fault occurs during the second instruction. Simply updating the
object’s address in the handle table does not resolve the page fault, because the
(old) address still resides in the register that is used by the second instruction.
Therefore, to resolve the page fault, the page fault handler also needs to decode

the register being used by the faulting instruction, and update it as well as the
handle in memory.

4.5 Optimizations

The DOSA system as described so far supports sharing at object granularity. We
next describe a set of optimizations that reduce the overhead of per-object consis-
tency maintenance for applications with a large number of objects. We also describe
an optimization aimed at reducing the overhead of indirection through the handle
table for array-based applications.

4.5.1 Lazy Object Storage Allocation. The ability to allocate objects at different
addresses on different processors suggests that a processor can delay the storage
allocation for an object until that object is first accessed by that processor. We call
this optimization lazy object storage allocation.
N-body simulations (e.g. Barnes-Hut and Water-Spatial [Woo et al. 1995]) illus-

trate the benefit of this optimization. Each processor typically accesses its own
bodies, and a small number of “nearby” bodies on other processors. With global
allocation of memory, the remote bodies are scattered in shared memory, causing
a large memory footprint, many page faults, messages, and – in the case of Tread-
Marks – false sharing. In contrast, in DOSA, only the local bodies and the locally
accessed remote bodies are allocated in local memory. As a result, the memory
footprint is smaller, there are far fewer misses and messages, and false sharing
is eliminated through the per-object mappings. Moreover, objects can be locally
re-arranged in memory, for instance to improve cache locality or during garbage col-
lection, without affecting the other processors. More generally, this optimization
works for all applications that exhibit this kind of locality of access.

4.5.2 Access Miss Handling and Read Aggregation. When a processor faults on
an object smaller than a page, it uses the list of objects in the same page (see
Section 4.2) to find all of the invalid objects residing in that page. It sends out
concurrent object fetch messages for all these objects to the processors recorded as
the last writers of these objects. We refer to this optimization as read aggregation.
By doing so, we aggregate the requests for all invalid objects in the same page.

This approach performs better than simply fetching one faulted object at a time.
There are two fundamental reasons for this phenomenon.
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(1) If there is some locality in the objects accessed by a processor, then it is likely
that the objects allocated in the same page are going to be accessed closely
together in time. Here, again, the lazy object storage allocation works to our
advantage. It is true that some unnecessary data may be fetched, but the effect
is minimal for the following reason.

(2) The destination processors of different request messages process the messages
in parallel and also generate the replies in parallel. In addition, a particular
destination processor needs to handle only one message per page as opposed
to one message per object on that page for which it has the up-to-date value.
Thus, the latency for updating all objects on the page is not much higher than
updating a single object.

If an object is larger than a page, we fall back on a page-based approach. In
other words, only the page that is necessary to satisfy the fault is fetched.

4.5.3 Modification Detection and Write Aggregation. On a write fault, we make
a copy (a twin) of the page on which the fault occurred, and we make all read-only
objects in the page read-write. At a (release) synchronization point, we compare
the modified page with the twin to determine which objects have been changed,
and hence for which objects write notices need to be generated1. After the (release)
synchronization, the twin is deleted and the page is made read-only again.
This approach has better performance than the more straightforward approach,

where only one object at a time is made read-write. The latter method generates
a substantially larger number of write faults. If there is locality to the write access
pattern, the cost of these write faults exceeds the cost of making the twin and
performing the comparison. We refer to this optimization as write aggregation.

4.5.4 Write Notice Compression. The write notices are in terms of objects. As
a consequence, for applications with a large number of objects, the number of write
notices can potentially be very large. DOSA employs a novel compression technique
to reduce the number of write notices transmitted. Each time a processor creates
a new interval, it traverses in reverse order the intervals that it has created before,
searching for one that has a similar set of write notices. If such an approximate
“match” is found, the encoding of the differences between the write notices of
the new and the old interval are typically much smaller than the write notices
themselves. In this case, only the differences are sent. Information about intervals
on one processor is always received on another processor in the order of increasing
interval numbers. Thus, when a processor receives interval information containing
a difference of write notices, it must already have received the interval based on
which that difference has been computed. It can then easily reconstruct the write
notices of the new interval. To avoid having to save all the old intervals created by
all other processors, we set a threshold on how many old intervals to save and thus
how far to search back for a close match with an old interval. If no close match is
found, the current set of new write notices is sent in the normal way.

1The twin is used here for a different purpose than the twin in TreadMarks. Here it is simply

used to generate write notices. In the TreadMarks multiple-writer protocol it is used to generate a
diff, a runlength encoding of the changes to the page. Since we are using a single-writer protocol,

there is no need for diffs.
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4.5.5 Eliminating Indirect References in Loops. This optimization eliminates
the cost of repeated indirection through the handle table when an array is accessed
inside a loop. Assume a one-dimensional array a is accessed in a for loop. Using
C-like pseudo-code, the resulting memory accesses in DOSA can be expressed as
follows.

for i

a->handle[i] = ...;

This code sequence leads to twice as many memory accesses as a corresponding
loop implemented without a handle table.
Observe also that the following transformation of the DOSA program is legal but

not profitable:

p = a->handle;

for i

p[i] = ...;

The problem with this transformation occurs when a->handle has been invalidated
as a result of a previous synchronization. Before the loop, p contains an address
in the invalid region, which causes a page fault on the first iteration of the loop.
DOSA changes a->handle to its location in the read-write region, but this change
is not reflected in p. As a result, the loop page faults on every iteration. We solve
this problem by “touching” a->handle[0] before assigning it to p. In other words,

write_touch( a->handle[0] );

p = a->handle[0];

for i

p[i] = ...;

Write-touching a->handle[0] outside the loop causes the write fault to occur there,
and a->handle to point to the read-write mapping. Similarly, if the access is a read,
i.e., appearing on the right-hand-side of an assignment, we insert a read-touch before
the loop to force an update of the handle to point to the read-only mapping.
This optimization is dependent on the lazy implementation of release consistency.

Invalidations only arrive at synchronization points, never asynchronously, thus the
cached references are never invalidated in a synchronization-free loop.
With suitable compiler support, this optimization can be automated. For ex-

ample, recent progress on pointer analysis (e.g. [Landi and Ryder 1992][Andersen
1994][Das 2000]) has allowed for
fairly accurate computation of the set of memory locations a pointer can po-

tentially point to. Such analysis can be used to prove that a and a->handle are
invariant across the loop iterations, automating the above transformation.

