67,759 research outputs found

    Reconstruction of plasma density profiles by measuring spectra of radiation emitted from oscillating plasma dipoles

    Get PDF
    We suggest a new method for characterising non-uniform density distributions of plasma by measuring the spectra of radiation emitted from a localised plasma dipole oscillator excited by colliding electromagnetic pulses. The density distribution can be determined by scanning the collision point in space. Two-dimensional particle-in-cell simulations demonstrate the reconstruction of linear and nonlinear density profiles corresponding to laser-produced plasma. The method can be applied to a wide range of plasma, including fusion and low temperature plasmas. It overcomes many of the disadvantages of existing methods that only yield average densities along the path of probe pulses, such as interferometry and spectroscopy

    Nonlinear alternating current responses of graded materials

    Full text link
    When a composite of nonlinear particles suspended in a host medium is subjected to a sinusoidal electric field, the electrical response in the composite will generally consist of alternating current (AC) fields at frequencies of higher-order harmonics. The situation becomes more interesting when the suspended particles are graded, with a spatial variation in the dielectric properties. The local electric field inside the graded particles can be calculated by the differential effective dipole approximation, which agrees very well with a first-principles approach. In this work, a nonlinear differential effective dipole approximation and a perturbation expansion method have been employed to investigate the effect of gradation on the nonlinear AC responses of these composites. The results showed that the fundamental and third-harmonic AC responses are sensitive to the dielectric-constant and/or nonlinear-susceptibility gradation profiles within the particles. Thus, by measuring the AC responses of the graded composites, it is possible to perform a real-time monitoring of the fabrication process of the gradation profiles within the graded particles.Comment: 18 pages, 4 figure

    High-visibility nonclassical interference of photon pairs generated in a multimode nonlinear waveguide

    Full text link
    We report measurements of two-photon interference using a cw-pumped type-II spontaneous parametric down-conversion source based on a multimode perodically poled potassium titanyl phosphate waveguide. We have used the recently demonstrated technique of controlling the spatial characteristics of the down-conversion process via intermodal dispersion to generate photon pairs in fundamental transverse modes, thus ensuring their spatial indistinguishability. Good spatial overlap of photon modes within pairs has been verified using the Hong-Ou-Mandel interferometer and the preparation of polarization entanglement in the Shih-Alley configuration, yielding visibilities consistently above 90%.Comment: 9 pages, 6 figure

    Fast and broadband fiber dispersion measurement with dense wavelength sampling

    No full text
    We report on a method to obtain dispersion measurements from spectral-domain low-coherence interferograms which enables high accuracy (~ps/(nm·km)), broadband measurements and the determination of very dense (up to 20 points/nm over 500 nm) data sets for both dispersion and dispersion slope. The method exploits a novel phase extraction algorithm which allows the phase associated with each sampling point of the interferogram to be calculated and provides for very accurate results as well as a fast measurement capability, enabling close to real time measurements. The important issue of mitigating the measurement errors due to any residual dispersion of optical elements and to environmental fluctuations was also addressed. We performed systematic measurements on standard fibers which illustrate the accuracy and precision of the technique, and we demonstrated its general applicability to challenging problems by measuring a carefully selected set of microstructured fibers: a lead silicate W-type fiber with a flat, near-zero dispersion profile; a hollow core photonic bandgap fiber with strongly wavelength dependent dispersion and dispersion slope; a small core, highly birefringent index guiding microstructured fiber, for which polarization resolved measurements over an exceptionally wide (~1000 nm) wavelength interval were obtained

    Three-dimensional jamming and flows of soft glassy materials

    Get PDF
    Various disordered dense systems such as foams, gels, emulsions and colloidal suspensions, exhibit a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, thoroughly studied with powerful means of 3D characterization, exhibits some analogy with that of glasses which led to call them soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behavior, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple 3D continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The 3D jamming criterion appears to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity with the structural relaxations driven by temperature and density in other glassy systems.Comment: http://www.nature.com/nmat/journal/v9/n2/abs/nmat2615.htm

    Understanding mixing efficiency in the oceans: Do the nonlinearities of the equation of state matter?

