8,602 research outputs found

    The Effects of Displayed Violence and Game Speed in First-Person Shooters on Physiological Arousal and Aggressive Behavior

    Get PDF
    Many studies have been conducted to examine the effects of displayed violence in digital games on outcomes like aggressive behavior and physiological arousal. However, they often lack a proper manipulation of the relevant factors and control of confounding variables. In this study, the displayed violence and game speed of a recent first-person shooter game were varied systematically using the technique of modding, so that effects could be explained properly by the respective manipulations. Aggressive behavior was measured with the standardized version of the Competitive Reaction Time Task or CRTT (Ferguson et al., 2008}. Physiological arousal was operationalized with four measurements: galvanic skin response (GSR), heart rate (HR), body movement, force on mouse and keyboard. A total of N = 87 participants played in one of four game conditions (low- vs. high-violence, normal- vs. high speed) while physiological measurements were taken with finger clips, force sensors on input devices (mouse and keyboard), and a Nintendo Wii balance board on the chair they sat on. After play, their aggressive behavior was measured with the CRTT. The results of the study do not support the hypothesis that playing digital games increases aggressive behavior. There were no significant differences in GSR and HR, but with a higher game speed, participants showed less overall body movement, most likely to meet the game’s higher demands on cognitive and motor capacities. Also, higher game speed and displayed violence caused an increase in applied force on mouse and keyboard. Previous experience with digital games did not moderate any of these findings. Moreover, it provides further evidence that the CRTT should only be used in a standardized way as a measurement for aggression, if at all. Using all 7 different published (though not validated) ways to calculate levels of aggression from the raw data, “evidence” was found that playing a violent digital game increases, decreases, or does not change aggression at all. Thus, the present study does extend previous research. Firstly, it shows the methodological advantages of modding in digital game research to accomplish the principles of psychological (laboratory) experiments by manipulating relevant variables and controlling all others. It also demonstrates the test-theoretical problems of the highly diverse use of the CRTT. It provides evidence that for a meaningful interpretation of effects of displayed violence in digital games, there are other game characteristics that should be controlled for since they might have an effect on relevant outcome variables. Further research needs to identify more of those game features, and it should also improve the understanding of the different measures for physiological arousal and their interrelatedness

    Towards estimating computer users' mood from interaction behaviour with keyboard and mouse

    Get PDF
    The purpose of this exploratory research was to study the relationship between the mood of computer users and their use of keyboard and mouse to examine the possibility of creating a generic or individualized mood measure. To examine this, a field study (n = 26) and a controlled study (n = 16) were conducted. In the field study, interaction data and self-reported mood measurements were collected during normal PC use over several days. In the controlled study, participants worked on a programming task while listening to high or low arousing background music. Besides subjective mood measurement, galvanic skin response (GSR) data was also collected. Results found no generic relationship between the interaction data and the mood data. However, the results of the studies found significant average correlations between mood measurement and personalized regression models based on keyboard and mouse interaction data. Together the results suggest that individualized mood prediction is possible from interaction behaviour with keyboard and mouse

    Interaction platform-orientated perspective in designing novel applications

    Get PDF
    The lack of HCI offerings in the invention of novel software applications and the bias of design knowledge towards desktop GUI make it difficult for us to design for novel scenarios and applications that leverage emerging computational technologies. These include new media platforms such as mobiles, interactive TV, tabletops and large multi-touch walls on which many of our future applications will operate. We argue that novel application design should come not from user-centred requirements engineering as in developing a conventional application, but from understanding the interaction characteristics of the new platforms. Ensuring general usability for a particular interaction platform without rigorously specifying envisaged usage contexts helps us to design an artifact that does not restrict the possible application contexts and yet is usable enough to help brainstorm its more exact place for future exploitation

    A Content-Analysis Approach for Exploring Usability Problems in a Collaborative Virtual Environment

    Get PDF
    As Virtual Reality (VR) products are becoming more widely available in the consumer market, improving the usability of these devices and environments is crucial. In this paper, we are going to introduce a framework for the usability evaluation of collaborative 3D virtual environments based on a large-scale usability study of a mixedmodality collaborative VR system. We first review previous literature about important usability issues related to collaborative 3D virtual environments, supplemented with our research in which we conducted 122 interviews after participants solved a collaborative virtual reality task. Then, building on the literature review and our results, we extend previous usability frameworks. We identified twelve different usability problems, and based on the causes of the problems, we grouped them into three main categories: VR environment-, device interaction-, and task-specific problems. The framework can be used to guide the usability evaluation of collaborative VR environments

    An Evaluation of Mouse and Keyboard Interaction Indicators towards Non-intrusive and Low Cost Affective Modeling in an Educational Context

    Get PDF
    AbstractIn this paper we propose a series of indicators, which derive from user's interactions with mouse and keyboard. The goal is to evaluate their use in identifying affective states and behavior changes in an e-learning platform by means of non-intrusive and low cost methods. The approach we have followed study user's interactions regardless of the task being performed and its presentation, aiming at finding a solution applicable in any domain. In particular, mouse movements and clicks, as well as keystrokes were recorded during a math problem solving activity where users involved in the experiment had not only to score their degree of valence (i.e., pleasure versus displeasure) and arousal (i.e., high activation versus low activation) of their affective states after each problem by using the Self-Assessment-Manikin scale, but also type a description of their own feelings. By using that affective labeling, we evaluated the information provided by these different indicators processed from the original user's interactions logs. In total, we computed 42 keyboard indicators and 96 mouse indicators
    • 

    corecore