4.6 Limitations

The triple mapping consumes virtual memory space and causes TLB (translation
lookaside buffer) pressure. This is not a significant problem, however, for two rea-
sons. First, with 64-bit architectures nearby, consumption of virtual memory space
is unlikely to remain a problem. Second, compared to page-based DSMs, the lazy
object allocation in DOSA actually reduces virtual memory use and TLB pressure
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for applications in which each processor only accesses a subset of the objects. Each
processor only needs to allocate memory for those objects that it accesses, thus
effectively packing those objects into fewer virtual memory pages, and reducing
the virtual memory footprint and resulting TLB pressure. In contrast, in page-
based DSMs virtual memory has to be allocated for all objects on all processors,
regardless of whether a processor accesses an object. Unfortunately, the hardware
counters on the architecture that we are using do not monitor TLB performance [In-
tel Corporation 2001]. Thus, we cannot provide quantitative information on this
subject.
Some of the optimizations, in particular lazy object allocation, read aggregation

and write aggregation, seek to take advantage of locality in the application. If no
such locality is present, then no benefits can be expected.

5. EVALUATION METHODOLOGY

We evaluate DOSA by comparing its performance to TreadMarks [Amza et al.
1996]. We choose TreadMarks as a basis for comparison because it is the most
widely used VM-based distributed shared memory system and because DOSA is
derived from the same code base as TreadMarks, thus avoiding performance dif-
ferences due to coding. Briefly, TreadMarks uses a lazy implementation of the
release consistency which reduces the amount of data and the number of messages
transmitted compared to eager implementations [Amza et al. 1996]. To address the
false sharing problem facing VM-based DSM systems, TreadMarks uses a multiple-
writer protocol that allows multiple concurrent writers to modify a page [Carter
et al. 1991]. Unfortunately, none of the instrumentation-based DSM systems aimed
at fine-grained sharing are generally available, so a direct comparison to such a
system could not be made.
In general, our performance evaluation seeks to provide evidence for our claim

that DOSA provides efficient support for both fine-grained and coarse-grained shar-
ing, and interacts well with garbage collection. As a result, our performance evalua-
tion considers both fine-grained and coarse-grained applications as well as garbage-
collected applications. In more detail, we seek to substantiate the following claims:

(1) The performance of fine-grained applications is considerably better than in
TreadMarks.

(2) The performance of coarse-grained applications is nearly as good as in Tread-
Marks. DOSA slightly underperforms TreadMarks because of the overhead
of indirection from using handles. Since the performance of such applications
is already good in TreadMarks, we consider this an acceptable performance
penalty.

(3) The performance of garbage-collected applications is considerably better than
in TreadMarks.

5.1 Comparison with TreadMarks for Fine-Grained and Coarse-Grained Applications

A difficulty arises in making the comparison with TreadMarks. Ideally, we would
like to make these comparisons by simply taking a number of applications in a safe
language, and compare their performance when running on TreadMarks with their
performance on DOSA.
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For a variety of reasons, the most appealing programming language for this pur-
pose is Java. Unfortunately, commonly available implementations of Java are inter-
preted and run on slow Java virtual machines. This would render our experiments
largely meaningless, because inefficiencies in the Java implementations and virtual
machines would dwarf differences between TreadMarks and DOSA. Perhaps more
importantly, we expect efficient compiled versions of Java to become available soon,
and we would expect that those be used in preference over the current implementa-
tions, quickly obsoleting our results. Finally, the performance of these Java appli-
cations would be much inferior to published results for conventional programming
languages.
We have therefore chosen to carry out the following experiments. For the first two

comparisons, we have taken existing C applications, and we have re-written them
to follow the model of a handle-based implementation. In other words, a handle
table is introduced, and all pointers are indirected through the handle table. This
approach represents the results that could be achieved by a language or compilation
environment that is compatible with our approach for maintaining consistency, but
otherwise exhibits no compilation or execution differences with the conventional
TreadMarks execution environment. In other words, these experiments isolate the
benefits and the drawbacks of our consistency maintenance methods from other
aspects of the compilation and execution process. It also allows us to assess the
overhead of the extra indirection on single-processor execution times. The opti-
mizations discussed in Section 4.5.5 have been implemented by hand in both the
TreadMarks and the DOSA programs. We report results with and without these
optimizations present.

5.2 Comparison with TreadMarks for Garbage-Collected Applications

We have implemented a distributed garbage collector on both TreadMarks and
DOSA that is representative of the state-of-the-art. Distributed garbage collectors
are naturally divided into an inter-processor algorithm, which tracks cross-processor
references and an intra-processor algorithm, which performs the traversal on each
processor and reclaims the unused memory.
To provide a fair comparison, we use the same inter-processor algorithm for both

TreadMarks and DOSA. In particular, we use a weighted reference counting [Bevan
1987; Thomas 1981; Watson and Watson 1987]. To implement weighted reference
counting transparently, we check incoming and outgoing messages for references.
These references are recorded in an import table and an export table, respectively.
We also use the same intra-processor algorithm in TreadMarks and DOSA, namely

a generational copying collector. The generational copying collectors have two gen-
erations. Following the suggestion by Wilson and Moher [Wilson and Moher 1989],
objects in the younger generation advance to the older generation in every other
garbage collection. Like Tarditi and Diwan’s collector [Tarditi and Diwan 1996],
the old generation is included in a garbage collection if the size of the free space
falls below 20% of the total heap size. Due to the existence of handles and the
single-writer protocol in DOSA, the implementation of the collectors for Tread-
Marks and DOSA differs significantly. We next describe the differences in the two
implementations.
In TreadMarks, when a processor wants to start a garbage collection, it initiates
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a barrier-like operation that suspends the DSM system. Only the last writer of
a page is allowed to copy objects within that page. After the barrier, the last
writer of every page is known to every processor. In the case of multiple writers
to a page, an arbitration algorithm in the barrier designates a single processor
as the last writer. Each processor starts a depth-first traversal from the “root”
references and the exported references. An object is copied and scanned only if the
node is its last writer. When an object is copied, a forwarding pointer to its new
location is written into its old address. A reference to the moved object is updated
only if the processor is also the last writer of the page that contain this reference.
After the traversal, imported references still pointing to the old address ranges (the
fromspace) are removed from the import table and sent back to the object’s creator.
The fromspace cannot, however, be immediately reclaimed. A processor instead sets
the protection of the fromspace to no-access. When a remote processor follows a
stale pointer and accesses a page in the fromspace, it fetches the up-to-date copy of
the page, reads the forwarding pointer, and updates the reference which has caused
the fault to the new address. The fault handler does not change the protection of
the page so that other stale references to moved objects are caught. The fromspace
is reclaimed when all stale references have been updated on all nodes, i.e., when
there are no more export or import references to the fromspace.
The copying collector for DOSA is much simpler. Each processor can start a

garbage collection asynchronously because the last writer of an object is always
known locally. Like the copying collector for TreadMarks, a processor starts a
depth-first traversal from the “root” references and the exported references, and
only copies and scans an object if it is the last writer of the object. Forwarding
pointers are unnecessary because the only reference that needs to be updated is
the address in the object’s handle. After the traversal, imported references still
pointing to the old address ranges (the fromspace) are removed from the import
table and sent back to the object’s creator. The fromspace can immediately be
reclaimed and reused.
On DOSA, the garbage collector on each processor is also responsible for reclaim-

ing unused handles, i.e., OIDs, that it owns (see Section 4.2). The locally owned
handles are managed using Baker’s non-copying collector [Baker 1991]. Two pointer
fields are added to each handle, one to chain the free handles in a free list, and one
to chain the allocated handles in an allocated list. During garbage collection, live
handles are moved from the old allocated list to a new allocated list. This occurs
when an object (whose handle is owned by the processor) is copied from the old
space to the new space. At the end of garbage collection, any handles remaining
in the old allocated list are unused, so the old allocated list is appended to the free
list. When changing the membership of handles between free lists and allocated
lists, the handles themselves are not moved and thus the OIDs are not changed.

