1,196 research outputs found

    Semantic Sort: A Supervised Approach to Personalized Semantic Relatedness

    Full text link
    We propose and study a novel supervised approach to learning statistical semantic relatedness models from subjectively annotated training examples. The proposed semantic model consists of parameterized co-occurrence statistics associated with textual units of a large background knowledge corpus. We present an efficient algorithm for learning such semantic models from a training sample of relatedness preferences. Our method is corpus independent and can essentially rely on any sufficiently large (unstructured) collection of coherent texts. Moreover, the approach facilitates the fitting of semantic models for specific users or groups of users. We present the results of extensive range of experiments from small to large scale, indicating that the proposed method is effective and competitive with the state-of-the-art.Comment: 37 pages, 8 figures A short version of this paper was already published at ECML/PKDD 201

    A Systematic Study of Knowledge Graph Analysis for Cross-language Plagiarism Detection

    Full text link
    This is the author’s version of a work that was accepted for publication in Information Processing and Management. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Processing and Management 52 (2016) 550–570. DOI 10.1016/j.ipm.2015.12.004Cross-language plagiarism detection aims to detect plagiarised fragments of text among documents in different languages. In this paper, we perform a systematic examination of Cross-language Knowledge Graph Analysis; an approach that represents text fragments using knowledge graphs as a language independent content model. We analyse the contributions to cross-language plagiarism detection of the different aspects covered by knowledge graphs: word sense disambiguation, vocabulary expansion, and representation by similarities with a collection of concepts. In addition, we study both the relevance of concepts and their relations when detecting plagiarism. Finally, as a key component of the knowledge graph construction, we present a new weighting scheme of relations between concepts based on distributed representations of concepts. Experimental results in Spanish–English and German–English plagiarism detection show state-of-the-art performance and provide interesting insights on the use of knowledge graphs. © 2015 Elsevier Ltd. All rights reserved.This research has been carried out in the framework of the European Commission WIQ-EI IRSES (No. 269180) and DIANA APPLICATIONS - Finding Hidden Knowledge in Texts: Applications (TIN2012-38603-C02-01) projects. We would like to thank Tomas Mikolov, Martin Potthast, and Luis A. Leiva for their support and comments during this research.Franco-Salvador, M.; Rosso, P.; Montes Gomez, M. (2016). A Systematic Study of Knowledge Graph Analysis for Cross-language Plagiarism Detection. Information Processing and Management. 52(4):550-570. https://doi.org/10.1016/j.ipm.2015.12.004S55057052

    SimLex-999: Evaluating Semantic Models with (Genuine) Similarity Estimation

    Full text link
    We present SimLex-999, a gold standard resource for evaluating distributional semantic models that improves on existing resources in several important ways. First, in contrast to gold standards such as WordSim-353 and MEN, it explicitly quantifies similarity rather than association or relatedness, so that pairs of entities that are associated but not actually similar [Freud, psychology] have a low rating. We show that, via this focus on similarity, SimLex-999 incentivizes the development of models with a different, and arguably wider range of applications than those which reflect conceptual association. Second, SimLex-999 contains a range of concrete and abstract adjective, noun and verb pairs, together with an independent rating of concreteness and (free) association strength for each pair. This diversity enables fine-grained analyses of the performance of models on concepts of different types, and consequently greater insight into how architectures can be improved. Further, unlike existing gold standard evaluations, for which automatic approaches have reached or surpassed the inter-annotator agreement ceiling, state-of-the-art models perform well below this ceiling on SimLex-999. There is therefore plenty of scope for SimLex-999 to quantify future improvements to distributional semantic models, guiding the development of the next generation of representation-learning architectures

    Size Matters: The Impact of Training Size in Taxonomically-Enriched Word Embeddings

    Get PDF
    Word embeddings trained on natural corpora (e.g., newspaper collections, Wikipedia or the Web) excel in capturing thematic similarity (“topical relatedness”) on word pairs such as ‘coffee’ and ‘cup’ or ’bus’ and ‘road’. However, they are less successful on pairs showing taxonomic similarity, like ‘cup’ and ‘mug’ (near synonyms) or ‘bus’ and ‘train’ (types of public transport). Moreover, purely taxonomy-based embeddings (e.g. those trained on a random-walk of WordNet’s structure) outperform natural-corpus embeddings in taxonomic similarity but underperform them in thematic similarity. Previous work suggests that performance gains in both types of similarity can be achieved by enriching natural-corpus embeddings with taxonomic information from taxonomies like WordNet. This taxonomic enrichment can be done by combining natural-corpus embeddings with taxonomic embeddings (e.g. those trained on a random-walk of WordNet’s structure). This paper conducts a deep analysis of this assumption and shows that both the size of the natural corpus and of the random-walk coverage of the WordNet structure play a crucial role in the performance of combined (enriched) vectors in both similarity tasks. Specifically, we show that embeddings trained on medium-sized natural corpora benefit the most from taxonomic enrichment whilst embeddings trained on large natural corpora only benefit from this enrichment when evaluated on taxonomic similarity tasks. The implication of this is that care has to be taken in controlling the size of the natural corpus and the size of the random-walk used to train vectors. In addition, we find that, whilst the WordNet structure is finite and it is possible to fully traverse it in a single pass, the repetition of well-connected WordNet concepts in extended random-walks effectively reinforces taxonomic relations in the learned embeddings
    • …
    corecore