1,123 research outputs found

    Measuring and modeling the perception of natural and unconstrained gaze in humans and machines

    Get PDF
    Humans are remarkably adept at interpreting the gaze direction of other individuals in their surroundings. This skill is at the core of the ability to engage in joint visual attention, which is essential for establishing social interactions. How accurate are humans in determining the gaze direction of others in lifelike scenes, when they can move their heads and eyes freely, and what are the sources of information for the underlying perceptual processes? These questions pose a challenge from both empirical and computational perspectives, due to the complexity of the visual input in real-life situations. Here we measure empirically human accuracy in perceiving the gaze direction of others in lifelike scenes, and study computationally the sources of information and representations underlying this cognitive capacity. We show that humans perform better in face-to-face conditions compared with recorded conditions, and that this advantage is not due to the availability of input dynamics. We further show that humans are still performing well when only the eyes-region is visible, rather than the whole face. We develop a computational model, which replicates the pattern of human performance, including the finding that the eyes-region contains on its own, the required information for estimating both head orientation and direction of gaze. Consistent with neurophysiological findings on task-specific face regions in the brain, the learned computational representations reproduce perceptual effects such as the Wollaston illusion, when trained to estimate direction of gaze, but not when trained to recognize objects or faces.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF – 1231216

    Social cognition in the age of human–robot interaction

    Get PDF
    Artificial intelligence advances have led to robots endowed with increasingly sophisticated social abilities. These machines speak to our innate desire to perceive social cues in the environment, as well as the promise of robots enhancing our daily lives. However, a strong mismatch still exists between our expectations and the reality of social robots. We argue that careful delineation of the neurocognitive mechanisms supporting human–robot interaction will enable us to gather insights critical for optimising social encounters between humans and robots. To achieve this, the field must incorporate human neuroscience tools including mobile neuroimaging to explore long-term, embodied human–robot interaction in situ. New analytical neuroimaging approaches will enable characterisation of social cognition representations on a finer scale using sensitive and appropriate categorical comparisons (human, animal, tool, or object). The future of social robotics is undeniably exciting, and insights from human neuroscience research will bring us closer to interacting and collaborating with socially sophisticated robots

    Automatic Context-Driven Inference of Engagement in HMI: A Survey

    Full text link
    An integral part of seamless human-human communication is engagement, the process by which two or more participants establish, maintain, and end their perceived connection. Therefore, to develop successful human-centered human-machine interaction applications, automatic engagement inference is one of the tasks required to achieve engaging interactions between humans and machines, and to make machines attuned to their users, hence enhancing user satisfaction and technology acceptance. Several factors contribute to engagement state inference, which include the interaction context and interactants' behaviours and identity. Indeed, engagement is a multi-faceted and multi-modal construct that requires high accuracy in the analysis and interpretation of contextual, verbal and non-verbal cues. Thus, the development of an automated and intelligent system that accomplishes this task has been proven to be challenging so far. This paper presents a comprehensive survey on previous work in engagement inference for human-machine interaction, entailing interdisciplinary definition, engagement components and factors, publicly available datasets, ground truth assessment, and most commonly used features and methods, serving as a guide for the development of future human-machine interaction interfaces with reliable context-aware engagement inference capability. An in-depth review across embodied and disembodied interaction modes, and an emphasis on the interaction context of which engagement perception modules are integrated sets apart the presented survey from existing surveys
    • …
    corecore