5.3 Experimental Environment

Our experimental platform is a switched, full-duplex 100Mbps Ethernet network of
thirty-two 300 MHz Pentium II-based computers. Each computer has a 512 Kbyte
secondary cache and 256 Mbytes of memory. All of the machines are running
FreeBSD 2.2.6 and communicating through UDP sockets. On this platform, the
round-trip latency for a 1-byte message is 126 microseconds. The time to acquire
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a lock varies from 178 to 272 microseconds. The time for an 32-processor barrier
is 1,333 microseconds. For TreadMarks, the time to obtain a diff, a runlength
encoding of the changes to a page [Amza et al. 1996], varies from 313 to 1,544 mi-
croseconds, depending on the size of the diff. The time to obtain a full page is
1,308 microseconds.

5.4 Applications

Our choice of applications follows immediately from the goals of our performance
evaluation. We include a number of fine-grained, coarse-grained, and garbage-
collected applications. An application is said to be coarse-grained if a single pro-
cessor typically accesses a large portion or all of a page, and is said to be fine-grained
otherwise. An application may be coarse-grained because its basic objects are large
relative to the size of a page, or because it is accessing a number of (small) objects
that are contiguous in memory.
We use three fine-grained applications: Barnes-Hut and Water-Spatial from the

SPLASH-2 [Woo et al. 1995] benchmark suite, and Gauss distributed with Tread-
Marks. Barnes-Hut is an N-body simulation, Water-Spatial is a molecular dynamics
simulation optimized for spatial locality. Gauss implements Gaussian Elimination
with partial pivoting on linear equations stored in a two-dimensional shared array.
For Gauss, the computation on the rows is distributed across the processors in a
round-robin fashion. Thus, if the size of a row is smaller than the size of a VM page,
the access pattern is fine-grained. We denote this case as Gauss/small. Overall,
the object sizes for these applications are 104 bytes for Barnes-Hut, 680 bytes for
Water-Spatial, and 2 kilobytes for Gauss/small. In all cases, a single processor does
not access contiguous objects.
We use three coarse-grained applications: SOR and Gauss/large distributed with

TreadMarks and Water-N-Squared from the SPLASH [Singh et al. 1992] bench-
mark suite. SOR performs red-black successive over-relaxation on a 2-D grid.
Gauss/large is identical to Gauss/small except that its row size is the size of a
VM page. Water-N-Squared is a molecular dynamics simulation. The object size
for SOR and Gauss/large are 4 and 8 kilobytes, respectively. For Water-N-Squared
it is 680 bytes, but in this case a processor accesses a number of contiguous objects,
thus making access coarse-grained.
For each of these applications, Table I lists the problem size and the sequential

execution times. We use two problem sizes for each application, denoted large and
small. The sequential execution times are obtained by removing all TreadMarks
or DOSA calls from the applications, and using the optimization described in Sec-
tion 4.5.5. Table I also includes execution times with and without handles. These
timings show that the overhead of the extra level of dereferencing in the handle-
based versions of the applications is never more than 5.2% on one processor for any
of these applications. The sequential execution times without handles are used as
the basis for computing the speedups reported later in the paper.
To exercise the distributed garbage collector, we use three programs that have

been modified to perform garbage collection. The first program, OO7, is a modified
version of the OO7 object-oriented database benchmark [Carey et al. 1994]. The
second program, Game, performs a game-tree search for a game called Othello.
The last program, MIP, solves a Mixed Integer Programming problem [Bixby et al.
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Table I. Applications, input data sets, and sequential execution time.
Application Problem Size Time (sec.)

Original Handle

Fine-grained

Barnes-Hut Small 32K bodies, 3 steps 58.68 60.84
Large 131K bodies, 3 steps 270.34 284.43

Water-Spatial Small 4K mols, 9 steps 89.63 89.80
Large 32K mols, 2 steps 158.57 160.39

Gauss Small 512 x 512 2.20 2.22

Coarse-grained

Red-Black SOR Small 3070x2047, 20 steps 21.12 21.13
Large 4094x2047, 20 steps 27.57 28.05

Water-N-Squared Small 1728 mols, 2 steps 71.59 73.83
Large 2744 mols, 2 steps 190.63 193.50

Gauss Large 1k x 1k 18.76 18.97

1999].
The OO7 benchmark is designed to match the characteristics of many CAD/CAM/

CASE applications. Its database contains a tree of assembly objects, with leaves
pointing to three composite parts chosen randomly from among 500 objects. Each
composite part contains a graph of atomic parts linked by connection objects. Each
atomic part has 3 outgoing connections.
Ordinarily, OO7 does not release memory. Thus, there would be nothing for a

garbage collector to do. Our modified version of OO7 creates garbage by replacing
rather than updating objects when the database changes. After the new object
with the updated data is installed in the database, the old object becomes eligible
for collection.
The OO7 benchmark defines several database traversals [Carey et al. 1994]. For

our experiments, we use a mixed sequence of T1, T2a, and T2b traversals. T1
performs a depth-first traversal of the entire object hierarchy. T2a and T2b are
identical to T1, except that T2a replaces the root atomic part of each graph, while
T2b replaces all the atomic parts.
The Game program performs a game-tree search for a game called Othello. The

program runs for several game steps. In each step, a master processor takes the
current game board as the root of the game tree, and expands the tree for a prede-
termined number of levels. Each node in the tree has a back pointer to its parent
node. After the master finishes expanding the tree, it puts the leaf nodes in a task
queue. Then each processor repeatedly takes a task from the queue, computes the
result, and writes the result into all ancestors of the task node, including the root
node. The writes to the ancestor nodes are synchronized by a lock. At the end of
each step, the master makes the best move, and the game tree is discarded.
We run the program for 20 steps. The size of the game tree generated in each

step is around 256K bytes. Each processor also allocates a large number of private
objects.
MIP solves the Mixed Integer Programming problem, a form of linear program-

ming in which some of the variables are restricted to take on only integer values. It
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Table II. Total execution time and allocation and GC time on 1 processor for OO7, Game, and

MIP with garbage collection.

