6,844 research outputs found

    Denitrification and availability of carbon and nitrogen in a well-drained pasture soil amended with particulate organic carbon

    Get PDF
    A well-drained soil in N-fertilized dairy pasture was amended with particulate organic carbon (POC), either sawdust or coarse woody mulch, and sampled every 4 wk for a year to test the hypothesis that the addition of POC would increase denitrification activity by increasing the number of microsites where denitrification occurred. Overall mean denitrifying enzyme activity (DEA), on a gravimetric basis, was 100% greater for the woody mulch treatment and 50% greater for the sawdust treatment compared with controls, indicating the denitrifying potential of the soil was enhanced. Despite differences in DEA, no difference in denitrification rate, as measured by the acetylene block technique, was detected among treatments, with an average annual N loss of ∼22 kg N ha⁻¹ yr⁻¹ Soil water content overall was driving denitrification in this well-drained soil as regression of the natural log of volumetric soil water content (VWC) against denitrification rate was highly significant (r ² = 0.74, P < 0.001). Addition of the amendments, however, had significant effects on the availability of both C and N. An additional 20 to 40 kg N ha⁻¹ was stored in POC-amended treatments as a result of increases in the microbial biomass. Basal respiration, as a measure of available C, was 400% greater than controls in the sawdust treatment and 250% greater than controls in the mulch. Net N mineralization, however, was significantly lower in the sawdust treatment, resulting in significantly lower nitrate N levels than in the control. We attribute the lack of measured response in denitrification rate to the high temporal variability in denitrification and suggest that diffusion of nitrate may ultimately have limited denitrification in the amended treatments. Our data indicate that manipulation of denitrification by addition of POC may be possible, particularly when nitrate levels are high, but quantifying differences in the rate of denitrification is difficult because of the temporal nature of the process (particularly the complex interaction of N availability and soil water content)

    Substrate Induced Denitrification over or under Estimates Shifts in Soil N2/N2O Ratios

    Get PDF
    Funding: Funding was provided by the Biotechnology and Biological Sciences Research Council, BBSRC UK (http://www.bbsrc.ac.uk). Grant number BB/H013431/1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Interior Landscape Plants for Indoor Air Pollution Abatement

    Get PDF
    In this study, the leaves, roots, soil, and associated microorganisms of plants have been evaluated as a possible means of reducing indoor air pollutants. Additionally, a novel approach of using plant systems for removing high concentrations of indoor air pollutants such as cigarette smoke, organic solvents, and possibly radon has been designed from this work. This air filter design combines plants with an activated carbon filter. The rationale for this design, which evolved from wastewater treatment studies, is based on moving large volumes of contaminated air through an activated carbon bed where smoke, organic chemicals, pathogenic microorganisms (if present), and possibly radon are absorbed by the carbon filter. Plant roots and their associated microorganisms then destroy the pathogenic viruses, bacteria, and the organic chemicals, eventually converting all of these air pollutants into new plant tissue. It is believed that the decayed radon products would be taken up the plant roots and retained in the plant tissue

    Mechanism of endocarp-imposed constraints of germination of Lannea microcarpa seeds

    Get PDF
    Lannea microcarpa, a multipurpose tree species from the dry African savanna, sheds seeds that often display inhibition of germination. The underlying mechanism was investigated using seeds processed from fully matured fruits collected from natural stands in Burkina Faso. Germination of fresh seeds was variable (16¿28%), while they did not germinate after drying and rehydration. Mechanical scarification of the endocarp at the proximal end of the seeds increased germination to 83¿94%. Scarification on the distal end led to delayed radicle emergence through the produced hole in c. 40% of the seeds. The endocarp was permeable to water and respiratory gases. Increased water content in scarified seeds was associated with radicle extension during germination. Intact and scarified non-germinated seeds displayed a moderate rate of respiration with respiratory quotient (RQ) values of c. 1. Respiration increased and RQ decreased to c. 0.7 with radicle emergence. Ethylene evolution peaked in both intact and scarified seeds at the beginning of incubation and then decreased to low values. Inhibition of ethylene production by 1¿5 mM 2-amino-ethoxyvinylglycine (AVG) caused only a partial decrease of germination of the scarified seeds. Intact non-germinated seeds gradually lost viability during incubation at 30°C, but could be rescued by delayed scarification before day 15 of incubation. It is concluded that radicle emergence in dry L. microcarpa seeds is inhibited only mechanically. The mechanical properties of the endocarp are attributed to irreversible structural changes of the lignin¿hemicellulose complex, which occur during drying

    Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland

    Get PDF
    Quasi-continuous, in-situ measurements of atmospheric CO2, O2/N2, CH4, CO, N2O, and SF6 have been performed since August 2005 at the tall tower station near Bialystok, in Eastern Poland, from five heights up to 300 m. Besides the in-situ measurements, flask samples are filled approximately weekly and measured at Max-Planck Institute for Biogeochemistry for the same species and, in addition, for H2, Ar/N2 and the stable isotopes 13C and 18O in CO2. The in-situ measurement system was built based on commercially available analysers: a LiCor 7000 for CO2, a Sable Systems "Oxzilla" FC-2 for O2, and an Agilent 6890 gas chromatograph for CH4, CO, N2O and SF6. The system was optimized to run continuously with very little maintenance and to fulfill the precision requirements of the CHIOTTO project. The O2/N2 measurements in particular required special attention in terms of technical setup and quality assurance. The evaluation of the performance after more than three years of operation gave overall satisfactory results, proving that this setup is suitable for long term remote operation with little maintenance. The precision achieved for all species is within or close to the project requirements. The comparison between the in-situ and flask sample results, used to verify the accuracy of the in-situ measurements, showed no significant difference for CO2, O2/N2, CH4 and N2O, and a very small difference for SF6. The same comparison however revealed a statistically significant difference for CO, of about 6.5 ppb, for which the cause could not be fully explained. From more than three years of data, the main features at Bialystok have been characterized in terms of variability, trends, and seasonal and diurnal variations. CO2 and O2/N2 show large short term variability, and large diurnal signals during the warm seasons, which attenuate with the increase of sampling height. The trends calculated from this dataset, over the period August 2005 to December 2008, are 2.02±0.46 ppm/year for CO2 and -23.2±2.5 per meg/year for O2/N2. CH4, CO and N2O show also higher variability at the lower sampling levels, which in the case of CO is strongly seasonal. Diurnal variations in CH4, CO and N2O mole fractions can be observed during the warm season, due to the periodicity of vertical mixing combined with the diurnal cycle of anthropogenic emissions. We calculated increase rates of 10.1±4.4 ppb/year for CH4, (-8.3)±5.3 ppb/year for CO and 0.67±0.08 ppb/year for N2O. SF6 shows only few events, and generally no vertical gradients, which suggests that there are no significant local sources. A weak SF6 seasonal cycle has been detected, which most probably is due to the seasonality of atmospheric circulation. SF6 increased during the time of our measurement at an average rate of 0.29±0.01 ppt/year

    A study to examine the feasibility of using surface penetrators for mineral exploration

    Get PDF
    The feasibility of using penetrators in earth applications is examined. Penetrator applications in exploration for mineral resources only is summarized. Instrumentation for future penetrators is described. Portions of this report are incorporated into a more extensive report examining other penetrator applications in exploration for fossil fuels, geothermal resources, and in environmental and engineering problems, which is to be published as a NASA technical publication

    Soil respiration in a northeastern US temperate forest: a 22‐year synthesis

    Get PDF
    To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter‐annual variations in soil respiration (Rs), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site‐years of eddy‐covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (Re). Rs was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of Rs to experimental manipulations mimicking aspects of global change or aimed at partitioning Rs into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on Rs was transient, but in other cases the time series were not long enough to rule out long‐term changes in respiration rates. Inter‐annual variations in weather and phenology induced variation among annual Rs estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy‐covariance sites, aboveground respiration dominated Re early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns—high apparent rates of respiration during winter and very low rates in mid‐to‐late summer—at the Environmental Measurement Site suggest either bias in Rs and Re estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard‐to‐measure fluxes (e.g., wintertime Rs, unaccounted losses of CO2 from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of Re, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data‐rich analysis identifies important seasonal and experimental variations in Rs and Re and in the partitioning of Re above‐ vs. belowground

    Effects of Silvopasture Establishment on Aqueous and Gaseous Soil N Losses at the University of New Hampshire Organic Dairy Research Farm

    Get PDF
    The expansion of local agriculture in the New England region is putting increased pressure on farmers to expand their arable land base. While clear-cutting is a traditional method of converting forested land to agriculture, it is known for having adverse ecological impacts. To minimize these impacts, farmers can create a silvopasture which incorporates a portion of the original forest canopy into pastures or crop fields. This study evaluates the impact of land-use changes for agriculture on soil nitrogen (N) retention. In particular, this study investigates the differences in soil N turnover, gaseous loss, and aqueous loss among an established forest, established pasture, clear-cut converted pasture, and converted silvopasture systems over a 30day incubation period. We found significant differences in N mineralization, immobilization, and denitrification among treatments, with evidence that a forest-to-silvopasture conversion can successfully support soil N retention within the first two years of implementation. This may have been due to the presence of coarse woody debris inputs from forest cutting and its effect on the soil carbon (C) to N ratio. Nitrogen retention in silvopastures may also result from partial preservation of the forest canopy. Our results suggest that farmers looking to expand their agricultural land base through forest clearing may be able to use silvopastures for as a way of retaining soil nutrients while at the same time putting land into production
    corecore