    Full text link
    There exist two central measures of turbulent mixing in turbulent stratified fluids, both caused by molecular diffusion: 1) the dissipation rate D(APE) of available potential energy (APE); 2) the turbulent rate of change Wr,turbulent of background potential energy GPEr. So far, these two quantities have often been regarded as the same energy conversion, namely the irreversible conversion of APE into GPEr, owing to D(APE)=Wr,turbulent holding exactly for a Boussinesq fluid with a linear equation of state. It was recently pointed out, however, that this equality no longer holds for a thermally-stratified compressible fluid, the ratio \xi=Wr,turbulent/D(APE) being then lower than unity and sometimes even negative for water/seawater. In this paper, the behavior of the ratio \xi is examined for different stratifications having the same buoyancy frequency N(z), but different vertical profiles of the parameter \Upsilon = \alpha P/(\rho C_p), where \alpha is the thermal expansion, P the hydrostatic pressure, \rho the density, and C_p the isobaric specific heat capacity, the equation of state considered being that for seawater for different particular constant values of salinity. It is found that \xi and Wr,turbulent depend critically on the sign and magnitude of d\Upsilon/dz, in contrast with D(APE), which appears largely unaffected by the latter. These results have important consequences for how the mixing efficiency should be defined and measured.Comment: 17 pages, 5 figures, 1 Table, accepted in Ocean Science (special issue on seawater) on July 10th 200

    Shear-induced fragmentation of Laponite suspensions

    Get PDF
    Simultaneous rheological and velocity profile measurements are performed in a smooth Couette geometry on Laponite suspensions seeded with glass microspheres and undergoing the shear-induced solid-to-fluid (or yielding) transition. Under these slippery boundary conditions, a rich temporal behaviour is uncovered, in which shear localization is observed at short times, that rapidly gives way to a highly heterogeneous flow characterized by intermittent switching from plug-like flow to linear velocity profiles. Such a temporal behaviour is linked to the fragmentation of the initially solid sample into blocks separated by fluidized regions. These solid pieces get progressively eroded over time scales ranging from a few minutes to several hours depending on the applied shear rate γ˙\dot{\gamma}. The steady-state is characterized by a homogeneous flow with almost negligible wall slip. The characteristic time scale for erosion is shown to diverge below some critical shear rate γ˙\dot{\gamma}^\star and to scale as (γ˙γ˙)n(\dot{\gamma}-\dot{\gamma}^\star)^{-n} with n2n\simeq 2 above γ˙\dot{\gamma}^\star. A tentative model for erosion is discussed together with open questions raised by the present results.Comment: 19 pages, 13 figures, submitted to Soft Matte

    Quantifying Mechanical Properties of Automotive Steels with Deep Learning Based Computer Vision Algorithms

    Get PDF
    This paper demonstrates that the instrumented indentation test (IIT), together with a trained artificial neural network (ANN), has the capability to characterize the mechanical properties of the local parts of a welded steel structure such as a weld nugget or heat affected zone. Aside from force-indentation depth curves generated from the IIT, the profile of the indented surface deformed after the indentation test also has a strong correlation with the materials’ plastic behavior. The profile of the indented surface was used as the training dataset to design an ANN to determine the material parameters of the welded zones. The deformation of the indented surface in three dimensions shown in images were analyzed with the computer vision algorithms and the obtained data were employed to train the ANN for the characterization of the mechanical properties. Moreover, this method was applied to the images taken with a simple light microscope from the surface of a specimen. Therefore, it is possible to quantify the mechanical properties of the automotive steels with the four independent methods: (1) force-indentation depth curve; (2) profile of the indented surface; (3) analyzing of the 3D-measurement image; and (4) evaluation of the images taken by a simple light microscope. The results show that there is a very good agreement between the material parameters obtained from the trained ANN and the experimental uniaxial tensile test. The results present that the mechanical properties of an unknown steel can be determined by only analyzing the images taken from its surface after pushing a simple indenter into its surface
    corecore