Application Version Time (sec.)
Total Alloc. and GC

OO7 TreadMarks 185 10.9
DOSA 191 11.0

Game TreadMarks 286 21.7
DOSA 296 22.5

MIP TreadMarks 583 0.20
DOSA 600 0.22

uses branch-and-bound to find the optimal solution to the problem. Nodes in the
search space are kept in a doubly-linked task queue. Each processor takes a node
from this queue, performs its computation, perhaps generating new task nodes, and
puts these new nodes back into the queue. For each task node, the computation
involves “relaxing” the integer restrictions on the variables and solving the corre-
sponding linear programming problem to determine whether a better solution than
the current best solution is possible below that node. This procedure is repeated
until the solution is found. This program allocates about 32K objects. All of the
objects are shared.
Table II lists the sequential execution times for OO7, Game, and MIP running

with the garbage collector on TreadMarks and DOSA. Overall, DOSA underper-
forms TreadMarks by less than 3.5% due to handle dereference cost and GC over-
head. Table II also lists the time spent in the memory allocator and the garbage
collector. Compared to TreadMarks, DOSA spends 0.9%, 3.6%, and 10% more time
in the garbage collector for OO7, Game, and MIP, respectively. This extra overhead
results from the fact that whenever an object is created, deleted, or moved, DOSA
has to update the handle table entry.

6. OVERALL RESULTS

6.1 Fine-grained Applications

Figure 5 shows the speedup comparison between TreadMarks and DOSA for Barnes-
Hut andWater-Spatial with small and large problem sizes, and Gauss with the small
problem size on 16 and 32 processors.
We derive the following conclusions from this data. First, even for a small num-

ber of processors, the benefits of the handle-based implementation outweigh the
cost of the extra indirection. For Barnes-Hut with 32K and 128K bodies, DOSA
outperforms TreadMarks by 29% and 52%, respectively, on 16 processors. For
Water-Spatial with 4K and 32K molecules, DOSA outperforms TreadMarks by
62% and 47%, respectively, on 16 processors. For Gauss/sm, DOSA outperforms
TreadMarks by 23.3%. Second, as the number of processors increases, the bene-
fits of the handle-based implementation grow. For Barnes-Hut with 128K bodies,
DOSA outperforms TreadMarks by 52% on 16 processors and 98% on 32 processors.
For Water-Spatial with 32K molecules, DOSA outperforms TreadMarks by 47% on
16 processors and 51% on 32 processors. For Gauss/sm, DOSA outperforms Tread-
Marks by 23.3% on 16 processors and by 25.6% on 32 processors. Third, if the
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Fig. 5. Speedup comparison between TreadMarks and DOSA for fine-grained ap-
plications.

amount of false sharing under TreadMarks decreases as the problem size increases,
as in Water-Spatial, then DOSA’s advantage over TreadMarks decreases for larger
problem sizes. If, on the other hand, the amount of false sharing under TreadMarks
increases as the problem size increases, as in Barnes-Hut, then DOSA’s advantage
over TreadMarks increases for larger problem sizes.
the due to
The reasons for DOSA’s clear dominance over TreadMarks can be seen in Fig-

ure 6, which shows the normalized statistics from the execution of Barnes-Hut/lg,
Water-Spatial/lg, and Gauss/sm on 32 processors, and also in Table III, which
presents detailed statistics from these executions. The figure and the table show
the amount of data communicated, the number of messages exchanged, the number
of overlapped data requests 2, and the average amount of shared data allocated
on each processor. Specifically, we see a substantial reduction in the amount of
data sent for DOSA, as a result of the reduction in false sharing. Furthermore,
the number of messages is reduced by a factor of 11 for Barnes-Hut/lg and 3 for
Water-Spatial/lg. More importantly, the number of overlapped data requests is
reduced by a factor of 1.3 for Barnes-Hut/lg and 4.9 for Water-Spatial/lg. Finally,
the benefits of lazy object allocation for these applications are quite clear: the
memory footprint of DOSA is considerably smaller than that of TreadMarks. For
Gauss/sm, the number of messages, the number of overlapped data requests, and
the memory footprint size are the same for DOSA and TreadMarks, since there is
no write-write false sharing of shared pages among the processors. The better per-
formance of DOSA over TreadMarks stems solely from a reduction in the amount of
data transmitted, as a result of lazy object allocation. In Gauss/sm a row occupies
half a page. Lazy object allocation avoids transmitting the other half of the page in

2All concurrent message exchanges for updating a page in TreadMarks or all concurrent message

exchanges for updating invalid objects in a page in DOSA are counted as one overlapped data
request. These messages are processed and their replies are generated in parallel, so they largely

overlap each other.
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Fig. 6. Statistics for TreadMarks and DOSA on 32 processors for fine-grained
applications with large data sizes, normalized to TreadMarks measurements. The
statistics include the amount of data (Data), the number of messages (Msg), the
number of message rounds where a message round includes all messages sent and
received in parallel (OverlapReq), and the average amount of memory allocated per
processor (MemAlloc).

Table III. Detailed statistics for TreadMarks and DOSA on 32 processors for fine-
grained applications, Barnes-Hut and Water-Spatial. The statistics include the
amount of data (Data), the number of messages (Msg), the number of message
rounds where a message round includes all messages sent and received in parallel
(OverlapReq), and the average amount of memory allocated per processor (MemAl-
loc).

Application Barnes-Hut/sm Barnes-Hut/lg
Tmk DOSA Tmk DOSA

Time 18.07 12.06 89.07 45.98
Data (MB) 315.3 82.6 1307 246
Messages 2549648 307223 10994350 1027932
Overlapped requests 108225 98896 439463 341303
Memory alloc. (MB) 7.36 1.05 29.4 3.35

Application Water-Spatial/sm Water-Spatial/lg Gauss/sm
Tmk DOSA Tmk DOSA Tmk DOSA

Time 12.52 8.04 12.89 8.52 1.57 1.25
Data (MB) 475.1 262.6 342.1 166.8 44.7 35.8
Messages 617793 188687 330737 109560 94265 95135
Overlapped requests 193692 66937 202170 41491 31248 31683
Memory alloc. (MB) 3.15 0.61 25.2 2.64 1.06 1.06

which the pivot row is allocated. For a more detailed explanation, see Section 7.1.
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Fig. 7. Speedup comparison between TreadMarks and DOSA for coarse-grained
applications.

6.2 Coarse-grained Applications

Figure 7 shows the speedup comparison between TreadMarks and DOSA for SOR
and Water-N-Squared with small and large problem sizes, and for Gauss with the
large problem size, running on 16 and 32 processors. The results show that the
performance of these coarse-grained applications in DOSA is within 6% of the
performance achieved with TreadMarks.
Figure 8 shows normalized statistics from the execution of these applications on

32 processors for SOR and Water-N-Squared with large problem sizes and Gauss/lg.
The detailed statistics are listed in Table IV. For SOR and Gauss/lg, where the
data unit, i.e., a row, is a multiple of a page, the detailed statistics for the two
systems are almost identical. DOSA performs almost as well as TreadMarks for
SOR and is 3.5% slower than TreadMarks for Gauss/lg. These differences are due
to the indirection through the handle table. For Water-N-Squared/lg, DOSA un-
derperforms TreadMarks by 6.7% on 16 processors, but surprisingly outperforms
TreadMarks by 1.7% on 32 processors. This is due to the difference between the
multiple-writer protocol used in TreadMarks and the single-writer protocol used in
DOSA. The migratory data access in Water-N-Squared/lg results in diff accumu-
lation [Lu et al. 1997] in a multiple-writer protocol implementation, which causes
TreadMarks to send more and more accumulated diffs as we increase the number
of processors. On 16 processors, TreadMarks sends 15% less data than DOSA, and
as a result outperforms DOSA by 6.7%. On 32 processors, as diff accumulations
becomes more severe, TreadMarks sends 17% more data than DOSA and as a result
slightly underperforms DOSA. Finally, since in Water-N-Squared, each processor
only accesses half of the molecules due to the use of symmetry, the memory footprint
in DOSA is about half of that in TreadMarks.

6.3 Garbage Collected Applications

Figures 9 and 10 show the execution statistics for OO7 running on 16 processors
and Game and MIP running on 32 processors on TreadMarks and DOSA using the
generational copying collector. The detailed statistics are listed in Table V. We
do not present results for OO7 on 32 processors because the total data size, which
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Fig. 8. Statistics for TreadMarks and DOSA on 32 processors for coarse-grained
applications with large data sizes, normalized to TreadMarks measurements. The
statistics include the amount of data (Data), the number of messages (Msg), the
number of message rounds where a message round includes all messages sent and
received in parallel (OverlapReq), and the average amount of memory allocated per
processor (MemAlloc).

Table IV. Detailed statistics for TreadMarks and DOSA on 32 processors for coarse-
grained applications SOR and Water-N-Squared. The statistics include the amount
of data (Data), the number of messages (Msg), the number of message rounds where
a message round includes all messages sent and received in parallel (OverlapReq),
and the average amount of memory allocated per processor (MemAlloc).
Application SOR/sm SOR/lg

Tmk DOSA Tmk DOSA
Time 1.10 1.10 1.31 1.32
Data (MB) 23.6 23.6 23.6 23.6
Messages 12564 12564 12440 12440
Overlapped requests 4962 4962 4962 4962
Memory alloc. (MB) 50.3 1.64 67.1 2.16

Application Water-N-Squared/sm Water-N-Squared/lg Gauss/lg
Tmk DOSA Tmk DOSA Tmk DOSA

Time 4.52 4.27 9.74 9.58 6.77 7.01
Data (MB) 134.1 114.0 212.4 181.4 134.3 136.7
Messages 77075 63742 114322 101098 189500 190368
Overlapped requests 33033 28032 51816 44758 62992 63427
Memory alloc. (MB) 1.58 0.66 2.10 1.04 4.20 4.20

increases linearly with the number of processors, is so large that it causes paging
on 32 processors.
On 16 processors, OO7 performs almost 65% better on DOSA than on Tread-

Marks. On 32 processors, Game and MIP perform 19% and 33% better running on
DOSA than running on TreadMarks. Table V shows that for all three programs the
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measurements. The statistics include the total amount of data transmitted (Data),
the amount of GC data transmitted (GC Data), and the number of messages (Msg).
GC data consists of the weights transferred and the nack data, which lists the
references that have been removed from a processor and their weights.

time spent in the memory management code. performing allocation and garbage
collection, is almost the same for TreadMarks and DOSA. The effects of the in-
teraction between the garbage collector and DOSA or TreadMarks appear during
the execution of the application code. The main cause for the large performance
improvement in DOSA is reduced communication, as shown in Figure 10.
The extra communication on TreadMarks is primarily a side-effect of garbage

collection. On TreadMarks, when a processor copies an object during garbage col-
lection, this operation is indistinguishable from an ordinary write by the application.
Consequently, when another processor accesses the object after garbage collection,
the object is transmitted, even though its content has not been changed by the
garbage collector’s copy. In fact, the requesting processor may have an up-to-date
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Table V. Detailed statistics for TreadMarks and DOSA for the garbage collected
applications. OO7 is run on 16 processors, and Game and MIP are run on 32
processors. The statistics include the total amount of data transmitted (Data), the
amount of GC data transmitted (GC Data), and the number of messages (Msg).
GC data consists of the weights transferred and the nack data, which lists the
references that have been removed from a processor and their weights.

Tree OO7 Game MIP
Tmk DOSA Tmk DOSA Tmk DOSA

Time 23.4 14.2 21.5 18.0 70.3 52.7
Alloc and GC time 0.70 0.70 3.04 3.04 0.20 0.21
Data (MB) 48.4 17.9 60.5 34.5 203 116
GC Data (MB) 9.8 2.7 9.45 5.51 2.26 2.26
Messages 427.8K 117.4K 79.7K 69.8K 228K 122K

copy of the object in its memory, just at a new virtual address. In contrast, on
DOSA, when the garbage collector copies an object, it simply updates its handle
table entry, which is local information that never propagates to other processors.

7. EFFECTS OF THE VARIOUS OPTIMIZATIONS

To achieve the results described in the previous section, various optimizations are
used in DOSA. These optimizations include lazy object allocation (Section 4.5.1),
read aggregation (Section 4.5.2), write aggregation (Section 4.5.3), write notices re-
duction (Section 4.5.4), and removing indirect references from loops (Section 4.5.5).
To see what effect each optimization has individually, we perform the following ex-
periments: For each of the optimizations, we compare the performance of DOSA
without that optimization to the fully-optimized system.
Not all optimizations benefit all applications. The first four optimizations have

no effect on SOR and Gauss/lg. The objects in these two applications are larger
than a page. Read aggregation, write aggregation, and write notice reduction are
performed on a per-page basis, and therefore produce no improvement, and lazy
object allocation does not reduce false sharing. The fifth optimization produces
noticeable improvements only for SOR and Gauss, because these two applications
perform many indirect accesses that can be eliminated. For the other applications,
floating point computations dominate the overhead of indirection.
For a particular optimization and a particular application, we present results

only if the optimization benefits the application. Figure 11 shows the speedups
for each of the experiments for the first four optimizations for Barnes-Hut, Water-
Spatial, Gauss/sm, and Water-N-Squared. Table VI provides further detail on the
effects of the optimizations for these four applications, comparing the number of
messages, the number of overlapped data requests, the amount of data, the memory
footprint, the number of write notices, and the number of write page faults, all with
and without the optimizations. Table VII provides execution times for SOR/lg and
Gauss/lg on 1 and 32 processors for DOSA and TreadMarks, with and without the
optimization that removes indirect references from loops.
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are shown for SOR and Gauss/lg, since these applications are not affected by these
optimizations.

7.1 Lazy Object Allocation

Table VI shows that lazy object allocation produces improvements in execution time
of 13% for Barnes-Hut, 18% for Water-Spatial, and 30% for Gauss/sm, compared
to a version of DOSA without lazy object allocation. Lazy object allocation shows
no improvement for Water-N-Squared.
Lazy object allocation significantly benefits irregular applications that exhibit

spatial locality of reference in their physical domain. For example, even though the
bodies in Barnes-Hut and the molecules in Water-Spatial are input or generated
in random order, in the parallel algorithms, each processor only updates bodies or
molecules corresponding to a contiguous physical subdomain. Furthermore, inter-
subdomain data references only happen on the boundary of each subdomain. As
described in Section 4.5.1, for such applications, lazy object allocation only allocates
memory for objects on a processor that are accessed by that processor. Therefore,
a physical page contains mostly “useful” objects. With read aggregation, these
objects are updated in a single round of overlapped messages when faulting on the
first object. In contrast, without lazy object aggregation, objects are allocated on
all processors in the same order and at the same virtual address. Thus, the order
of the objects in memory reflects the access pattern of the initialization which may
differ from that of the computation. In other words, objects accessed by a specific
processor may be scattered in many more pages than with lazy object allocation.
As a result, memory footprint is much larger, many more faults occur, many more
rounds of messages are required to make all of the pages consistent, and more data
is sent because all modified objects in the same page are sent. The statistics in
Table VI quantify all these improvements.
As already explained in Section 6.1, Gauss/sm benefits from lazy object allocation

because it reduces the extra data sent as a result of false sharing in a page containing
a pivot row. For Gauss/sm, two rows fit in one VM page. With lazy object
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Table VI. Statistics from the execution on 32 processors for DOSA and DOSA with-
out lazy object allocation, read aggregation, write aggregation, and write notice re-
duction for Barnes-Hut/lg, Water-Spatial/lg, Gauss/sm, and Water-N-Squared/lg.
The statistics include the execution time (Time), the amount of data (Data), the
number of messages (Msg), the number of message rounds where a message round
includes all messages sent and received in parallel (OverlapReq), and the average
amount of memory allocated per processor (MemAlloc). No results are shown for
SOR and Gauss/lg, since these applications are not affected by these optimizations.
Application DOSA w/o Lazy w/o Read w/o Write w/o W.N.

Obj. Alloc. Aggre. Aggre. Reduc.

Barnes- Time (sec.) 45.07 50.90 139.88 46.05 49.56
Hut Data (MB) 245.8 251.7 124.7 246.2 277.4
(lg) Write notices (M) 6.42 6.42 6.42 6.42 35.4

Messages 1027903 1612276 2254374 1027944 1027991
Overlapped reqs. 341303 428537 1123734 341303 341303
Mem. alloc. (MB) 3.35 23.2 3.35 3.35 3.35
Write faults 27586 163865 28248 582533 27728

Water- Time (sec.) 8.52 10.07 10.54 8.54 8.75
Spatial Data (MB) 166.8 167.2 166.0 166.7 169.4
(lg) Write notices (M) 0.74 0.74 0.74 0.74 3.30

Messages 109560 183965 478674 109560 109558
Overlapped reqs. 41486 72664 238341 41491 41490
Mem. alloc. (MB) 2.64 22.5 2.64 2.64 2.64
Write faults 20989 35277 20777 110864 21062

Gauss Time (sec.) 1.25 1.62 1.25 1.25 1.25
(sm) Data (MB) 35.8 53.8 35.8 35.8 35.8

Write notices (M) 0.10 0.10 0.10 0.10 0.10
Messages 95135 95135 95135 95135 95135
Overlapped reqs. 31683 31683 31683 31683 31683
Mem. alloc.(MB) 1.06 1.06 1.06 1.06 1.06
Write faults 768 768 768 768 768

Water- Time (sec.) 9.58 9.58 11.74 9.58 9.58
N- Data (MB) 181.3 181.8 183.2 181.4 181.6
Squared Write notices (M) 0.81 0.81 0.81 0.81 0.97
(lg) Messages 101098 101228 530783 101116 101108

Overlapped reqs. 44758 44874 261669 44770 44757
Mem. alloc. (MB) 1.04 1.89 1.04 1.04 1.04
Write faults 16953 16978 87498 96589 16968

allocation, when the first row in a page becomes the pivot row, only that row
is allocated and fetched. When the second row in that page becomes the pivot
row, only that second row is allocated and updated, since the first row is still
valid. Therefore, remote pivot rows are always fetched once. Without lazy object
allocation, when updating the first row in a page to become the pivot row, read
aggregation causes both rows in that page to be updated, since the second row
has been modified by the owning processor during some previous iterations. The
update of the second row at this point is useless, since it needs to be updated again

ACM Transactions on Computer Systems, Vol. X, No. Y, ZZ 2002.



26 · Y. Charlie Hu et al.

when it becomes the pivot row. This effect is clearly visible in the statistics for
Gauss/sm in Table VI: the amount of data transmitted increases by 50%.
Lazy object allocation has no impact on Water-N-Squared because molecules are

allocated in a 1-D array, and each processor always accesses the same contiguous
segment, consisting of half of the array elements, in fixed increasing order. Table VI
shows that memory footprint is halved as a result of lazy object allocation, but all
the other statistics remain the same.

7.2 Read Aggregation

Read aggregation produces the biggest performance improvements. Table VI shows
execution time improvements of 310% for Barnes-Hut, 24% for Water-Spatial, and
22% for Water-Nsquared. Read aggregation has no effect on Gauss/sm for the same
reasons as explained in Section 7.1.
Read aggregation brings in all modified objects in a page at once, on the first

fault on an object in that page. The potential gains come from fewer faults, fewer
messages, and fewer rounds of overlapped requests. The potential problem with
read aggregation is that DOSA may fetch more objects than necessary.
For Water-Nsquared each processor accesses the same set of elements on each

iteration. For Water-Spatial the set of accessed elements is almost the same on
each iteration. In either case, spatial locality is good throughout the execution.
Consequently, objects prefetched by read aggregation are typically used. In Barnes-
Hut, the set of bodies accessed by a processor changes over time. In effect, when a
body migrates from its old processor to its new one, it leaves behind a “hole” in the
page that it used to occupy. When the old processor accesses any of the remaining
objects in that page, read aggregation still updates the hole.
Table VI shows that without read aggregation, DOSA sends 2.2, 4.4, and 5.3

times more messages, and requires 3.3, 5.7, and 5.8 more overlapped requests for
Barnes-Hut, Water-Spatial, and Water-N-Squared, respectively. For Water-Spatial
and Water-N-Squared, the amount of data remains the same, with or without read
aggregation. For Barnes-Hut, twice as much data is sent with read aggregation.
Overall, the benefits outweigh the drawback for all three applications.

7.3 Write Aggregation

Improvements as a result of write aggregation are minor. Table VI shows a 2.2%
improvement for Barnes-Hut and no noticeable improvement for the other applica-
tions. Table VI further shows that write aggregation reduces the number of page
faults by factors of 21, 5.3, and 5.7 for Barnes-Hut, Water-Spatial, and Water-
N-Squared, respectively. The impact on Water-Spatial and Water-N-Squared is
marginal, since page faults constitute only a very small fraction of the execution
time for these two applications. Write aggregation has no effect on Gauss/sm.

7.4 Write Notice Reduction

Write notice reduction is effective for Barnes-Hut and Water-Spatial. Table VI
shows an improvement in execution time of 10% for Barnes-Hut and 3% for Water-
Spatial. For Barnes-Hut, it reduces the amount of write notice data by a factor
of 5.5, for Water-Spatial by a factor of 4.5. This optimization has little effect on
Water-N-Squared and Gauss/sm as they have relatively few write notices.
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Table VII. Execution time (sec.) for SOR and Gauss/lg with and without removing
indirect accesses on 1 and 32 processors.
Application No. of Procs. Tmk/opt. Tmk/no-opt. DOSA/opt. DOSA/no-opt.

SOR/lg 1 27.57 33.19 28.05 47.47
32 1.32 1.54 1.31 1.84

Gauss/lg 1 18.76 23.64 18.97 33.58
32 6.77 8.07 7.01 10.02

7.5 Removing Indirect Accesses in Loops

Table VII shows the execution times of SOR/lg and Gauss/lg, on 1 and 32 proces-
sors, for TreadMarks and DOSA, with and without the optimization for removing
indirect accesses in loops. For these two applications, this optimization significantly
improves performance. On a single processor, it improves the performance of the
original array-based version of SOR/lg and Gauss/lg by 20% and 26%, respectively,
and the handle-based version by 69% and 77%, respectively. On 32 processors, the
improvements are 17% and 40% for the two versions of SOR, and 19% and 43%
for the two versions of Gauss, respectively. This optimization has similar effect on
Gauss/sm as on Gauss/lg. It has little impact on Barnes-Hut, Water-Spatial, and
Water-N-Squared, since these applications are dominated by floating-point compu-
tations.

8. RELATED WORK

The paper already contains an extensive description of the coarse-grained Tread-
Marks system and a detailed comparison of DOSA and TreadMarks. In this section
we discuss additional DSM systems that offer support for fine-grained sharing. We
also compare DOSA with related work in the broader field of parallel and distributed
object systems, persistent programming language and distributed persistent stor-
age systems. Finally, we compare the garbage collection algorithm in DOSA to
previous GC algorithms on DSMs.

8.1 Fine-grained Distributed Shared Memory

8.1.1 Using instrumentation. Instrumentation in support of fine-grained shar-
ing has been used in Blizzard-S [Schoinas et al. 1994], Shasta [Scales et al. 1996]
and Midway [Bershad et al. 1993]. Aggressive optimizations are required to reduce
the potentially high overhead of runtime checking. In addition, these systems do
not aggregate updates to shared blocks or take advantage of data locality to reduce
memory usage and communication like DOSA does.
Dwarkadas et al. [Dwarkadas et al. 1999] compared Cashmere, a coarse-grained

system, somewhat like TreadMarks, and Shasta, an instrumentation-based system,
running on an identical platform – a cluster of four 4-way AlphaServers connected by
a Memory Channel network. In general, Cashmere outperformed Shasta on coarse-
grained applications (e.g., Water-N-Squared), and Shasta outperformed Cashmere
on fine-grained applications (e.g., Barnes-Hut). Surprisingly, Cashmere’s perfor-
mance on the fine-grained application Water-Spatial equaled that of Shasta. They
attributed this result to the run-time overhead of the inline access checks in Shasta.
In contrast, DOSA outperforms TreadMarks by 62% on the same application. We
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attribute this to lazy object allocation, which is not possible in Shasta, and read
aggregation.

Jackal [Veldema et al. 2001] is a fine-grained DSM system for Java that imple-
ments the Java memory model, which resembles but is subtly different from release
consistency. Like Shasta, Jackal uses software inline checks for access detection to
Java objects or arrays. Aggressive compiler and runtime optimizations are reported
to be necessary to achieve reasonable performance [Veldema et al. 2001]. Unfor-
tunately, the system is not generally available, and therefore a direct comparison
cannot be made.

8.1.2 Using VM protection. Millipede [Itzkovitz and Schuster 1999] does not
take advantage of language safety or of a handle-based programming model. In-
stead, it attempts to provide transparent support for fine-grained sharing using VM
protection. This effectively requires that every object reside in a separate virtual
page. Different virtual pages are mapped to a single physical page by offsetting the
objects in their virtual pages such that they do not overlap in physical memory. Dif-
ferent protection attributes may be set on different virtual pages that are mapped
to the same physical page, thereby achieving the same effect as DOSA, namely
per-object access and write detection. The Millipede approach is more costly than
the DOSA approach in a variety of ways. It requires costly OS system calls (e.g.,
mprotect) to change page protections each time a page’s protection needs to be
changed. DOSA implements protection changes by user-level pointer switching in
the handle table. It requires one virtual memory mapping per object, while the
DOSA method requires only three mappings per page, resulting in considerably
less address space consumption and pressure on the TLB. Finally, it does not allow
any aggregation optimizations, because each object must reside in a separate page.

The Region Trapping Library (RTL) [Brecht and Sandhu 1999] requires the pro-
grammer to define regions and identify all pointers into each region. It then allocates
three different regions of memory with different protection attributes to perform
per-object access and modification detection. All pointers declared to point into
a region are changed when the region’s protection changes. By virtue of using a
handle-based programming model or by virtue of using a safe language in which the
compiler can indirect all accesses through a handle table, DOSA effectively allows
only a single pointer into an object, thereby avoiding the complication of having to
declare all pointers into shared memory as belonging to a particular region. Fur-
thermore, in the RTL implementation, the read memory region and the read-write
memory region are backed by different physical memory regions. As result, mod-
ifications made in the read-write region must be copied to the read region, every
time protection changes from read-write to read.

8.1.3 Using handles. Freeh et al. [Freeh and Andrews 1996] use handles to re-
duce false sharing in a page-based DSM system. If false sharing occurs within a
page, their system moves the objects causing the false sharing to another page.
However, their system still maintains coherence at the page granularity. The han-
dles are only used to facilitate the data movement, not to detect memory accesses
at the object granularity.
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8.1.4 Shared addresses vs. shared objects. In all of the above systems, objects
need to appear at the same virtual address on all processors. As a result, none can
support lazy object allocation.

8.2 Parallel and Distributed Object-Oriented Languages and Systems

There have been a host of concurrent object-oriented languages and systems that
aim to provide distributed or distributed shared objects.
Orca [Tanenbaum et al. 1992], Jade [Rinard and Lam 1998], COOL [Chandra

et al. 1994], and SAM [Scales and Lam 1994] are parallel or distributed object-
oriented languages. All of these systems differ from ours in that they present
a new language or API to the programmer to express distributed sharing, while
DOSA does not. DOSA aims to provide transparent object sharing for existing
safe languages, such as Java. Furthermore, none of Orca, Jade, COOL, or SAM
use VM-based mechanisms for object sharing.
Many recent systems add concurrency extensions to Java to support distributed

shared objects. Examples include JavaParty [Philipsen and Zenger 1997], Javelin [Chris-
tiansen et al. 1997], Kan [James and Singh 2000], Aleph [Herlihy 1999], Share-
holder [Harris and Sarkar 1998], and Parallel Java [Kale et al. 1997]. Again, these
systems differ from DOSA in that they either add new language extensions or APIs
to Java.

8.3 Persistent Languages and Persistent Object Systems

The need to deal with object identifiers (OID) as opposed to memory addresses
has long faced implementors of persistent programming languages and persistent
storage systems. In a persistent language, the persistent objects can outlive a single
program execution. In a persistent storage system, the object space can potentially
be larger than the virtual memory address space. In either case, persistent objects
need to be stored using object identifiers.
The two classic ways of implementing persistent objects, swizzling on discov-

ery [White and DeWitt 1992] and address translation at page-fault time [Wilson
and Moher 1992], mirror the two classic ways of access detection in software DSMs,
software inline checks and the VM protection mechanism. The tradeoffs between
these two approaches mirror the tradeoffs between fine-grained and coarse-grained
DSMs: the faulting cost for the VM scheme favors large objects that contain many
object references.
Similar tradeoffs carry over to distributed persistent storage systems, in which

servers provide persistent storage for information accessed by applications running
at clients (see, e.g., [Kachler and Krasner 1990][White and DeWitt 1992][Lamb
et al. 1991][White and DeWitt 1994][Castro et al. 1997]). These systems cache re-
cently used information at client machines to provide low access latency and good
scalability. Clients can use page caching [Lamb et al. 1991][White and DeWitt
1994], potentially leading to a mismatch between the cache unit size and the ob-
ject size, or object caching [Kachler and Krasner 1990][White and DeWitt 1992],
potentially leading to significant overhead in checking and maintaining the cache.
An interesting in-between solution is hybrid adaptive caching (HAC) [Castro et al.
1997]. In this approach, the client dynamically partitions the cache between pages
and objects based on the application behavior. Pages with good locality are cached
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as whole pages, while for pages with poor locality, only hot objects are retained
and cold objects are evicted. To enable the hybrid adaptive caching, the object
identifier is translated to a pointer to an entry in an indirection table, and the
entry in turn points to the target object in memory.

8.4 Garbage Collection on DSM Systems

Le Sergent et al. [Le Sergent and Berthomieu 1992][Matthews and Le Sergent 1995]
extend an incremental copying collector originally designed for a multiprocessor to
a DSM system. The garbage collector requires a consistent image of the entire
object graph, therefore is very expensive. They do not report any performance
measurements. Kordale et al. describe a garbage collector for DSM based on a mark-
sweep technique [Kordale et al. 1993]. Like Le Sergent’s collector, this algorithm
also requires a consistent image of the entire object graph, and is therefore very
expensive.
Ferreira and Shapiro [Ferreira and Shapiro 1994] are the first to point out that

a garbage collector can be designed to tolerate memory inconsistency. Their al-
gorithm allows the processors to collect independently. Their design depends on
the entry consistency model [Bershad et al. 1993], which presents a single-writer
interface. Address changes are propagated asynchronously and piggybacked in mes-
sages sent out by the application program. They evaluate the scalability of their
design, but do not study the impact of the garbage collector on overall program
performance. It is not straightforward to adapt their algorithms to DSM systems
using other relaxed consistency protocols.
Yu and Cox [Yu and Cox 1996] discuss a conservative mark-sweep garbage col-

lector for DSM systems. They show that the garbage collector can be very efficient,
incurring low overheads during garbage collection. However, the poor spatial lo-
cality as a side effect of the mark-sweep collector can result in high communication
cost, and is detrimental to the overall performance of some programs.
The shared object space abstraction in DOSA decouples an object’s naming from

its address in memory, making the intra-processor garbage collector orthogonal to
the DSM operations. Therefore, a processor is free to use any garbage collection
algorithm without it having any negative effect on the performance of other pro-
cessors. The shared object space abstraction not only eliminates the negative effect
of the intra-processor garbage collector and improves the overall program perfor-
mance, it also simplifies the design of the intra-processor garbage collectors.

9. CONCLUSIONS

We have presented a new run-time system, DOSA, that efficiently supports both
fine-grained and coarse-grained object sharing in a distributed system. A handle
table supports efficient, per-object access and modification detection using VM pro-
tection mechanisms. In a safe language, a compiler can generate a handle-based
implementation of a program, thereby making it transparent to the application
programmer. The same benefits can also be obtained non-transparently if the pro-
grammer accesses all objects through a handle and refrains from pointer arithmetic
on the handles. Like earlier systems designed for fine-grained sharing, DOSA im-
proves the performance of fine-grained applications by eliminating false sharing. In
contrast to these earlier systems, DOSA’s VM-based approach and read aggrega-
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tion enable it to match the performance of a page-based system for coarse-grained
applications. Furthermore, its architecture permits optimizations, such as lazy ob-
ject allocation, which are not possible in conventional fine-grained or coarse-grained
DSM systems. Lazy object allocation transparently improves the locality of refer-
ence in many applications, improving their performance.
Our performance evaluation on a cluster of 32 Pentium II processors connected

with a 100Mbps Ethernet demonstrates that the new system performs compara-
bly to TreadMarks for coarse-grained applications (SOR, Water-N-Squared and
Gauss/lg), and significantly outperforms TreadMarks for fine-grained applications
(up to 98% for Barnes-Hut, 62% for Water-Spatial, and 25.6% for Gauss/sm) and
garbage-collected applications (65% for OO7, 19% for Game, and 33% for MIP).
We have also presented a complete breakdown of the performance results. The

optimizations of lazy object allocation and read aggregation are particularly signif-
icant to DOSA’s performance. Without lazy object allocation, on 32 processors,
Barnes-Hut runs 13% slower, Water-Spatial 18%, and Gauss/small 30%. Without
read aggregation, on 32 processors, Barnes-Hut runs 310% slower, Water-Spatial
24%, and Water-N-Squared 22%.
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